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1 Algebraic structure of quantum theory

1.1 Quantum systems with a finite number of degrees of
freedom

• Observables describe properties of measuring devices (possible measured val-
ues, commensurability properties).

• States describe properties of prepared ensembles (probability distributions
of measured values, correlations between observables)

Mathematical description based on Hilbert space formalism, Hilbert space H.

• Observables: self-adjoint operators A on H.

• States: density matrices ρ on H (i.e. ρ ≥ 0, Tr ρ = 1).

• Expectation values A, ρ 7→ TrρA.

Remark 1.1 pure states (‘optimal information’)= rays eiφφ ∈ H, ‖φ‖ = 1 =
orthogonal projections ρ2 = ρ. ( Question: Why equivalent? Express in a basis,
there can be just one eigenvalue with multiplicity one).

• Usual framework : fixed by specifying H. E.g. for spin H = C2, for par-
ticle L2(R3). Question: What is the Hilbert space for a particle with spin?
L2(R3;C2).
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• Question: Does every s.a. operator A correspond to some measurement?
Does every density matrix ρ correspond to some ensamble which can be
prepared? In general no. Superselection rules. For example, you cannot
superpose two states with different charges.

• New point of view: Observables are primary objects (we specify the family
of measuring devices). The rest of the theory follows.

1.1.1 Heisenberg algebra

Quantum Mechanics. Observables:
Qj, j = 1, . . . , n and Pk, k = 1, . . . , n.
(n = Nd, N -number of particles, d-dimension of space).

We demand that observables form (generate) an algebra.

Definition 1.2 The ”free (polynomial) ∗-algebra P” is a complex vector space
whose basis vectors are monomials (”words”) in Qj, Pk (denoted Qj1 . . . Pk1 . . . Qjn . . . Pkn).

1. Sums: Elements of P have the form∑
cj1...knQj1 . . . Pkn . (1)

2. Products: The product operation is defined on monomials by

(Qj1 . . . Pk1 . . . Qjn . . . Pkn) · (Qj′1
. . . Pk′1 . . . Qj′n . . . Pk′n)

= Qj1 . . . Pk1 . . . Qjn . . . PknQj′1
. . . Pk′1 . . . Qj′n . . . Pk′n

3. Adjoints: Q∗j = Qj, P
∗
k = Pk,(∑

cj1...knQj1 . . . Pkn

)∗
=
∑

cj1...knPkn . . . Qj1 . (2)

4. Unit: 1.

The operations (+, ·,∗ ) are subject to standard rules (associativity, distributivity,
antilinearity etc.) but not commutativity.

• Quantum Mechanics requires the following relations :

[Qj, Qk] = [Pj, Pk] = 0,
(
[Qj, Pk]− iδj,k1

)
= 0. (3)

• Consider a two-sided ideal J generated by all linear combinations of

A[Qj, Qk]B, A[Pj, Pk]B, A
(
[Qj, Pk]− iδj,k1

)
B (4)

for all A,B ∈ P .

Definition 1.3 Quotient P\J is again a ∗-algebra, since J is a two-sided ideal
and J ∗ = J . We will call it ”Heisenberg algebra”. This is the free algebra ‘modulo
relations’ (3).
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1.1.2 Weyl algebra

The elements of polynomial algebra are intrinsically unbounded (values of position
and momentum can be arbitrarily large). This causes technical problems. A way
out is to consider their bounded functions. For z = u + iv ∈ Cn we would like
to set W (z) ≈ exp(i

∑
k(ukPk + vkQk)). We cannot do it directly, because exp is

undefined for ’symbols’ Pk, Qk. But we can consider abstract symbols W (z) satis-
fying the expected relations keeping in mind the formal Baker-Campbell-Hausdorff
(BCH) relation. The BCH formula gives

eAeB = eA+B+ 1
2

[A,B] (5)

We have z = u + iv, z′ = u′ + iv′, W (z) = eA, W (z′) = eB, A = i(uP + vQ),
B = i(u′P + v′Q) and [Q,P ] = i. Thus we have

[A,B] = (−1)[uP + vQ, u′P + v′Q] = (−1)(ivu′ − iuv′) = i(uv′ − vu′). (6)

On the other hand:

Im〈z, z′〉 = Im〈u+ iv, u′ + iv′〉 = Im(−ivu′ + iuv′) = uv′ − vu′. (7)

Hence

W (z)W (z′) = e
i
2

Im〈z,z′〉W (z + z′). (8)

Definition 1.4 The (pre-)Weyl algebra W is the free polynomial ∗-algebra gener-
ated by the symbols W (z), z ∈ Cn modulo the relations

W (z)W (z′)− e
i
2

Im〈z|z′〉W (z + z′) = 0, W (z)∗ −W (−z) = 0, (9)

where 〈z|z′〉 =
∑

k z̄kz
′
k is the canonical scalar product in Cn.

The Weyl algebra has the following properties:

1. We have W (0) = 1 (by the uniqueness of unity).

2. By the above W (z)W (z)∗ = W (z)∗W (z) = 1 i.e. Weyl operators are unitary.

3. We have(∑
z

azW (z)
)(∑

z′

bz′W (z′)
)

=
∑
z,z′

azbz′e
i
2

Im〈z,z′〉W (z + z′). (10)

Thus elements of W are linear combinations of Weyl operators W (z).

3



1.1.3 Representations of the Weyl algebra

Definition 1.5 A ∗-representation π : W 7→ B(H) is a homomorphism i.e. a
map which preserves the algebraic structure. That is for W,W1,W2 ∈ W:

1. linearity π(c1W1 + c2W2) = c1π(W1) + c2π(W2),

2. multiplicativity π(W1W2) = π(W1)π(W2),

3. symmetry π(W ∗) = π(W )∗.

If in addition π(1) = I, we say that the representation is unital. (In these lectures
we consider unital representations unless specified otherwise).

Example 1.6 Let H1 = L2(Rn) with scalar products 〈f, g〉 =
∫
dnx f(x)g(x). One

defines (
π1(W (z))f

)
(x) = e

i
2
uveivxf(x+ u), z = u+ iv. (11)

(Note that for u = 0 π1(W (z) is a multiplication operator and for v = 0 it is a
shift). This is Schrödinger representation in configuration space.

Remark 1.7 Heuristics: Recall that W (z) = e(i
∑
k(ukPk+vkQk)) and Baker-Campbell-

Hausdorff

(ei(uP+vQ)f)(x) = e
i
2
uv(eivQei

∑
uPf)(x) (12)

= e
i
2
uveivx(eiuPf)(x) = e

i
2
uveivx(f)(x+ u) (13)

For the last step note (eiuPf)(x) = (eiu
1
i
∂xf)(x) = (

∑
n
un

n!
∂nxf)(x) = f(x+ u).

Example 1.8 Let H2 = L2(Rn) with scalar products 〈f, g〉 =
∫
dnx f(x)g(x). One

defines (
π2(W (z))f

)
(x) = e−

i
2
uveiuxf(x− v), z = u+ iv. (14)

This is Schrödinger representation in momentum space.

Relation between (π1,H1), (π2,H2) is provided by the Fourier transform

(Ff)(y) := (2π)−n/2
∫
dnx e−ixyf(x), (15)

(F−1f)(y) := (2π)−n/2
∫
dnx eixyf(x). (16)

F is isometric, i.e. 〈Ff,Ff〉 = 〈f, f〉, (Plancherel theorem) and invertible (Fourier
theorem). Hence it is unitary. We have

π2(W ) = Fπ1(W )F−1, W ∈ W . (17)
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Definition 1.9 Let (πa,Ha), (πb,Hb) be two representations. If there exists an
invertible isometry U : Ha → Hb (a unitary) s.t.

πb( · ) = Uπa( · )U−1 (18)

the two representations are said to be (unitarily) equivalent (denoted (πa,Ha) '
(πb,Hb)). As we will see, equivalent representations describe the same set of states.

Is any representation of W unitarily equivalent to the Schrödinger representation
π1? Certainly not, because we can form direct sums e.g. π = π1 ⊕ π1 is not
unitarily equivalent to π1. We have to restrict attention to representations which
cannot be decomposed into ”smaller” ones.

Definition 1.10 Irreducibility of representations: We say that a closed subspace
K ⊂ H is invariant (under the action of π(W)) if π(W)K ⊂ K. We say that a
representation of (π,H) of W is irreducible, if the only closed invariant subspaces
are H and {0}.

Remark 1.11 The Schroedinger representation π1 is irreducible (Homework).

Lemma 1.12 Irreducibility of (π,H) is equivalent to any of the two conditions
below:

1. For any non-zero Ψ ∈ H

{π(W )Ψ |W ∈ W } = H (19)

(i.e. if every non-zero vector is cyclic).

2. Given A ∈ B(H),

[A, π(W )] = 0 for all W ∈ W (20)

implies that A ∈ CI (”Schur lemma”)
(i.e. the commutant of π(W) is trivial).

Remark 1.13 Recall that the commutant of π(W) is defined as

π(W)′ = {A ∈ B(H) |[A, π(W )] = 0 for all W ∈ W}. (21)

Proof. For complete proof see e.g. Proposition 2.3.8 in [1]. We will show here
only that 1. ⇒ 2.: By contradiction, we assume that there is A /∈ CI in π(W)′.
If A ∈ π(W)′ then also A∗ ∈ π(W)′ hence also s.a. operators A+A∗

2
and A−A∗

2i
are

in π(W)′. Thus, we can in fact assume that there is a s.a. operator B ∈ π(W)′,
B /∈ C1. Then also bounded Borel functions of B are in π(W)′. In particular
characteristic functions χ∆(B), ∆ ⊂ R (spectral projections of B) are in π(W)′.
Since B /∈ C1, we can find 0 6= χ∆(B) 6= I. Let Ψ ∈ Ranχ∆(B) i.e. Ψ = χ∆(B)Ψ.
Then for any W ∈ W

π(W )Ψ = π(W )χ∆(B)Ψ = χ∆(B)π(W )Ψ, (22)
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hence Ψ cannot be cyclic because χ∆(B) projects on a subspace which is strictly
smaller than H. �

Question: Are any two irreducible representations of the Weyl algebra unitarily
equivalent?

Answer: In general, no. After excluding pathologies yes.

Example 1.14 Let H3 be a non-separable Hilbert space with a basis ep, p ∈ Rn.
Elements of H3:

f =
∑
p

cpep, with
∑
p

|cp|2 <∞ (23)

(i.e. all cp = 0 apart from some countable set). 〈f |f ′〉 =
∑

p cpc
′
p. We define

π3(W (z))ep = e−
i
2
uveiupep+v. (24)

This representation is irreducible but not unitarily equivalent to (π1,H1) ' (π2,H2)
because H1,2 and H3 have different dimension.

Criterion: Representation (π,H) of W is of ”physical interest” if for any f ∈ H
the expectation values

z 7→ 〈f, π(W (z))f〉 (25)

depend continuously on z.

Physical meaning of the Criterion: Set v = 0. Then u 7→ π(W (u)) is an
n-parameter unitary representation of translations on H. Hence, by the Criterion
and Stone’s theorem

π(W (u)) = ei(u1Pπ,1+···+unPπ,n), (26)

where Pπ,i is a family of commuting s.a operators on (a domain in) H. They can
be interpreted as momentum operators in this representation. Analogously, we
obtain the position operators Qπ,i. By taking derivatives of the Weyl relations
w.r.t, ul, vk one obtains [Qπ,j, Pπ,k] = iδj,k1 on a certain domain (on which the
derivatives exist).

Theorem 1.15 (Stone-von Neumann uniqueness theorem) Any irreducible repre-
sentation of W, satisfying the Criterion, is unitarily equivalent to the Schrödinger
representation.

For a proof see Theorem 4.34 and Theorem 8.15 in [2].

Remark 1.16 This theorem does not generalize to systems with infinitely many
degrees of freedom (n = ∞). In particular, it does not hold in QFT. This is one
reason why charges, internal (’gauge’) symmetries, and groups play much more
prominent role in QFT than in QM. As we will see in Section 5, they will be
needed to keep track of all these inequivalent representations.
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1.1.4 States

Definition 1.17 A state ω of a physical system is described by

1. specifying a representation (π,H) of W,

2. specifying a density matrix ρ on H.

Then ω(W ) = Trρπ(W ).

Lemma 1.18 As a map ω :W 7→ C, a state satisfies

1. linearity ω(c1W1 + c2W2) = c1ω(W1) + c2ω(W2).

2. normalization ω(1) = 1.

3. positivity ω(W ∗W ) ≥ 0 for all W ∈ W.

Proof. The only non-trivial fact is positivity: Write ρ =
∑

i pi|Ψi〉〈Ψi|, pi ≥ 0,
Ψi orthonormal. Then, if the sum is finite, we can write

ω(W ∗W ) =
∑
i

piTr(|Ψi〉〈Ψi|π(W ∗W ))

=
∑
i

pi〈Ψi|π(W ∗W )Ψi〉 =
∑
i

pi‖π(W )Ψi‖2 ≥ 0, (27)

by completing Ψi to orthonormal bases.
In the general case we can use cyclicity of the trace

Tr ρπ(W ∗W ) = Tr ρπ(W )∗π(W ) = Trπ(W )ρπ(W )∗ (28)

=
∑
i

∑
j

pj|〈ei, π(W )Ψj〉|2. (29)

The result is finite (because ρπ(W ∗W ) is trace-class) and manifestly positive. �

Definition 1.19 We say that a representation (π,H) is cyclic, if H contains a
cyclic vector Ω. (Cf. Lemma 1.12). Such representations will be denoted (π,H,Ω).
For example, any irreducible representation is cyclic.

Theorem 1.20 Any linear functional ω :W → C, which is positive and normal-
ized, is a state in the sense of Definition 1.17 above. More precisely, it induces a
unique (up to unitary equivalence) cyclic representation (π,H,Ω) s.t.

ω(W ) = 〈Ω, π(W )Ω〉, W ∈ W . (30)

Proof. GNS construction (see any textbook on operator algebras, e.g. [1]). �

Lemma 1.21 If (π1,H1) ' (π2,H2) then the corresponding sets of states coincide.

Proof. Let ρ1 be a density matrix in representation π1 and W ∈ W . Then

Tr ρ1π1(W ) = Tr ρ1Uπ2(W )U−1 = TrU−1ρ1Uπ2(W ). (31)

Hence it does not matter if we measure W in representation π1 on ρ1 or in π2 on
ρ2 = U−1ρ1U .�
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1.1.5 Weyl C∗-algebra

Definition 1.22 We define a seminorm on W:

‖W‖ := sup
π
‖π(W )‖, W ∈ W , (32)

where the supremum extends over all cyclic representations. The completion of
W/ ker ‖ · ‖ is the Weyl C∗-algebra which we denote W̃.

A few remarks about this definition:

1. The supremum is finite because for any representation π we have

‖π(W (z))‖2 = ‖π(W (z))∗π(W (z))‖ = ‖π(1)‖ = 1 (33)

and thus ‖π(W )‖ for any W ∈ W is finite.

2. We could take supremum over all representations, but we should keep in
mind that this is not a set but a class. In fact, take the direct sum of all the
representations which do not have themselves as a direct summand and call
this representation Π. Then we get the Russel’s paradox:

Π :=
⊕
{π | π /∈ π} then Π ∈ Π⇔ Π /∈ Π, (34)

where π1 ∈ π2 means here that π1 is contained in π2 as a direct summand.

3. Using the GNS theorem one can show that

‖W‖ = sup
ω
ω(W ∗W )1/2. (35)

Here the supremum extends over the set of states. Indeed:

sup
ω
ω(W ∗W )1/2 = sup

(π,Ω)

〈Ω, π(W ∗W )Ω〉1/2 ≤ sup
π
‖π(W )‖. (36)

On the other hand

sup
π
‖π(W )‖ = sup

π
sup
‖Ψ‖=1

‖π(W )Ψ‖ = sup
π

sup
‖Ψ‖=1

〈Ψ, π(W ∗W )Ψ〉1/2

≤ sup
ω
ω(W ∗W )1/2. (37)

4. In the case of the Weyl algebra ker ‖ · ‖ = 0 so the seminorm (32) is actually
a norm. [5]

Apart from standard properties of the norm, (32) satisfies

‖W1W2‖ ≤ ‖W1‖ ‖W2‖ Banach algebra property (38)

‖WW ∗‖ = ‖W‖2 C∗-property (39)

The passage to W̃ is advantageous from the point of view of functional calculus:
For W ∈ W we have f(W ) ∈ W for polynomials f , but for more complicated
functions there is no guarantee. ForW ∈ W̃ we have f(W ) ∈ W̃ for any continuous
function f .

Nevertheless, in the next few subsections we will still work with the pre-Weyl
algebra W .
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1.1.6 Symmetries

Postulate: Symmetry transformations are described by automorphisms (invert-
ible homomorphisms) of W .

Definition 1.23 We say that a map α : W → W is an automorphism if it is a
bijection and satisfies

1. α(c1W1 + c2W2) = c1α(W1) + c2α(W2)

2. α(W1W2) = α(W1)α(W2)

3. α(W )∗ = α(W ∗)

4. α(1) = 1.

Automorphisms of W form a group which we denote AutW.

Example 1.24 If U ∈ W is a unitary, then αU(W ) = UWU−1 is called an
inner automorphism. Inner automorphisms form a group InW. For example, for
U = W (u0) we have

αu0(W (z)) = W (u0)W (z)W (u0)−1 = ei〈u0,v〉W (z) (40)

This is translation of coordinates, as one can see in the Schroedinger representation
π1:

π1(αu0(W (z))) = ei〈u0,v〉ei(uP+vQ) = ei(uP+v(Q+u0)). (41)

Similarly, for v0 ∈ Rn

αiv0(W (z)) = W (iv0)W (z)W (iv0)−1 = e−i〈v0,u〉W (z) (42)

is a translation in momentum space.

Example 1.25 Let R ∈ SO(n). Then

αR(W (z)) = W (Rz) (43)

is an automorphism which is not inner. (Set n = 3 and let R be a rotation around
the z axis by angle θ. Then, in the Schrödinger representation

π1(αR(W (z))) = Uπ1(W (z))U−1 (44)

U = eiθLz , where Lz = QxPy − QyPx. Clearly, U is not an element of W).
Automorphisms which are not inner are called outer automorphisms. They form
a set OutW which is not a group.

As we have seen above, even if an automorphism is not inner, it can be implemented
by a unitary in some given representation.
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Definition 1.26 Let (π,H) be a representation of W. Then α ∈ AutW is said
to be unitarily implementable on H if there exists some unitary U ∈ B(H) s.t.

π(α(W )) = Uπ(W )U−1, W ∈ W . (45)

Example 1.27 A large class of automorphisms is obtained as follows

α(W (z)) = c(z)W (Sz) (46)

where c(z) ∈ C\{0} and S : Cn → Cn a continuous bijection. Weyl relations
impose restrictions on c, S:

c(z + z′) = c(z)c(z′), c(−z) = c(z), |c(z)| = 1, (47)

S(z + z′) = S(z) + S(z′), S(−z) = −S(z), Im〈Sz, Sz′〉 = Im〈z|z′〉. (48)

The latter property means that S is a real-linear symplectic transformation.
For continuous c and S such automorphisms are unitarily implementable in

all irreducible representations satisfying the Criterion (consequence of the v.N.
uniqueness theorem). See Homeworks.

Remark 1.28 ω(z1, z2) := Im〈z|z′〉 is an example of a symplectic form. In gen-
eral, we say that a bilinear form ω is symplectic if it is:

1. Antisymmetric: ω(z1, z2) = −ω(z2, z1)

2. Non-degenerate: If ω(z1, z2) = 0 for all z2, then z1 = 0.

1.1.7 Dynamics

Definition 1.29 A dynamics on W is a one-parameter group of automorphisms
on W i.e. R 3 t 7→ αt s.t. α0 = id, αt+s = αt ◦ αs.

Proposition 1.30 Suppose that the dynamics is unitarily implemented in an ir-
reducible representation π i.e. there exists a family of unitaries s.t.

π(αt(W )) = U(t)π(W )U(t)−1, W ∈ W . (49)

Suppose in addition that t 7→ U(t) continuous (in the sense of matrix elements)
and differentiable (i.e. for some 0 6= Ψ ∈ H, ∂tU(t)Ψ exists in norm).

Then there exists a continuous group of unitaries t 7→ V (t) (i.e. V (0) = 1,
V (s+ t) = V (s)V (t)) s.t.

π(αt(W )) = V (t)π(W )V (t)−1. (50)

Remark 1.31 By the Stone’s theorem we have V (t) = eitH for some self-adjoint
operator H on (a domain in) H (the Hamiltonian). Whereas αt is intrinsic, the
Hamiltonian is not. Its properties (spectrum etc.) depend in general on represen-
tation.
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Proof. We have αs ◦ αt = αs+t. Hence

U(s)U(t)π(W )U(t)−1U(s)−1 = U(s+ t)π(W )U(s+ t)−1, (51)

U(s+ t)−1U(s)U(t)π(W ) = π(W )U(s+ t)−1U(s)U(t). (52)

By irreducibility of π

U(s+ t) = η(s, t)U(s)U(t), where |η(s, t)| = 1. (53)

By multiplying U by a constant phase eiφ0 we can assume that U(0) = I, hence

η(0, t) = η(s, 0) = 1. (54)

Now consider a new family of unitaries V (s) = ξ(s)U(s), |ξ(s)| = 1. We have

V (s+ t) = η′(s, t)V (s)V (t) = ξ(s+ t)U(s+ t)

= ξ(s+ t)η(s, t)U(s)U(t) = ξ(s+ t)η(s, t)ξ(s)−1ξ(t)−1V (s)V (t).(55)

Hence

η′(s, t) =
ξ(s+ t)

ξ(s)ξ(t)
η(s, t). (56)

The task is to obtain η′(s, t) = 1 for all s, t for a suitable choice of ξ (depending on
η). The key observation is that associativity of addition in R imposes a constraint
on η: In fact, we can write

U(r + s+ t) = η(r, s+ t)U(r)U(s+ t) = η(r, s+ t)η(s, t)U(r)U(s)U(t),(57)

U(r + s+ t) = η(r + s, t)U(r + s)U(t) = η(r + s, t)η(r, s)U(r)U(s)U(t).(58)

Hence we get the ”cocycle relation” (cohomology theory)

η(r, s+ t)η(s, t) = η(r + s, t)η(r, s). (59)

Using this relation one can show that given η one can find such ξ that η′ = 1.
”cocycle is a coboundary” (Howework). Important intermediate step is to show,
using the cocycle relation that

η(s, t) = η(t, s). (60)

To express ξ as a function of η we will have to differentiate η. By assumption,
there is Ψ ∈ H, ‖Ψ‖=1 s.t. ∂tU(t)Ψ exists. By (53), we have

η(s, t) = U(t)∗U(s)∗U(s+ t) = 〈Ψ, U(t)∗U(s)∗U(s+ t)Ψ〉
= 〈U(t)Ψ, U(s)∗U(s+ t)Ψ〉. (61)

Hence ∂tη(s, t) exists and by (60) also ∂sη(s, t). �
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Example 1.32 Isotropic harmonic oscillator: In the framework of the polynomial
algebra P we have (heuristically)

αt(Qi) = cos(ω0t)Qi − sin(ω0t)Pi, (62)

αt(Pi) = cos(ω0t)Pi + sin(ω0t)Qi. (63)

In the Weyl setting αt(W (z)) = W (eitω0z). This defines a group of automorphisms
from Example 1.27 with Stz = eitω0z, c(z) = 1. (St is complex-linear). This
dynamics is unitarily implemented in the Schrödinger representation:

π1(αt(W )) = U(t)π1(W )U(t)−1, W ∈ W , (64)

U(t) = eitH , H =
∑

i

( P 2
i

2m
+

kQ2
i

2

)
, ω0 =

√
k
m

.

Example 1.33 Free motion in the framework of P:

αt(Qj) = Qj +
t

m
Pj, (65)

αt(Pk) = Pk. (66)

In the framework of W:

αt(W (z)) = W (Rez + (t/m+ i)Im z) (67)

We have that St(z) = Rez+(t/m+ i)Im z is a symplectic transformation, but only
real linear. This dynamics is unitarily implemented in the Schrödinger represen-
tation:

π1(αt(W )) = U(t)π1(W )U(t)−1, W ∈ W , (68)

U(t) = eitH , H =
∑

i
P 2
i

2m
.

By generalizing the above discussion, one can show that dynamics governed by
Hamiltonians which are quadratic in Pi, Qj correspond to groups of automorphisms
of W . But there are many other interesting Hamiltonians, for example:

H =
P 2

2m
+ V (Q) (69)

where n = 1, V ∈ C∞0 (R)R (smooth, compactly supported, real).

Theorem 1.34 (No-go theorem) Let H = P 2

2m
+ V (Q), V ∈ L1(R) ∩ L∞(R) and

U(t) = eitH . Then

U(t)π1(W )U(t)−1 ∈ π1(W̃), W ∈ W̃ , t ∈ R. (70)

implies that V = 0.

Proof. See [3]. �

Thus AutW̃ does not contain dynamics corresponding to Hamiltonians (69). A
recently proposed solution to this problem is to pass from exponentials W (z) =
ei(uP+vQ) to resolvents R(λ, z) = (iλ − uP − vQ)−1 and work with an algebra
generated by these resolvents [4].
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1.1.8 Resolvent algebra

Definition 1.35 The pre-resolvent algebra R is the free polynomial ∗-algebra gen-
erated by symbols R(λ, z), λ ∈ R\{0}, z ∈ Cn modulo the relations

R(λ, z)−R(µ, z) = i(µ− λ)R(λ, z)R(µ, z), (71)

R(λ, z)∗ = R(−λ, z), (72)

[R(λ, z), R(µ, z′)] = iIm〈z, z′〉R(λ, z)R(µ, z′)2R(λ, z), (73)

νR(νλ, νz) = R(λ, z), (74)

R(λ, z)R(µ, z′) = R(λ+ µ, z + z′)(R(λ, z) +R(µ, z′)

+ iIm〈z, z′〉R(λ, z)2R(µ, z′)), (75)

R(λ, 0) =
1

iλ
, (76)

where λ, µ, ν ∈ R\{0} and in (75) we require λ+ µ 6= 0.

Remark 1.36 Heuristically R(λ, z) = (iλ − uP − vQ)−1. Relations (71), (72)
encode the algebraic properties of the resolvent of some self-adjoint operator. (73)
encodes the canonical commutation relations. (74), (75), (76) encode linearity of
the map (u, v) 7→ uP + vQ.

Definition 1.37 The Schrödinger representation of R is defined as follows: Let
(π1,H1) be the Schrödinger representation of W. Since it satisfies the Criterion
(i.e. it is ”regular”) we have Pi, Qj as self-adjoint operators on L2(Rn). Thus we
can define

π1(R(λ, z)) = (iλ− uP − vQ)−1. (77)

One can check that this prescription defines a representation of R which is irre-
ducible.

Definition 1.38 We define a seminorm on R

‖R‖ = sup
π
‖π(R)‖, R ∈ R, (78)

where the supremum is over all cyclic representations of R. (A cyclic representa-
tion is a one containing a cyclic vector. In particular, irreducible representations
are cyclic). The resolvent C∗-algebra R̃ is defined as the completion of R/ ker ‖ · ‖.

Remark 1.39 The supremum is finite because for any representation π we have

‖π(R(λ, z))‖ ≤ 1

λ
, (Homework). (79)

and thus ‖π(R)‖ for any R ∈ R is finite. It is not known if ker ‖ · ‖ is trivial.
To show that it would suffice to exhibit one representation of R which is faithful
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(i.e. injective: π(R) = 0 implies R = 0). A natural candidate is the Schrödinger
representation. In this case one would have to check that if∑

finite

ci1,...inπ1

(
R(λi1 , zi1) · · ·R(λin , zin)

)
= 0 (80)

Then all ci1,...in = 0.

Definition 1.40 A representation (π,H) of R̃ is regular if there exist self-adjoint
operators Pi, Qj on H s.t. for λ ∈ R\{0}

π(R(λ, z)) = (iλ− uP − vQ)−1. (81)

For example, the Schrödinger representation π1 (of R̃) is regular.

Fact: Any regular irreducible representation π of R̃ is faithful [4]. Hence, the

Schrödinger representation of R̃ is faithful. This does not imply however that the
Schrödinger representation of R is faithful since we divided by ker ‖ · ‖!

Proposition 1.41 There is a one-to-one correspondence between regular repre-
sentations of R̃ and representations of W̃ satisfying the Criterion. (The latter are
also called ”regular”). Hence, by the Stone-von Neumann uniqueness theorem, any

irreducible regular representation of R̃ is unitarily equivalent to the Schrödinger
representation.

Proof. (Idea). Use the Laplace transformation

π(R(λ, z)) = −i
∫ σλ

0

e−λtπ(W (−tz))dt, σ = sgnλ (82)

to construct a regular representation of R̃ out of a regular representation of W̃ . �

Remark 1.42 The Laplace transform can also be useful in checking if ker ‖ · ‖ is
trivial.

Up to now, we found no essential difference between the Weyl algebra and the
resolvent algebra. An important difference is that the Weyl C∗-algebra W̃ is
simple, i.e. it has no non-trivial two sided ideals. The resolvent C∗-algebra has
many ideals. They help to accommodate interesting dynamics.

Theorem 1.43 There is a closed two-sided ideal J ⊂ R̃ s.t. in any irreducible
regular representation (π,H) one has π(J ) = K(H) where K(H) is the algebra of
compact operators on H.

Remark 1.44 We recall:

• A is a compact operator if it maps bounded operators into pre-compact op-
erators. (On a separable Hilbert space if it is a norm limit of a sequence of
finite rank operators).
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• A is Hilbert-Schmidt (A ∈ K2(H)) if ‖A‖2 := Tr(A∗A)1/2 < ∞. Hilbert-
Schmidt operators are compact.

• A convenient way to show that an operator on L2(Rn) is Hilbert-Schmidt is
to study its integral kernel K, defined by the relation:

(AΨ)(p) =

∫
dp′K(p, p′)Ψ(p′). (83)

If K is in L2(Rn × Rn) then A ∈ K2(L2(Rn)) and ‖A‖2 = ‖K‖2.

• For example, consider A = f(Q)g(P ). Its integral kernel in momentum space
is determined as follows:

(f(Q)g(P )Ψ)(p) =
1√
2π

∫
dp′ eiQp

′
(Ff)(p′)(g(P )Ψ)(p)

=
1√
2π

∫
dp′ (Ff)(p′)(g(P )Ψ)(p− p′)

=
1√
2π

∫
dp′ (Ff)(p′)g(p− p′)Ψ(p− p′)

=
1√
2π

∫
dp′′ (Ff)(p− p′′)g(p′′)Ψ(p′′). (84)

Hence the integral kernel of f(Q)g(P ) if K(p, p′) = (Ff)(p− p′)g(p′). If f, g
are square-integrable, so is K.

Proof. (Idea). By the von Neumann uniqueness theorem we can assume that

π is the Schrödinger representation π1. Then it is easy to show that π(R̃) con-
tains some compact operators: For example, set ui = (0, . . . , 1︸ ︷︷ ︸

i

, . . . , 0) and vi =

(0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0). Then the operator

A := π1(R(λ1, iv1)R(µ1, u1) . . . R(λn, ivn)R(µn, un))

=
n∏
j=1

(iλj −Qj)
−1

n∏
k=1

(iµj − Pj)−1 (85)

is Hilbert-Schmidt for all λi, µi ∈ R\{0}. (This can be shown by checking that it
has a square-integrabe kernel). In particular it is compact. Now it is a general
fact in the theory of C∗-algebras that if the image of an irreducibe representation
contains one non-zero compact operator then it contains all of them (Howework).
Thus, since π1 is faithful, we can set J = π−1

1 (K(H)). This is a closed two-sided

ideal in R̃ since K(H) is a closed two-sided ideal in B(H). �

Theorem 1.45 Let n = 1, H = P 2 + V (Q), where V ∈ C0(R)R real, continuous
vanishing at infinity and U(t) = eitH . Then

U(t)π1(R)U(t)−1 ∈ π1(R̃), for all R ∈ R̃, t ∈ R. (86)

15



Remark 1.46 Since π1 is faithful, we can define the group of automorphisms of
R

αt(R) := π−1
1

(
U(t)π1(R)U(t)−1

)
, (87)

which is the dynamics governed by the Hamiltonian H.

Remark 1.47 For simplicity, we assume that V ∈ S(R)R and
∫
dx V (x) = 0.

General case follows from the fact that such functions are dense in C0(R)R in
supremum norm.

Proof. Let U0(t) = eitH0 , where H0 = P 2. Since this is a quadratic Hamiltonian,
we have

U0(t)π1(R̃)U0(t)−1 ⊂ π1(R̃). (88)

Now we consider ΓV (t) := U(t)U0(t)−1. It suffices to show that ΓV (t) − 1 are

compact for all V ∈ C0(R)R since then ΓV (t) ∈ π1(R̃) by Theorem 1.43 and hence

U(t)π1(R̃)U(t)−1 = ΓV (t)U0(t)π1(R̃)U0(t)−1ΓV (t)−1 ∈ π1(R̃), (89)

using ΓV (t)−1 = ΓV (t)∗ ∈ π1(R̃).
We use the Dyson perturbation series of ΓV (t):

ΓV (t) =
∞∑
n=0

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . Vtn , (90)

where Vt := U0(t)V (Q)U0(t)−1 and the integrals are defined in the strong-operator
topology, that is exist on any fixed vector. (Cf. Proposition 1.50 below).

The key observation is that
∫ t

0
ds Vs are Hilbert-Schmidt. To this end compute

the integral kernel Ks of Vs:

(Ks)(p1, p2) =
1√
2π
eip

2
1s(FV )(p1 − p2)e−ip

2
2s. (91)

This is clearly not Hilbert-Schmidt. Now let us compute the integral kernel K̂s of∫ t
0
ds Vs:

(K̂s)(p1, p2) =

∫ t

0

ds (Ks)(p1, p2) =
1√
2π

ei(p
2
1−p2

2)t − 1

i(p2
1 − p2

2)
(FV )(p1 − p2). (92)

This is Hilbert-Schmidt. In fact:∫
dp1dp2 |(K̂s)(p1, p2)|2 = c

∫
dq1 |(FV )(q1)|2

∫
dq2

sin2(tq1q2)

(q1q2)2

= c

∫
dq1 |(FV )(q1)|2 |t|

|q1|

∫
dr

sin2(r)

r2

= c′|t|
∫
dq1
|(FV )(q1)|2

|q1|
(93)
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Since (FV )(0) = 0 we have (FV )(q1) ≤ c|q1| near zero so the integral exists.
Consequently, the strong-operator continuous functions

Rn−1 3 (t2, . . . , tn) 7→
∫ t2

0

dt1 Vt1Vt2 . . . Vtn (94)

have values in the Hilbert-Schmidt class and their Hilbert-Schmidt (HS) norms
are bounded by (

c′|t2|
∫
dq1
|(FV )(q1)|2

|q1|

)1/2

‖V ‖n−1 (95)

(since ‖AB‖2 ≤ ‖A‖2‖B‖). The integral of any strong-operator continuous HS-
valued function with uniformly bounded (on compact sets) HS norm is again HS.
(See Lemma 1.49 below). So each term in the Dyson expansion (apart from n = 0)
is a Hibert-Schmidt (and therefore compact) operator. As the expansion converges
uniformly in norm, the limit is also a compact operator. (Here we use that compact
operators form a C∗-algebra, which is a norm closed set). So ΓV (t)−1 is a compact
operator. �

Remark 1.48 The resolvent algebra admits dynamics corresponding to H = P 2 +
V (Q). But there are other interesting Hamiltonians which are not covered e.g.
H =

√
P 2 +M2. So there remain open questions...

In the above proof we used two facts, which we will now verify:

Lemma 1.49 Let Rn 3 t 7→ F (t) ∈ K2(H) be continuous in the strong operator
topology and suppose that for some compact set K ⊂ Rn we have

sup
t∈K
‖F (t)‖2 <∞, (96)

where ‖F (t)‖2 = Tr(F (t)∗F (t))1/2. Then

F̂ :=

∫
K

dt F (t) (97)

is again Hilbert-Schmidt.

Proof. We have

‖F̂‖2
2 = Tr F̂ ∗F̂ = |

∑
i

∫
K×K

dt1dt2〈ei, F (t1)∗F (t2)ei〉|

≤
∑
i

∫
K×K

dt1dt2|〈ei, F (t1)∗F (t2)ei〉|

≤
∑
i

∫
K×K

dt1dt2‖F (t1)ei‖ ‖F (t2)ei‖. (98)

17



Since the summands/integrals are positive, I can exchange the order of integra-
tion/summation. By Cauchy-Schwarz inequality:

‖F̂‖2
2 ≤

∫
K×K

dt1dt2
(∑

i

‖F (t1)ei‖2
)1/2 (∑

i

‖F (t2)ei‖2
)1/2

=

∫
K×K

dt1dt2 ‖F (t1)‖2‖F (t2)‖2

≤ |K|2 sup
t∈K
‖F (t)‖2

2 <∞. (99)

Where in the last step we use the assumption (96). �

Lemma 1.50 (Special case of Theorem 3.1.33 of [1]) Let R 3 t 7→ U0(t) be a
strongly continuous group of unitaries on H with generator H0 (i.e. U0(t) = eitH0,
above we had H0 = P 2) and let V be a bounded s.a. operator on H. Then H0 + V
generates a strongly continuous group of unitaries U s.t.

U(t)Ψ = U0(t)Ψ

+
∑
n≥1

in
∫

0≤t1≤···≤tn≤t
dt1 . . . dtn U0(t1)V U0(t2 − t1)V · · ·U0(tn − tn−1)V U0(t− tn)Ψ

(100)

For any Ψ ∈ H. (To get the expression for ΓV (t) it suffices to set Ψ = U0(t)−1Ψ′).

Proof. Strategy: we will treat (100) as a definition of a t ≥ 0 dependent family
of operators t 7→ U(t). We will use this definition to show that it can be naturally
extended to a group of unitaries parametrized by t ∈ R. Then, by differentiation,
we will check that its generator is H0 +V . Hence, by Stone’s theorem we will have
U(t) = eit(H0+V ).

Now we give a detailed proof (NOT RELEVANT FOR EXAMINATION). Let
U (n)(t) be the n-th term of the series of U . We have, by a change of variables,

U (0)(t) = U0(t), U (n)(t) =

∫ t

0

dt1 U0(t1)iV U (n−1)(t− t1). (101)

Iteratively, one can show that all U (n)(t) are well defined and strongly continuous.
It is easy to check that this is a series of bounded operators which converges in
norm: In fact

‖U (n)(t)Ψ‖ ≤ tn

n!
‖V ‖n‖Ψ‖, hence

∑
n

‖U (n)(t)Ψ‖ <∞. (102)

By taking the sum of both sides of the recursion relation (101), we get

U(t) = U0(t) +

∫ t

0

dsU0(s)iV U(t− s). (103)
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Now we want to show the (semi-)group property:

U(t1)U(t2) = U0(t1)U(t2) +

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

= U0(t1 + t2) +

∫ t2

0

dsU0(t1 + s)iV U(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

= U(t1 + t2) +

∫ t2

0

dsU0(t1 + s)iV U(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U(t2)

−
∫ t1+t2

0

dsU0(s)iV U(t1 + t2 − s) (104)

Now
∫ t1+t2
t1

part of the last integral cancels the
∫ t2

0
integral (change of variables).

We are left with

U(t1)U(t2)− U(t1 + t2) =

∫ t1

0

dsU0(s)iV
(
U(t1 − s)U(t2)− U(t1 + t2 − s)).(105)

Now let Uλ(t) be defined by replacing V with λV in (100), λ ∈ R. It is clear from
(100) that the function

Ft1(λ) = Uλ(t1)Uλ(t2)− Uλ(t1 + t2) (106)

is real-analytic. By (105) we get

Ft1(λ) = λ

∫ t1

0

dsU0(s)iV Ft1−s(λ). (107)

Clearly, Ft1(0) = 0. Using this, and differentiating the above equation w.r.t. λ at
0, we get ∂λFt1(0) = 0. By iterating we get that all the Taylor series coefficients
of Ft1 at zero are zero and thus Ft1(λ) = 0 by analyticity. We conclude that the
semigroup property holds i.e.

U(t1 + t2) = U(t1)U(t2). (108)

Now we want to show that U(t) are unitaries. A candidate for an inverse of
U(t) is U ′(t) defined by replacing H0 with H ′0 := −H0 and V by V ′ = −V . We

19



also set U ′0(t) = ei(−H0)t. Let t2 ≥ t1. Then

U(t1)U ′(t2) = U0(t1)U ′(t2) +

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

= U0(t1 − t2) +

∫ t2

0

dsU ′0(−t1 + s)iV ′U ′(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

= U ′(t2 − t1) +

∫ t2

0

dsU ′0(−t1 + s)iV ′U ′(t2 − s)

+

∫ t1

0

dsU0(s)iV U(t1 − s)U ′(t2)

−
∫ t2−t1

0

dsU ′0(s)iV ′U ′(t2 − t1 − s) (109)

In the last integral the part −
∫ −t1

0
combines with the second line and −

∫ −t1+t2
−t1

cancels the first line. Thus we get

U(t1)U ′(t2)− U ′(t2 − t1) =

∫ t1

0

dsU0(s)iV
(
U(t1 − s)U ′(t2)− U ′(t2 − (t1 − s))

)
(110)

By an analogous argument as above we obtain

U(t1)U ′(t2) = U ′(t2 − t1), (111)

In particular, U(t)U ′(t) = 1 and we can consistently set U(−t) := U ′(t) for t ≥ 0.
Moreover, it is easily seeen from (100), by a change of variables, that U ′(t) = U(t)∗.
Thus we have a group of unitaries. By Stone’s theorem it has a generator which
can be obtained by differentiation: Clearly we have for Ψ in the domain of H0:

∂t|t=0U0(t)Ψ = iH0Ψ (112)

Now we write

It :=
∑
n≥1

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . VtnU0(t)Ψ (113)

We have

∂tIt = i
∑
n≥1

in−1

∫ t

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . Vtn−1VtU0(t)Ψ

+
∑
n≥1

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1 Vt1Vt2 . . . VtnU0(t)iH0Ψ. (114)

Taking the limit t → 0 the second term tends to zero and the first term tends to
zero apart from n = 1 (since then there are no integrals). The n = 1 term gives
iVΨ, thus, together with (112) we get that the generator of U is H0 + V . �
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1.2 Weyl algebra for systems with infinitely many degrees
of freedom

Algebraic approach is adventageous in order to perform the transition from finite
to infinite systems.

• Finite systems: Cn, 〈 · , · 〉, σ(z, z′) = Im〈z, z′〉. Pre-Weyl algebra W is the
free ∗-algebra generated by W (z), z ∈ Cn, subject to relations

W (z)W (z′) = e
i
2
σ(z,z′)W (z + z′), W (z)∗ = W (−z), z ∈ Cn. (115)

Remark 1.51 This form of Weyl relations corresponds to W (z) = ei(uP+vQ),
z = u + iv via BCH. If we wanted Wnew(z) = ei(vP+uQ), z = u + iv, that
would lead to a minus sign in front of σ:

Wnew(z)Wnew(z′) = e−
i
2
σ(z,z′)Wnew(z + z′) (116)

This convention will be more convenient in the case of systems with infinitely
many degrees of freedom.

• Infinite systems: infinite dimensional complex-linear space D with scalar
product 〈 · , · 〉 (pre-Hilbert space). Define the symplectic form σ(f, g) =
Im 〈f, g〉, f, g ∈ D. Pre-Weyl algebra W is the free ∗-algebra generated by
W (f), f ∈ D, subject to relations

W (f)W (g) = e−
i
2
σ(f,g)W (f + g), W (f)∗ = W (−f), f, g ∈ D. (117)

Example 1.52 : D = S(Rd),

〈f, g〉 =

∫
ddx f(x)g(x). (118)

Heuristics: W (f) = ”ei
(
ϕ(Re f)+π(Im f)

)
”, where

ϕ(g) :=

∫
ddx g(x)ϕ(x), π(h) :=

∫
ddxh(x)π(x) (119)

are spatial means of the quantum ”field operator” ϕ(x) and its ”canonical conjugate
momentum” π(x). The fields ϕ, π satisfy formally

[ϕ(x), π(y)] = iδ(x− y)1, (120)

[ϕ(x), ϕ(y)] = [π(x), π(y)] = 0. (121)

ϕ(x), π(y) are not expected to be operators, but only operator valued distributions.
But ϕ(g), π(h) are expected to be operators and we have

[ϕ(g), π(h)] = i

∫
ddx g(x)h(x)1 = i〈g, h〉1. (122)
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Example 1.53 : D = S(Rd),

〈f, g〉 =

∫
ddp f(p)g(p). (123)

Here Rd is interpreted as momentum space.

Heuristic interpretation: W (f) = e
i√
2

(a∗(f)+a(f))
where

a∗(f) =

∫
ddp f(p)a∗(p), a(f) =

∫
ddp f(p)a(p). (124)

are creation and annihilation operators of particles with momentum in the support
of f . The commutation relations are

[a(p), a∗(q)] = δ(p− q)1, (125)

[a(p), a(q)] = [a(p), a∗(q)] = 0. (126)

Similarly as before a priori these are only operator valued distributions. For
smeared versions we have:

[a(g), a∗(h)] =

∫
ddp g(p)h(p)1 = 〈g, h〉1. (127)

1.2.1 Fock space

We recall the definition and basic properties of a Fock space over h := L2(Rd, ddx).
We have for n ∈ N

⊗nh = h⊗ · · · ⊗ h = L2(Rnd, dndx), (128)

⊗nsh = Sn(h⊗ · · · ⊗ h) = L2
s(Rnd, dndx), (129)

⊗0
sh := CΩ, where Ω is called the vacuum vector. (130)

Here Sn is the symmetrization operator defined by

Sn =
1

n!

∑
σ∈Pn

σ, where σ(f1 ⊗ · · · ⊗ fn) = fσ(1) ⊗ · · · ⊗ fσ(n), (131)

Pn is the set of all permutations and L2
s(Rnd, dndx) is the subspace of symmetric

(w.r.t. permutations of variables) square integrable functions. The (symmetric)
Fock space is given by

Γ(h) := ⊕n≥0 ⊗ns h = ⊕n≥0L
2
s(Rnd, dndx). (132)

We can write Ψ ∈ Γ(h) in terms of its Fock space components Ψ = {Ψ(n)}n≥0. We
define a dense subspace Γfin(h) ⊂ Γ(h) consisting of such Ψ that Ψ(n) = 0 except
for finitely many n. Next, we define a domain

D := {Ψ ∈ Γfin(h) |Ψ(n) ∈ S(Rnd) for all n }. (133)
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Now, for each p ∈ Rd we define an operator a(p) : D → Γ(h) by

(a(p)Ψ)(n)(k1, . . . , kn) =
√
n+ 1Ψ(n+1)(p, k1, . . . , kn),

In particular a(p)Ω = 0. (134)

Note that the adjoint of a(p) is not densely defined, since formally

(a∗(p)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

δ(p− k`)Ψ(n−1)(k1, . . . , k`−1, k`+1, . . . , kn) (135)

However, a∗(p) is well defined as a quadratic form on D ×D. Expressions

a(g) =

∫
ddp a(p)g(p), a∗(g) =

∫
ddp a∗(p)g(p), g ∈ S(Rd), (136)

give well-defined operators on D which can be extended to Γfin(h). On this domain
they act as follows

(a(g)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
ddp g(p)Ψ(n+1)(p, k1, . . . , kn), (137)

(a∗(g)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)Ψ
(n−1)(k1, . . . , k`−1, k`+1, . . . , kn).(138)

These expressions can be used to define a(g), a∗(g) for g ∈ L2(Rd). Since these
operators leave Γfin(h) invariant, one can compute on this domain:

[a(f), a∗(g)] = 〈f, g〉1 (139)

for f, g ∈ L2(Rd). (Formally, this follows from [a(p), a∗(q)] = δ(p− q)).
Now we are ready to define canonical fields and momenta: Let µ : Rd 7→ R+ be

positive, measurable function of momentum s.t. if f ∈ S(Rd) then µ1/2f, µ−1/2f ∈
L2(Rd). (Examples: µ(p) = 1, µm(p) =

√
p2 +m2, m ≥ 0). We set for f, g ∈

S(Rd)

ϕµ(f) :=
1√
2

(
a∗(µ−1/2f̂) + a(µ−1/2 ˆ̄f)

)
, (140)

πµ(g) :=
1√
2

(
a∗(iµ1/2ĝ) + a(iµ1/2 ˆ̄g)

)
, (141)

where f̂(p) := (Ff)(p). For µ := µm this is the canonical field and momentum
of the free scalar relativistic quantum field theory of mass m ≥ 0. From (139) we
have

[ϕµ(f), πµ(g)] =
1

2

(
− 〈iˆ̄g, f̂〉+ 〈 ˆ̄f, iĝ〉

)
=
i

2
(〈ˆ̄g, f̂〉+ 〈 ˆ̄f, ĝ〉) = i〈f̄ , g〉, (142)

where in the last step we made use of Plancherel theorem and

〈ḡ, f〉 =

∫
ddx g(x)f(x) = 〈f̄ , g〉. (143)
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Remark 1.54 Note that (140), (141) arise by smearing the operator-valued dis-
tributions:

ϕµm(x) =
1

(2π)d/2

∫
ddk√

2µm(k)

(
e−ikxa∗(k) + eikxa(k)

)
, (144)

πµm(x) =
i

(2π)d/2

∫
ddk

√
µm(k)

2

(
e−ikxa∗(k)− eikxa(k)

)
. (145)

Consider a unitary operator u on h. Then, its ’second quantization’ is the
following operator on the Fock space:

Γ(u)|Γ(n)(h) = u⊗ · · · ⊗ u, (146)

Γ(u)Ω = Ω. (147)

where Γ(n)(h) is the n-particle subspace. We have the useful relations:

Γ(u)a∗(h)Γ(u)∗ = a∗(uh), Γ(u)a(h)Γ(u)∗ = a(uh). (148)

(Note that a∗(h)∗ = a(h)).
Consider a self-adjoint operator b on h. Then, its ’second quantization’ is the

following operator on the Fock space:

dΓ(b)|Γ(n)(h) =
n∑
i=1

1⊗ · · · b · · · ⊗ 1, (149)

dΓ(b)Ω = 0. (150)

Suppose that b = b(k) is a multiplication operator in momentum space on h =
L2(Rd). Then as an equality of quadratic forms on D ×D we have

dΓ(b) =

∫
ddk b(k)a∗(k)a(k). (151)

Moreover, suppose that U(t) = eitb. Then

Γ(U(t)) = eitdΓ(b). (152)

1.2.2 Representations of the Weyl algebra

Now we are ready to define several representatons ofW on Γ(h). We set D = S(Rd)
and σ(f, g) := Im 〈f, g〉 with standard scalar product in L2(Rd):

Definition 1.55 Let µ be as above. The corresponding Fock space representation
of W is given by

ρµ(W (f)) = ei(ϕµ(Re f)+πµ(Im f)). (153)

In terms of creation and annihilation operators, we have

ρµ(W (f)) = e
i√
2

(a∗(f̂µ)+a(f̂µ))
, (154)

where f̂µ(p) := (µ−
1
2 R̂ef + iµ

1
2 Îmf)(p). Note that for µ = 1 we have f̂µ(p) = f̂(p)

and thus we reproduce Examples 1.52,1.53.
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Theorem 1.56 Representations ρµm are faithful, irreducible and ρµm1
is not uni-

tarily equivalent to ρµm2
for m1 6= m2. (So Stone-von Neumann uniqueness theo-

rem does not hold for systems with infinitely many degrees of freedom).

Proof. See Theorem X.46 of [8].

1.2.3 Symmetries

Symmetries are represented by their automorphic action on the algebra.

Definition 1.57 Let (D, σ) be a symplectic space. A symplectic transformation S
is a linear bijection S : D → D s.t.

σ(Sf, Sg) = σ(f, g), f, g ∈ D. (155)

Note that S−1 is also a symplectic transformation.

Fact: Every symplectic transformation induces an automorphism of W according
to the relation:

αS(W (f)) = W (Sf), f ∈ D. (156)

Proposition 1.58 Let S be a symplectic transformation s.t. also ‖(̂Sf)µ‖ = ‖f̂µ‖.
(For µ = 1 this is just unitarity of S w.r.t. the scalar product in L2(Rd)). Then
there exists a unitary operator Uµ,S on Γ(h) s.t.

Uµ,Sρµ(W )U∗µ,S = ρµ(αS(W )), W ∈ W , (157)

and Uµ,SΩ = Ω. (Converse also true).

Proof. We skip the index µ. Since we know that ρ(W) acts irreducibly on Γ(h),
we have that

D := { ρ(W )Ω |W ∈ W } (158)

is dense in Γ(h). On this domain we set

USρ(W (f))Ω = ρ(W (Sf))Ω, (159)

and extend by linearity to W . By invertibility of S this has a dense range. We
check that it is an isometry on this domain. For this it suffices to verify

〈USρ(W (f))Ω, USρ(W (g))Ω〉 = 〈ρ(W (f))Ω, ρ(W (g))Ω〉. (160)

We have

l.h.s. = 〈ρ(W (Sf))Ω, ρ(W (Sg))Ω〉 = 〈Ω, ρ(W (−Sf)W (Sg))Ω〉
= e

i
2

Im〈f,g〉〈Ω, ρ(W (S(g − f)))Ω〉, (161)
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where we made use of the fact that S is symplectic. Let us set h := S(g− f). We
have

〈Ω, ρ(W (h))Ω〉 = 〈Ω, e
i√
2

(a∗(ĥµ)+a(ĥµ))
Ω〉

= e−
1
2
‖ĥµ‖2〈Ω, e

i√
2
a∗(ĥµ)

e
i√
2
a(ĥµ)

Ω〉

= e−
1
2
‖ĥµ‖2 = e−

1
2
‖( ̂S(g−f))µ‖2 = e−

1
2
‖(ĝ−f)µ‖2

where we used Baker-Campbell-Hausdorff (which can be justified by expanding
exponentials into convergent series) and the additional assumption on S. This
gives the r.h.s. of (160).

Now the converse: suppose that αS is unitarily implemented in ρµ by a unitary
Uµ,S s.t. Uµ,SΩ = Ω. Then, in particular,

〈Ω, ρµ(W (Sf))Ω〉 = 〈Ω, ρµ(αS(W (f)))Ω〉
= 〈Ω, Uµ,Sρµ(W (f))U∗µ,SΩ〉 = 〈Ω, ρµ(W (f))Ω〉. (162)

Hence,

e−
1
2
‖(Ŝf)µ‖2 = e−

1
2
‖f̂µ‖2 (163)

which concludes the proof. �

1.2.4 Symmetries in the case µ = 1 (”non-local” quantum field)

We set D = S(Rd), 〈f, g〉 =
∫
ddxf(x)g(x), σ(f, g) = Im 〈f, g〉, m > 0.

• Note that any unitary u on h = L2(Rd), which preserves D, gives rise to a
symplectic transformation S = u|D.

• By Proposition 1.58, the automorphism induced by S is unitarily imple-
mented on Γ(h).

• A natural candidate for the implementing unitary is Γ(u).

1. Space translations: (Saf)(x) = f(x−a) (or (̂Saf)(p) = e−iakf̂(p)). Obviously

〈(Saf), (Sag)〉 =

∫
ddx f(x− a)g(x− a) = 〈f, g〉. (164)

(This implies that Sa is symplectic). The implementing unitary is U(a) =
Γ(e−ipa) = e−iadΓ(p), where ’p’ means the corresponding multiplication oper-
ator on L2(Rd, ddp). P := dΓ(p) =

∫
d3k ka∗(k)a(k) can be called the ’total

momentum operator’. Indeed by (148):

ρµ=1(αa(W (f))) = ρµ=1(W (Saf)) = e
i√
2

(
a∗(e−iapf̂)+a(e−iapf̂)

)
= Γ(e−ipa)e

i√
2

(
a∗(f̂)+a(f̂)

)
Γ(e−ipa)∗

= Γ(e−ipa)ρµ=1(W (f))Γ(e−ipa)∗. (165)
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2. Rotations: (SRf)(x) = f(R−1x), R ∈ SO(d).

〈(SRf), (SRg)〉 =

∫
ddx f(R−1x)g(R−1x) = 〈f, g〉 (166)

The implementing unitary is U(R) = Γ(uR), where (uRg)(x) = g(R−1x) is a
unitary representation of rotations on L2(Rd).

3. Time translations: (̂Stf)(p) = eitω(p)f̂(p) where ω(p) is a reasonable disper-
sion relation of a particle. Since we want to build a relativistic theory, we
set ω(p) =

√
p2 +m2, m > 0. Clearly:

〈(Stf), (Stg)〉 = 〈f, g〉. (167)

The implementing unitary is U(t) = Γ(eitω(p)) = eitdΓ(ω(p)), where

H := dΓ(ω(p)) =

∫
d3k ω(k)a∗(k)a(k), (168)

can be called the ’total energy operator’ or the Hamiltonian.

Remark 1.59 Note that ft := S−tf satisfies the Schrödinger equation:

i∂tft(x) = ω(−i∇)ft. (169)

4. Lorentz transformations

• Minkowski spacetime: (Rd+1, g), g = (1,−1,−1,−1).

• Lorentz group: L = O(1, d) = {Λ ∈ GL(1 + d) |ΛgΛT = g }
• Proper Lorentz group: L+ = SO(1, d) = {Λ ∈ O(1, d) | det Λ = 1 }

(preserves orientation).

• Ortochronous Lorentz group: L↑ = {Λ ∈ O(1, d) | eTΛe ≥ 0 }, where
e = (1, 0, 0, 0). (Preserves the direction of time)

• Proper ortochronous Lorentz group: L↑+ = L↑∩L+ is a symmetry group
of the SM of particle physics.

• The full Lorentz group consists of four disjoint components:

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− (170)

For d = 3 they can be defined using time reversal T (t, x) = (−t, x) and
parity P (t, x) = (t,−x) transformations:

L↓+ = TPL↑+, L↑− = PL↑+, L↓− = TL↑+. (171)
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Now we set

(SΛf)(p) =

√
ω(Λ−1p)

ω(p)
f(Λ−1p), f ∈ D, (172)

where Λ−1p is defined by Λ−1(ω(p), p) = (ω(Λ−1p),Λ−1p). We have

〈(SΛf), (SΛf)〉 = 〈f, g〉. (173)

This can be shown (Homework) using that ddp
ω(p)

is a Lorentz invariant measure

(unique for a fixed m and normalization, see Theorem IX.37 of [8]). Formally∫
dd+1p̃ δ(p̃2 −m2)θ(p̃0)F (p̃) =

∫
ddp

2ω(p)
F (ω(p), p), (174)

where p̃ = (p0, p), p̃2 = (p0)2 − p2.

SΛ arises by restriction to D of a unitary representation uΛ of L↑+ acting on
h = L2(Rd) by formula (172). The implementing unitary is U(Λ) := Γ(uΛ).

5. Poincaré transformations: The (proper ortochronous) Poincaré group P↑+ =

Rd+1 o L↑+ is a set of pairs (x̃,Λ) with the multiplication:

(x̃1,Λ1)(x̃2,Λ2) = (x̃1 + Λ1x̃2,Λ1Λ2). (175)

It acts naturally on Rd+1 by (x̃,Λ)ỹ = Λỹ + x̃. (Here we set x̃ = (t, x)).

Note that (x̃,Λ) = (x̃, I)(0,Λ). Accordingly, we define

S(x̃,Λ) := Sx̃ ◦ SΛ = St ◦ Sx ◦ SΛ (176)

as a symplectic transformation on D corresponding to (x̃,Λ). We still have
to check if (x̃,Λ) 7→ αS(x̃,Λ)

is a representation of a group, that is whether

αS(x̃1,Λ1)
◦ αS(x̃2,Λ2)

= αS(x̃1,Λ1)(x̃2,Λ2)
. (177)

We use the fact that all these automorphisms can be implemented in the
(faithful) representation ρµ=1. We have

ρ1(α(x̃,Λ)(W (f))) = ρ1

(
W (S(x̃,Λ)f)

)
= ρ1

(
W (St ◦ Sx ◦ SΛf)

)
= U(t)U(x)U(Λ)ρ1

(
W (f)

)(
U(t)U(x)U(Λ)

)∗
(178)

To verify (177) it suffices to check that

U(x̃,Λ) := U(t)U(x)U(Λ) = Γ(eiω(p)t)Γ(e−ipx)Γ(uΛ)

= Γ(eiω(p)te−ipxuΛ) (179)

is a unitary representation of P↑+ on Γ(h). For this it suffices that

u(x̃,Λ) = eiω(p)te−ipxuΛ (180)

is a unitary representation of P↑+ on h = L2(Rd). (Homework).
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Summing up, for any m > 0 we have a representation P ↑+ 3 (x̃,Λ) 7→ α
(m,µ=1)
(x̃,Λ) of

the Poincaré group in AutW . In the representation ρµ=1 automorphisms α(m,µ=1)

are unitarily implemented by a representation P ↑+ 3 (x̃,Λ) 7→ U(x̃,Λ).

Nevertheless, (W , α(m,µ=1), ρµ=1) does not give rise to a decent (local) relativis-
tic QFT. Problem with causality:

• W (f), suppf ⊂ O should be an observable localized in an open bounded
region O ⊂ Rd at t = 0.

• αt(W (f)) should be localized in {O + |τ |~n , |~n| = 1, |τ | ≤ t} in a causal
theory.

• However, αt(W (f)) = W (Stf), (̂Stf)(p) = eiω(p)tf̂(p) thus Stf is not com-
pactly supported. (Infinite propagation speed of the Schrödinger equation).
In fact, since eiω(p)t is not entire analytic (cut at p = im), its inverse Fourier
transform cannot be a compactly supported distribution (see Theorem IX.12
of [8]).

1.2.5 Symmetries in the case µ(p) =
√
p2 +m2 (”local” quantum field)

We set D = S(Rd), 〈f, g〉 =
∫
ddxf(x)g(x), σ(f, g) = Im 〈f, g〉.

• Recall that we need symplectic transformations S s.t. ‖(Sf)µ‖ = ‖fµ‖,
where f̂µ(p) := (µ−

1
2 R̂ef + iµ

1
2 Îmf)(p).

• Note that ‖(Sf)µ‖ = ‖fµ‖ does not imply in this case that S is symplectic.

• Strategy: Take the unitary u on h corresponding to a given symmetry (which
we know from µ = 1 case) and find S s.t. ufµ = (Sf)µ. Then check that S
is symplectic.

1. Space translations: We have R̂e(Saf)(p) = ŜaRef(p) = e−iapR̂ef(p) and

analogously for Im. Thus (̂Saf)µ(p) = e−iapf̂µ(p) and therefore ‖(̂Saf)µ‖ =

‖f̂µ‖ so the symmetry is unitarily implemented. The implementing unitary
is the same as in the µ = 1 case.

2. Rotations: Again ̂Re(SRf)(p) = ŜRRef(p) = uRR̂ef(p) and analogously for
Im. Since µ is rotation invariant (depends only on p2), we have uRµ(p)u∗R =

µ(p) and therefore ŜRfµ(p) = (uRf̂µ)(p). Thus ‖(̂SRf)µ‖ = ‖f̂µ‖ so the
symmetry is unitarily implemented. The implementing unitary is the same
as in the µ = 1 case.

3. Time translations: First note that (̂S ′tf)(p) = eitω(p)f̂(p) does NOT satisfy
the additional condition. For example, for f real we have

(̂S ′tf)µ(p) =
(
µ−

1
2 (p) cos (ω(p)t) + iµ

1
2 (p) sin (ω(p)t)

)
f̂(p). (181)
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The L2 norm of this (S ′tf)µ does depend on t. (Thus αS′t is not implemented
in this representation by unitaries preserving the vacuum).

Instead, we consider the following group of transformations:

(Stf)(x) = (cos(tµ) + iµ−1 sin(tµ))Re f(x)

+i(cos(tµ) + iµ sin(tµ))Im f(x). (182)

Think of µ as a function of p2 = −∇2
x. Thus we can compute real and

imaginary parts as for functions:

Re (Stf) = cos(tµ)Re f − µ sin(tµ)Im f, (183)

Im (Stf) = µ−1 sin(tµ))Re f + cos(tµ)Im f (184)

This is a symplectic transformation

σ(Stf, Stg) = 〈Re (Stf), Im(Stg)〉 − (f ↔ g) (185)

We note that terms involving Re fRe g and Im f Im g cancel because are
invariant under (f ↔ g). The remaining two terms give

σ(Stf, Stg) = 〈cos2(tµ)Re f, Im g〉 − 〈sin2(tµ)Im f,Re g〉 − (f ↔ g)

= 〈Re f, Im g〉 − 〈Im f,Re g〉 = σ(f, g). (186)

Next, we check ‖(Stf)µ‖ = ‖fµ‖:

(Stf)µ = µ−
1
2 Re (Stf) + iµ

1
2 Im (Stf)

=
(

cos(tµ) + i sin(tµ)
)(
µ−

1
2 Re f + iµ

1
2 Im f

)
= eiµtfµ. (187)

Hence clearly ‖(Stf)µ‖ = ‖fµ‖ and this group of automorphisms is unitarily
implemented on Fock space by unitaries preserving the vacuum. They are
given by U(t) = Γ(eiµt) = eidΓ(µ(p)). Thus the Hamiltonian is dΓ(µ(p)) =∫
ddk µ(k)a∗(k)a(k).

Remark 1.60 Note that ft := (Stf) in (182) is the unique solution of the
Klein-Gordon equation:

(∂2
t −∇2

x +m2)ft(x) = 0 (188)

with the initial conditions ft=0(x) = f(x) and (∂tf)t=0(x) = (∇2
x−m2)Im f(x)+

iRe f(x). In contrast to the Schrödinger equation, KG equation has fi-
nite propagation speed: If suppft=0, supp ∂tft=0 ⊂ O then supp ft ⊂ {O +
|τ |~n , |~n| = 1, |τ | ≤ t}. This theory has good chances to be local.

4. Lorentz transformations: There exist symplectic transformations SΛ which
satisfy ‖(SΛf)µ‖ = ‖(SΛ)µ‖ and preserve localization (for f ∈ C∞0 (Rd) we
have (SΛf) ∈ C∞0 (Rd)) (Homework).
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5. Poincaré transformations: For (x̃,Λ) ∈ P↑+ we define

S(x̃,Λ) := Sx̃ ◦ SΛ = St ◦ Sx ◦ SΛ (189)

as a symplectic transformation on D corresponding to (x̃,Λ). Obviously,
‖(S(x̃,Λ)f)µ‖ = ‖fµ‖, since the individual factors satisfy this. (We note that
Sx is as in the µ = 1 case but St, SΛ are different). The proof that (x̃,Λ) 7→
αS(x̃,Λ)

is a representation of a group goes as in µ = 1 case, exploiting that
these automorphisms are implemented on Fock space by the same group of
unitaries as in the µ = 1 case.

Summing up, for any m ≥ 0 we have a representation P ↑+ 3 (x̃,Λ) 7→ α
(m)
(x̃,Λ)

of the Poincaré group in AutW . In the representation ρµm automorphisms α(m)

are unitarily implemented by the representation P ↑+ 3 (x̃,Λ) 7→ U(x̃,Λ), the same
as in the µ = 1 case. Time evolution is governed by the KG equation which has
finite propagation speed and Lorentz transformations act locally: we expect that
(W , α(m), ρµm) gives rise to a local (causal) relativistic QFT.

1.2.6 Spectrum condition (positivity of energy)

In this subsection we study the spectrum of the group of unitaries on Γ(h) im-
plementing translations in ρµ, µ =

√
p2 +m2. (The discussion below is equally

valid for ρµ=1 since µm(p) = ω(p), hence unitaries implementing translations are
the same in both representations).

U(t, x) = eiHt−iPx = eidΓ(µ(p))t−idΓ(p)x (190)

H,P 1, . . . , P d is a family of commuting s.a. operators on Γ(h). Such a family has
a joint spectral measure E: Let ∆ ∈ Rd+1 be a Borel set and χ∆ its characteristic
function. Then E(∆) := χ∆(H,P 1, . . . , P d). The joint spectrum of H,P 1, . . . , P d,
denoted Sp (H,P ) is defined as the support of E. Physically, these are the mea-
surable values of total energy and momentum of our system.

Theorem 1.61 Sp (H,P ) ⊂ V +, where V + = { (p0, p) ∈ Rd+1 | p0 ≥ |p| } is the
closed future lightcone.

Proof. We have to show that for ∆ ∩ V + = ∅, ∆ bounded Borel set, we have
E(∆) = 0. Let χε∆ ∈ C∞0 (Rd+1) approximate χ∆ pointwise as ε → 0. (This
regularization is needed because the Fourier transform of a sharp characteristic
function may not be L1). Note that χ∆(H,P ) leaves Γ(n)(h) invariant, thus it
suffices to show that its matrix elements vanish on these subspaces. We have for

31



Ψ,Φ ∈ Γ(n)(h):

〈Ψ, χ∆(H,P )Φ〉
= lim

ε→0
〈Ψ, χε∆(H,P )Φ〉

= lim
ε→0

(2π)−
(d+1)

2

∫
dt dx〈Ψ, U(t, x)Φ〉χ̌ε∆(t, x)

= lim
ε→0

(2π)−
(d+1)

2

∫
dt dx

∫
dndp (Ψ · Φ)(p1, . . . , pn)ei(p̃1+···+p̃n)·x̃χ̌ε∆(t, x)

=

∫
dndp (Ψ · Φ)(p1, . . . , pn)χ∆(p̃1 + · · ·+ p̃n), (191)

where we made use of Fubini and dominated convergence. Note that p̃ = (µ(p), p) ∈
V + for all p ∈ Rd. Since V + is a cone, also p̃1 + · · · + p̃n ∈ V +. Thus the last
expression is zero if ∆ ∩ V + = ∅. �

Remark 1.62 In the proof above we used the following conventions for the Fourier
transform on Rd+1:

f̂(p0, p) := (2π)−
(d+1)

2

∫
ddxdt eip

0t−ipxf(t, x), (192)

f̌(t, x) := (2π)−
(d+1)

2

∫
ddpdp0 e−ip

0t+ipxf(p0, p). (193)

A more detailed analysis of the spectrum exhibits that

• for m > 0

Sp (H,P ) = {0} ∪ {Hm} ∪G2m, where (194)

Hm := { (p0, p) ∈ Rd+1 | p0 =
√
p2 +m2}, (195)

G2m := { (p0, p) ∈ Rd+1 | p0 ≥
√
p2 + (2m)2}. (196)

{0} is a simple eigenvalue corresponding to the vacuum vector Ω. Hm is called
the mass hyperboloid. The corresponding spectral subspace E(Hm)Γ(h) sat-
isfies

E(Hm)Γ(h) = Γ(1)(h) = h. (197)

Thus it is invariant under (x̃,Λ) 7→ U(x̃,Λ). In fact it carries the familiar
irreducible representation of u(x,Λ) given by (180). According to Wigner’s
definition of a particle, E(Hm)Γ(h) describes single-particle states of a par-
ticle of mass m and spin 0. G2m can be called the multiparticle spectrum.
(PICTURE).

• For m = 0 we have

Sp (H,P ) = V+. (198)

Again, there is a simple eigenvalue at {0} (embedded in the multiparticle
spectrum) which corresponds to the vacuum vector Ω. Hm=0 is the boundary
of V+. The subspace E(Hm=0)Γ(h) = h carries states of a single massless
particle of mass zero.
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1.2.7 Locality and covariance

• We fix m ≥ 0 and use automorphisms α(x̃,Λ) := α
(m)
(x̃,Λ) constructed in ρµm .

• We set D = C∞0 (Rd), σ(f, g) = Im〈f, g〉. (We can restrict the symplectic
space from S(Rd) to C∞0 (Rd) because it is preserved by all the symplec-
tic transformations we considered in µ = µm case, in particular by time-
translations and Lorentz transformations).

• We call Or = { (t, x) ∈ Rd+1 | |t| + |x| < r} the standard double cone of
radius r. Its base is the ball Br = {x ∈ Rd | |x| < r}.

• W(Or) := ∗−Alg {W (f) | suppf ⊂ Br } is the algebra of observables1 local-
ized (physically measurable) in Or.

• W(Or + x̃) := αx̃(W(Or)) = ∗−Alg{αx̃(W (f)) | suppf ⊂ Br } is the algebra
of observables localized in Or + x̃ where x̃ = (t, x).

Theorem 1.63 Suppose that Or1 and Or2 + x̃ are spacelike separated. Then

[W1,W2] = 0, for all W1 ∈ W(Or1), W2 ∈ W(Or2 + x̃). (199)

Proof. By Weyl relations

W (f1)W (Sx̃f2) = eiIm 〈Sx̃f2,f1〉W (Sx̃f2)W (f1), (200)

so we have to show that Im 〈Sx̃f2, f1〉 = 0 for suppf1 ⊂ Br1 and supp f2 ⊂ Br2 .
First suppose that x̃ = (0, x), then we simply obtain that Or1 and Or2 + x̃ are

disjoint and so are Br1 and Br2 +x. Hence 〈Sx̃f2, f1〉 = 0 simply due to disjointness
of supports of the two functions.

Now the general case: Write Sx̃f2 = St(Sxf2). As before Sxf2 is supported in
Br2 +x. Thus, by propagation properties of solutions of the KG equation, St(Sxf2)
is supported in (Br2 + x) + |τ |B1, |τ | ≤ t. But spacelike separation of Or1 and
Or2 + x̃ implies that (Br2 +x)+ |t|B1 is disjoint from Br1 . So, again, 〈Sx̃f2, f1〉 = 0.
(PICTURE). �

• W(ΛOr + x̃) := α(x̃,Λ)W(Or).

• W(O) := ∗−Alg{W(ΛOr + x̃) | r,Λ, x̃ s.t. ΛOr + x̃ ⊂ O} is the algebra of
observables localized in an arbitrary open bounded region O ⊂ Rd+1.

• W̃(O) are the norm closures of W̃(O) in the C∗-algebra W̃ .

1∗-subalgebra of W generated by all such W (f)
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1.2.8 Haag-Kastler axioms

Theorem 1.64 The net of C∗-algebras O 7→ W̃(O), labelled by open bounded
subsets O ⊂ Rd+1, satisfies:

1. (isotony) O1 ⊂ O2 ⇒ W̃(O1) ⊂ W̃(O2),

2. (locality) O1,O2 spacelike separated ⇒ [W̃(O1), W̃(O2)] = 0,

3. (covariance) αx̃,Λ(W̃(O)) = W̃(ΛO + x̃), for all (x̃,Λ) ⊂ P↑+,

4. (generating property) W̃ =
⋃
O⊂Rd+1 W̃(O).

Remark 1.65 The above properties are called the Haag-Kastler axioms. Any
triple

Rd+1 ⊃ O 7→ A(O), A, P↑+ 3 (x̃,Λ) 7→ α(x̃,Λ), (201)

(not necessarily coming from a Weyl algebra), satisfying the above properties is
called a Haag-Kastler net of C∗-algebras.

Proof. 1. is obvious from definition of W(O).
2. For O1,O2 translated double-cones (no Lorentz transformations involved) this
follows from Theorem 1.63. General case: Homework.
3. Recall definition of W(O):

W(O) := ∗−Alg{α(x̃′,Λ′)(W(Or)) |(x̃′,Λ′)Or ⊂ O}. (202)

Then we have

αx̃,Λ(W(O)) = ∗−Alg{α(x̃,Λ)(x̃′,Λ′)(W(Or)) |(x̃′,Λ′)Or ⊂ O}
= ∗−Alg{α(x̃,Λ)(x̃′,Λ′)(W(Or)) |(x̃,Λ)(x̃′,Λ′)Or ⊂ (x̃,Λ)O}
= ∗−Alg{α(x̃′′,Λ′′)(W(Or)) |(x̃′′,Λ′′)Or ⊂ (x̃,Λ)O}. (203)

4. Since D = C∞0 (Rd), every Weyl operator W (f) ∈ W belongs to W̃(O) for
sufficiently large O. Thus we have W ⊂

⋃
O⊂Rd+1W(O) and inclusions survive

taking closures. The opposite inclusion is obvious. �

Theorem 1.66 The (irreducible) representation ρµm of W̃ satisfies:

1. The automorphisms P↑+ 3 (x̃,Λ) 7→ α(x̃,Λ) are unitarily implemented by a

(strongly continuous) group of unitaries P↑+ 3 (x̃,Λ) 7→ U(x̃,Λ).

2. (positivity of energy) The joint spectrum of the generators (H,P ) of U(x̃) =
U(x̃, I) is contained in V +.

3. (uniqueness of the vacuum vector) There is one (up to phase) unit vector Ω
s.t. U(x̃,Λ)Ω = Ω.
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Remark 1.67 A representation of an abstract Haag-Kastler net satisfying the
above properties is called a vacuum representation.

Remark 1.68 Note that ρµ=1 is not a vacuum representation because the auto-
morphisms α := α(µm) appearing in 1., which are compatible with locality, are not
unitarily implemented in this representation. Automorphisms αµ=1, constructed in
Subsection 1.2.4, are unitarily implemented in ρµ=1 but are not compatible with
locality.

1.3 Haag-Kastler net of von Neumann algebras

Given the Haag-Kastler net O 7→ W̃(O), W̃ , α as above, in the vacuum represen-
tation ρµm , one can proceed to a net of von Neumann algebras:

O 7→ A(O) := ρµm(W̃(O))′′, A :=
⋃

O⊂Rd+1

A(O), α(x̃,Λ) := U(x̃,Λ) · U(x̃,Λ)∗

(204)

Note that A is defined only as a C∗-algebra by taking the norm closure (and not
the strong closure) of the local von Neumann algebras. Strong closure would be
too large: Since ρµm is irreducible, we have A′′ = B(H) (where H = Γ(h) in this
case).

Theorem 1.69 All local algebras A(O), for different open bounded O, are ∗-
isomorphic to a unique von Neumann algebra called ”type III1 hyperfinite factor”.

We are not going to prove this theorem, but let us (partially) explain the vocabu-
lary:

1. A center Z of a von Neumann algebra R is defined as Z = R∩R′.

2. A von Neumann algebra is called a factor if its center is trivial i.e. Z = CI.

3. A von Neumann algebra is called hyperfinite if it is a weak closure of an in-
creasing sequence of finite dimensional algebras (W ∗-inductive limit of finite-
dimensional algebras).

4. Classification of factors (Murray-von Neumann):

• Def: Two projections P1, P2 ∈ R are called equivalent (denoted P1 ∼
P2) if there exists a partial isometry V ∈ R from H1 = P1H to H2 =
P2H s.t.

P1 = V ∗V, P2 = V V ∗. (205)

• Def: We say that P2 < P1 if the two projections are not equivalent, but
there exists a subspace H1,1 ⊂ H1 whose projection P1,1 is in R and is
equivalent to P2.
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• Thm: Let R be a factor and P1, P2 ∈ R projections. Then precisely
one of the following holds:

P1 > P2, P1 ∼ P2, P1 < P2. (206)

• Thm: There exists a unique, up to normalization, dimension function
Dim( · ) from projections in R to non-negative real numbers, s.t.

(a) DimP1 = DimP2 if P1 ∼ P2,

(b) DimP1 > DimP2 if P1 > P2,

(c) DimP1 < DimP2 if P1 < P2,

(d) If P1P2 = 0 then Dim(P1 + P2) = DimP1 + DimP2,

(e) Dim0 = 0.

• Def: R is type I if (suitably normalized) Dim ranges through 0, 1, 2, . . . , n,
possibly n = ∞. In this case one can construct a decomposition
H = H1 ⊗H2 s.t. R = B(H1)⊗ 1H2 .

• Def: R is type II1 if (suitably normalized) Dim ranges through [0, 1].

• Def: R is type II∞ if Dim ranges through [0,∞].

• Def: R is type III if Dim takes only values 0 and ∞. Then all proper
projections in R have infinite dimension and (for separable H) are all
equivalent.

Sub-index 1 in III1 comes from a finer classification of Connes which will not be
explained here. (See e.g. Chapter V of [9]).

There is a variant of Theorem 1.69 for general Haag-Kastler nets of von Neu-
mann algebras, not necessarily coming from the Weyl algebra and free fields. Here
we give an imprecise formulation:

Theorem 1.70 Let O 7→ A(O) be a Haag-Kastler net of von Neumann algebras
coming from a quantum field theory which has an ultraviolet fixed point and good
thermal properties. Then, for any open bounded O

A(O) ' R⊗Z, (207)

where R is the unique hyperfinite type III1 factor and Z is the center of A(O).

See [10] for a precise statement.

1.3.1 Interacting Weyl systems with infinitely many degrees of freedom
(Outline)

1. Consider the representation ρµm of W . In Subsection 1.2.5 we constructed
a group of automorphisms α0

t , implementing time-translations. (We add an
index zero in this subsection to distinguish it from interacting dynamics to
be defined below). That is

ρµm(α0
t (W )) = U0(t)ρµm(W )U0(t)−1, W ∈ W̃ . (208)
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These time translations acted locally, that is if W ∈ W̃(Or) then αt(W ) ∈
W̃(Or+|t|).

2. We also had U0(t) = eitH0 , where

H0 = dΓ(µm(p)) =

∫
ddk µm(k)a∗(k)a(k)

=
1

2

∫
ddx

(
: π2(x) : + : ∇ϕ2(x) : +m2 : ϕ2(x) :

)
,

(209)

and : (· · · ) : means Wick ordering (shifting creation operators to the left and
annihilation operators to the right, ignoring the commutators). For example

: (a∗(k1)a∗(k2) + a∗(k1)a(k2) + a(k1)a∗(k2) + a(k1)a(k2)) : (210)

= a∗(k1)a∗(k2) + a∗(k1)a(k2) + a∗(k2)a(k1) + a(k1)a(k2). (211)

ϕ, π will denote ϕρµm , πρµm in this subsection, that is:

ϕ(x) =
1

(2π)d/2

∫
ddk√

2µm(k)

(
e−ikxa∗(k) + eikxa(k)

)
, (212)

π(x) =
i

(2π)d/2

∫
ddk

√
µm(k)

2

(
e−ikxa∗(k)− eikxa(k)

)
. (213)

3. We would like to construct a group of automorphism governed by the (formal)
Hamiltonian:

H = H0 +HI , HI := λ

∫
Rd
ddx : ϕ(x)4 : (214)

HI is a well defined quadratic form on D ×D, where

D = {Ψ ∈ Γfin(h) |Ψ(n) ∈ S(Rnd) for all n }. (215)

However, it does not come from a densely defined operator containing Ω in
its domain. Two problems when computing HIΩ:

• Integration over whole space generates expressions involving δ(k1+· · ·+
k4), which are thus not in L2. (’Infrared (IR) problem’).

• Decay of (µm(k1) . . . µm(k4))−1 is too slow to get a vector in L2 for d > 1
(’Ultraviolet (UV) problem’).

4. Solution of the UV problem: set d = 1.
Solution of the IR problem: Consider a family of Hamiltonians

H(g) = H0 +HI(g), HI(g) := λ

∫
R
dx g(x) : ϕ(x)4 :, g ∈ C∞0 (Rd)R (216)

Thm: H(g) are well-defined symmetric operators on D. Domains of es-
sential self-adjointness are known. Each H(g) has a unique (up to phase,
normalized) ground state Ωg /∈ CΩ. Ωg tends weakly to zero when g → 1.
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5. We construct the dynamics as follows: For A ∈ A(Or) we set

αt(A) := eitH(g)Ae−itH(g) (217)

Thm: αt(A) is independent of g provided that g = 1 on Br+|t|. Then also
αt(A) ∈ A(Or+|t|). Thus αt can be extended to a group of automorphisms
on A which respects the local structure. (PICTURE).

6. Ug(t) := eitH(g) does not implement αt in the defining representation of A
(i.e. on Fock space) because g must be modified depending on t. It turns
out that αt is not unitarily implemented in this representation (i.e. this is
not a vacuum representation of the theory).

7. We want to find a representation of A s.t. α is unitarily implemented. Define
the family of states on A as follows

ωg(A) := 〈Ωg, AΩg〉, A ∈ A. (218)

Although Ωg itself tends weakly to zero as g → 1, the states ωg have weak*
limit points (by Banach-Alaoglu theorem) which are non-zero simply because
ωg(1) = 1.

8. Thm: There is a limit point ω of ωg as g → 1 s.t. the dynamics αt is unitarily
implemented in the corresponding GNS representation (πω,Hω,Ωω) by a
group of unitaries Uω(t) = eitHω . The physical Hamiltonian Hω is positive
and HωΩω = 0.

9. By additional work one can extend t 7→ αt to P↑+ 3 (x̃,Λ) 7→ α(x̃,Λ) s.t. the
resulting net (A, α) satisfies the Haag-Kastler axioms and πω is its vacuum
representation. Sp (Hω, Pω) looks like in the free scalar QFT, (at least for
small λ). However, it can be shown that the resulting theory (called (ϕ4)2,
where 2 stands for the dimension of spacetime d + 1) is different from the
free scalar QFT: its scattering matrix (to be defined later) is non-trivial.
In particular there is non-trivial 2-body scattering. In this sense (ϕ4)2 is
interacting.

10. The fact that the interacting time-translations αt cannot be unitarily imple-
mented in the defining representation of A (i.e. on the Fock space) can be
expected on general grounds: In fact suppose the opposite and let t 7→ V (t)
be the group of unitaries on Γ(h) implementing the interacting dynamics.
Then ϕ̃(t, x) := V (t)ϕ(x)V (t)∗, π̃(t, x) := V (t)π(x)V (t)∗ would define a
local relativistic quantum field (on Fock space). This gives a unitary equiv-
alence between the free field ϕ, π and the ’interacting field’ ϕ̃, π̃ at any fixed
time

ϕ̃(t, x) := V (t)U0(t)∗ϕ(t, x)U0(t)V (t)∗, (219)

π̃(t, x) := V (t)U0(t)∗π(t, x)U0(t)V (t)∗. (220)
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By a general result (Haag’s theorem [22]) we have

〈Ω, ϕ̃(x̃1) . . . ϕ̃(x̃n)Ω〉 = 〈Ω, ϕ(x̃1) . . . ϕ(x̃n)Ω〉, n = 1, 2, 3, 4. (221)

But 4-point functions govern 2-particle scattering (via analytic continuation
to Green functions and the LSZ reduction formulae). So there would be no
2-particle scattering in the theory of the ‘interacting’ field ϕ̃, π̃. (By slightly
generalizing this discussion, one concludes that the representation πω above
cannot be unitarily equivalent to the defining representation of A).

(Somewhat imprecisely, Haag’s theorem means that there is no interaction
picture in local relativistic QFT).

11. Let us compare systems satisfying canonical commutation relations with
finitely and infinitely many degrees of freedom:

• Finitely many degrees of freedom:

(a) By the von Neumann theorem only one (up to unitary equiva-
lence) irreducible representation available (the Schrödinger repre-
sentation) in which Q and P operators available.

(b) Only for Hamiltonians quadratic in Q, P we could find a dynamics
(group of automorphisms) on the Weyl algebra.

(c) To study non-quadratic Hamiltonians we changed the algebra (from
Weyl to resolvent algebra).

(d) The interacting and the free dynamics on the resolvent algebra
unitarily implemented in the same (Schrödinger) representation.
That is, the interaction picture exists.

• Infinitely many degrees of freedom:

(a) Due to the breakdown of the von Neumann uniqueness theorem,
there are many non-equivalent irreducible representations in which
ϕ and π exist.

(b) Some Hamiltonians non-quadratic in ϕ, π (e.g. (φ4)2) give rise to
a dynamics on the algebra A given by (204). Note that A is a bit

larger than the Weyl algebra W̃ since we took the weak closures of
local algebras. But W̃ is weakly dense in A.

(c) To treat such non-quadratic Hamiltonians we have to consider uni-
tarily non-equivalent representation of A (Haag’s theorem forces
us to do it, breakdown of the von Neumann uniqueness theorem
makes it possible).

(d) The interacting and the free dynamics unitarily implemented in
different (unitarily non-equivalent) representations. That is the
interaction picture does not exists.

(e) However, non-quadratic Hamiltonians giving rise to the dynam-
ics on A which is compatible with the Haag-Kastler axioms, only
available for d = 1, 2. The physically relevant case d = 3 is an open
problem. For d > 3 there is a no-go theorem [12].
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12. Thus the setting of CCR (canonical commutation relations) may be too
narrow to describe interacting Haag-Kastler theories in physical spacetime.
Many other approaches have been tried and are still tried (see [13] for an
overview), so far without success. (ϕ4)4 is expected to be trivial due to severe
UV problems (‘Landau pole’), similar problems with QED. Promising can-
didates are non-abelian Yang-Mills theories due to their mild UV properties
(‘asymptotic freedom’). But there are difficulties in the IR regime (‘confine-
ment of gluons’). This question is a part of the Yang-Mills and Mass-Gap
Millenium Problem.

13. Recent progress in d ≥ 1 [15]: Take the Haag-Kastler net of v.N. algebras in
the vacuum representation describing the free field theory: O 7→ A(O), H0,
P0. Let E be the joint spectral measure of H0, P0. Let Q be an antisymmetric
matrix in Rd+1 (i.e. p̃ ·Qq̃ = −q̃ ·Qp̃, where · is Minkowski scalar product).
For A ∈ A(O), where O is contained in the right wedge W (PICTURE)
define

AQ :=

∫
dE(p̃)α

(0)
Qp̃(A). (222)

Not well defined as it stands, but one can make sense out of it as a bounded
operator, and as an observable localized in W . Similarly, for A′ ∈ A(O′), O′
contained in the left wedge, one defines

A′−Q =

∫
dE(p̃)α

(0)
−Qp̃(A) (223)

This can be interpreted as an observable localized in the left wedge W ′. In
fact, we have

[AQ, A
′
−Q] = 0. (224)

Let AQ(W ) be the v.N. algebra generalted by all AQ as above. We define
AQ(W ′) := AQ(W )′, which is non-empty as it contains A′−Q. We keep H0, P0

as in the free theory. This gives a wedge-local, relativistic theory which
turns out to be interacting. (With two opposite wedges one can separate
two particles and define 2-body scattering matrix. It is non-trivial).

The expressions AQ, A
′
−Q are called ’warped convolutions’. They are closely

related to the concept of Rieffel deformations from non-commutative geom-
etry.

2 Haag-Kastler theories

In this section we will consider a Haag-Kastler net of von Neumann algebras in a
vacuum representation. It is given by the following objects:

1. A net of von Neumann algebras O 7→ A(O) ⊂ B(H), labelled by open
bounded subsets O ⊂ Rd+1.
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2. The global C∗-algebra of this net A =
⋃
O⊂Rd+1 A(O).

3. A unitary representation P↑+ 3 (x̃,Λ) 7→ U(x̃,Λ) on H. (We will write
U(t, x) = U(x̃) := U(x̃, I)).

4. The group of automorphisms α(x̃,Λ)( · ) := U(x̃,Λ) · U(x̃,Λ)∗ of B(H).

These objects satisfy the following properties:

1. (isotony) O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2).

2. (locality) O1 X O2 ⇒ [A(O1),A(O2)] = 0, where X denotes spacelike sepa-
ration.

3. (covariance) α(x̃,Λ)(A(O)) = A(ΛO + x̃).

4. (irreducibility) A′′ = B(H).

5. (spectrum condition) Sp(H,P ) ⊂ V +, where U(t, x) = eiHt−iPx, x̃ = (t, x).

6. (uniqueness of the vacuum vector) There is a unique (up to phase) unit vector
Ω ∈ H s.t. U(x̃,Λ)Ω = Ω for all (x̃,Λ) ∈ P↑+.

Remark 2.1 We stress that in this section Ω is not necessarily a Fock space vac-
uum, H is not necessarily a Fock space and A(O) may not come from the Weyl
algebra. Here we consider abstract Haag-Kastler nets and we will use only the
above properties, unless stated otherwise.

Remark 2.2 Note that the covariance property implies that α leaves A invariant
and thus is a group of automorphisms of this subalgebra of B(H).

2.1 Haag-Ruelle scattering theory

In this section we assume:

Sp(H,P ) = {0} ∪Hm ∪G2m (225)

as in the case of the massive free field or (ϕ4)2 at small λ. We want to construct
vectors in H which describe an asymptotic configuration of several particles living
on Hm.

For example, for two particles with energy-momenta near p̃1, p̃2 ∈ Hm we pick
ψ1, ψ2 in E(∆i)H, where ∆i are small neighbourhoods of p̃i. We want to construct
vectors of the form

ψ1 ×out ψ2 ∈ H, (226)

ψ1 ×in ψ2 ∈ H, (227)

which describes two (Bosonic) particles which are independent at asymptotic times
t → ∞. Hence ×out should have properties of a symmetric tensor product, but
should take values in H not in H⊗H.
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How to do it, we know from our experience with the Fock space: we need to
construct in our general framework certain creation operators B∗1,t, B

∗
2,t ∈ A (in

this case time-dependent) s.t.

lim
t→±∞

B∗1,tΩ = ψ1, (228)

lim
t→±∞

B∗2,tΩ = ψ2. (229)

Then

ψ1 ×out ψ2 = lim
t→∞

B∗1,tB
∗
2,tΩ, (230)

ψ1 ×in ψ2 = lim
t→−∞

B∗1,tB
∗
2,tΩ. (231)

The two-body scattering matrix is a map defined by

S2(ψ1 ×out ψ2) = ψ1 ×in ψ2 (232)

S2 = I means that there is no two body scattering (free field). S2 6= I means
that there is scattering. This is the situation in (ϕ4)2 for example. Theories with
S2 6= I (or more generally with the full S-matrix S 6= I) are called interacting.

2.1.1 Energy-momentum transfer (Arveson spectrum)

To construct the creation operators mentioned in the previous section, we need to
control the energy-momentum (EM) transfer of the operators (to get vectors with
EM localized in small neighbourhoods of points on the mass hyperboloid).

Definition 2.3 The energy-momentum transfer (or Arveson spectrum) of B ∈ A,
denoted SpBα, is defined as the support of the operator-valued distribution

B̌(p0, p) = (2π)−
d+1

2

∫
ddxdt e−i(p

0t−px)B(t, x), (233)

where B(t, x) = α(t,x)(B). Thus SpBα is simply the support of the inverse Fourier
transform of (t, x) 7→ α(t,x)(B). More precisely, we can write

SpBα =
⋃

Ψ,Φ∈H

supp 〈Ψ, B̌(·, ·)Φ〉 (234)

The following theorem justifies the name EM transfer:

Theorem 2.4 Let ∆ ⊂ Sp(H,P ) be a Borel subset. Then

BE(∆) = E(∆ + SpBα)BE(∆). (235)

This will be called the EM transfer relation.

Before we list properties of the Arveson spectrum, we need the following fact:
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Lemma 2.5 Let B ∈ A, f ∈ S(Rd+1). Then

B(f) =

∫
dtdx f(t, x)B(t, x), (236)

defined as a weak integral (i.e. in the sense of matrix elements) is an element of
A. (Homework. It is important here that local algebras are von Neumann and we
can use the bicommutant theorem).

Lemma 2.6 Basic properties of the EM-transfer relation: (Here B ∈ A)

1. SpB∗α = −SpBα.

2. SpB(t′,x′)α = SpBα for (t′, x′) ∈ Rd+1.

3. SpB(f)α ⊂ supp f̂ , f ∈ S(Rd+1).

Proof. Part 1 follows from the relation

ˇ(B∗)(p0, p) = (2π)−
d+1

2

∫
ddxdt e−i(p

0t−px)B∗(t, x)

= (2π)−
d+1

2

(∫
ddxdt ei(p

0t−px)B(t, x)

)∗
=

( ˇ(B)(−p0,−p)
)∗
. (237)

Part 2 follows from the change of variables

ˇB(t′, x′)(p0, p) = (2π)−
d+1

2

∫
ddxdt e−i(p

0t−px)B(t+ t′, x+ x′)

= ei(p
0t′−px′)(2π)−

d+1
2

∫
ddxdt e−i(p

0(t+t′)−p(x+x′))B(t+ t′, x+ x′)

= ei(p
0t′−px′)B̌(p0, p). (238)

This distribution has clearly the same support as B̌(p0, p) because ei(p
0t′−px′) 6= 0.

Part 3 is a consequence of (238) and the following computation. Recall that

B(f) =

∫
ddx′dt′B(t′, x′)f(t′, x′) (239)

Hence

ˇB(f)(p0, p) =

∫
ddx′dt′ ˇB(t′, x′)(p0, p)f(t′, x′)

=

∫
ddx′dt′ ei(p

0t′−px′)B̌(p0, p)f(t′, x′)

= (2π)
d+1

2 f̂(p0, p)B̌(p0, p). (240)

�
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To construct ’creation operators’ of particles, one should thus pick some A ∈ A
and f ∈ S(Rd+1) s.t. supp f̂ is in a small neigbourhood ∆p̃ of some point p̃ ∈ Hm

and set B = A(f). Then, by the EM transfer relation, we have

BΩ ∈ E(∆p̃)H. (241)

However, there is another constraint on creation operators. We want particles to
be localized excitations. This means B should have good localization properties
(not just an element of A). A seemingly natural choice is to pick B strictly local,
that is

B ∈
⋃

O⊂Rd+1

A(O) =: Aloc. (242)

But it turns out that strictly local B cannot have compact SpB α. We need a
larger class of operators, which is still not the whole A.

2.1.2 Almost local observables

Definition 2.7 We say that A ∈ A is almost local if there exists a sequence
Ar ∈ A(Or) s.t.

‖A− Ar‖ = O(r−∞). (243)

That is for any n ∈ N there is a constant cn s.t.

‖A− Ar‖ ≤
cn
rn
, r > 0. (244)

We denote the ∗-algebra of almost local observables by Aa−loc.

For strictly local operators the commutator is equal to zero if we shift one of them
sufficiently far in space. For almost local operators we have:

Lemma 2.8 Let A1, A2 ∈ Aa−loc. Then

‖[A1, A2(y)]‖ = O(|y|−∞), y ∈ Rd. (245)

Proof. By almost locality we find Ai − Ai,r = O(r−∞), Ai,r ∈ A(Or). Thus we
get

[A1, A2(y)] = [A1,r, A2,r(y)] +O(r−∞). (246)

Setting r = ε|y| we obtain that for sufficiently small ε > 0 and |y| sufficiently large
Or and Or + y are spacelike separated and thus the first term o the r.h.s. above
is zero. �

The following theorem gives invariance properties of Aa−loc:

Theorem 2.9 Let A ∈ Aa−loc. Then

44



1. A(t, x) ∈ Aa−loc for (t, x) ∈ Rd+1,

2. A(f) ∈ Aa−loc for f ∈ S(Rd+1).

Proof. As for part 1, we have

‖A− Ar‖ = O(r−∞) (247)

hence

‖A(t, x)− Ar(t, x)‖ = O(r−∞). (248)

But Ar(t, x) ∈ A(Or + (t, x)) ⊂ A(Or+|t|+|x|). We set A(t, x)r′ = Ar′−|t|−|x|(t, x) ∈
A(Or′) for r′ > |t| + |x|. For r′ ≤ |t| + |x| we can define A(t, x)r′ arbitrarily, e.g.
A(t, x)r′ = I.

Concerning part 2, we pick χ+,r ∈ C∞0 (Rd+1) s.t. χ+,r = 1 for |t|+ |x| < r and
χ+,r = 0 for |t|+ |x| > 2r and set χ−,r = 1− χ+,r. We write

f±,r(t, x) = χ±,r(t, x)f(t, x), f(t, x) = f+,r(t, x) + f−,r(t, x) (249)

and correspondingly

A(f) = A(f+,r) + A(f−,r). (250)

Since f ∈ S(Rd+1) we have

‖A(f−,r)‖ ≤ ‖A‖‖f−,r‖1 = O(r−∞). (251)

Next, since A = Ar +O(r−∞)

A(f+,r) = Ar(f+,r) +O(r−∞)‖f‖1. (252)

We can set A(f)r = Ar(f+,r) ∈ A(O3r). �

2.1.3 Regular, positive-energy solutions of the KG equation

In scattering theory we compare the interacting dynamics with the free dynamics
at asymptotic times. The interacting dynamics will enter via time translates of
observables t 7→ αt(B), B ∈ Aa−loc (see the next subsection). The free dynamics
will enter via regular, positive energy solutions of the Klein Gordon equation:

gt(x) := (2π)−
d
2

∫
ddp e−iµm(p)t+ipxĝ(p), ĝ ∈ C∞0 (Rd). (253)

The velocity support of this KG wave packet is defined as

V (g) := {∇µm(p) | p ∈ supp ĝ }. (254)
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Proposition 2.10 Let χ+ ∈ C∞0 (Rd) be equal to one on V (g) and zero outside of
a slightly larger set and let χ− = 1 − χ+. We write χ±,t(x) = χ±(x/t). Then we
have

1. supx∈Rd |gt(x)| = O(t−d/2),

2. ‖χ−,tgt‖1 = O(t−∞),

3. ‖χ+,tgt‖1 = O(td/2),

4. ‖gt‖1 = O(td/2).

2.1.4 Haag-Ruelle creation operators

From now on to the end of the next subsection we follow [16].

Definition 2.11 (a) Let B∗ ∈ Aa−loc be s.t. SpB∗α ⊂ V+ is compact, SpB∗α ∩
Sp(H,P ) ⊂ Hm. Such B∗ will be called a creation operator.
(b) Let B∗ be a creation operator and gt be given by (253). Then

B∗t {gt} :=

∫
ddxB∗t (x)gt(x), B∗t (x) := U(t, x)B∗U(t, x)∗, (255)

is called a Haag-Ruelle (HR) creation operator. We also write B{gt} := (B∗{gt})∗.

Remark 2.12 It is easy to see that, since SpB∗α is compact, t 7→ B∗t is smooth in
norm and its derivatives are again creation operators. In fact, recall that SpB∗α =

supp B̌∗( · ). Thus for any f ∈ S(Rd+1) s.t. f̂ is constant on SpB∗α (and equal
to (2π)−(d+1)/2) we have that B∗ = B∗(f). Hence B∗t = B∗(ft), where ft(x

0, x) =
f(x0 − t, x) and differentiating t 7→ B∗t amounts to differentiating the smooth
function f .

Lemma 2.13 HR creation operators have the following properties:

(a) B∗t {gt}Ω = B∗{g}Ω,

(b) ∂t(B
∗
t {gt}) = Ḃ∗t {gt}+B∗t {ġt},

(c) ‖B∗t {gt}‖ = O(td/2), ‖B∗t {χ+,tgt}‖ = O(td/2), ‖Bt{χ−,tgt}‖ = O(t−∞).

where

1. B∗{g} := (B∗t {gt})|t=0, in particular B∗{g}Ω is time independent.

2. Ḃ∗ := ∂sB
∗
s |s=0.

3. ġt(x) := ∂tgt(x) = (2π)−
d
2

∫
ddp e−iµm(p)t+ipx(−iµm(p))ĝ(p).
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Proof. (a) We compute

B∗t {gt}Ω =

∫
ddx gt(x)B∗t (x)Ω =

∫
ddx gt(x)U(t, x)B∗U(t, x)∗Ω

=

∫
ddx gt(x)U(t)U(x)B∗Ω = (2π)d/2eitHe−itµm(P )ĝ(P )B∗Ω.(256)

However, B∗Ω ∈ E(Hm)H hence eitHB∗Ω = eitµm(P )B∗Ω and thus

B∗t {gt}Ω = (2π)d/2ĝ(P )B∗Ω = B∗{g}Ω, (257)

where in the last step we reversed the steps with t = 0.
(b) Leibniz rule.
(c) We compute ‖Bt{gt}‖ ≤

∫
ddx ‖Bt(x)‖|gt(x)| = ‖B‖‖gt‖1 and similarly in

the remaining cases. Now the statement follows from Proposition 2.10. �

Lemma 2.14 Let V (g1), V (g2) be disjoint and V (g3) be arbitrary. Then

(a) ‖[B∗1,t{g1,t}, B∗2,t{g2,t}]‖ = O(t−∞),

(b) ‖[B∗1,t{g1,t}, [B∗2,t{g2,t}, B∗3,t{g3,t}]]‖ = O(t−∞).

The above bounds also hold if some of the B∗{gt} are replaced with B{gt}.

Proof. (a) Write gi,t = χi,+gi,t + χi,−gi,t, i = 1, 2, where χi,+ is equal to one on
V (gi) and vanishes outside of a slightly larger set and χi,− = 1−χi,+. Then, since
‖Bt{χ−,tgt}‖ = O(t−∞), we get

[B∗1,t{g1,t}, B∗2,t{g2,t}] = [B∗1,t{χ1,+,tg1,t}, B∗2,t{χ2,+,tg2,t}] +O(t−∞). (258)

By almost locality of B1, B2 and the fact that |gi(t, x)| = O(1) uniformly in x:

‖[B∗1,t{χ1,+,tg1,t}, B∗2,t{χ2,+,tg2,t}]‖

≤
∫
ddx1d

dx2 ‖[B∗1(x1), B∗2(x2)]‖|χ1,+,tg1,t(x1)||χ2,+,tg2,t(x2)|

≤
∫
ddx1d

dx2 |χ1,+(x1/t)|
cn

|x1 − x2|n
|χ2,+(x2/t)| (259)

≤ t2d
∫
ddv1d

dv2 |χ1,+(v1)| cn
tn|v1 − v2|n

|χ2,+(v2)|. (260)

χ1,+, χ2,+ are approximate characteristic functions of V (g1), V (g2), so they may be
chosen with compact, disjoint supports. Hence the last expression is O(t−∞).

(b) Decompose ĝ3(p) = ĝ3,1(p) + ĝ3,2(p), using a smooth partition of unity, s.t.
V (g3,1) ∩ V (g1) = ∅ and V (g3,2) ∩ V (g2) = ∅. Now the statement follows from (a)
and the Jacobi identity. �

Lemma 2.15 Let B∗1,t{g1,t}, B∗2,t{g2,t} be HR creation operators. If SpB∗1α, SpB∗2α
are contained in a sufficiently small neighbourhood of Hm then

B1,t{g1,t}B∗2,t{g2,t}Ω = Ω〈Ω, B1,t{g1,t}B∗2,t{g2,t}Ω〉. (261)
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Proof. Recall the energy-momentum transfer relation (235)

BE(∆) = E(∆ + SpBα)BE(∆). (262)

and the fact that SpB∗α = −SpBα. Since smearing with g1, g2 can only make the
energy-momentum transfer smaller, we have

B1,t{g1,t}B∗2,t{g2,t}Ω = B1,t{g1,t}E(SpB∗2α)B∗2,t{g2,t}Ω
= E(SpB∗2α + SpB1

α)B1,t{g1,t}E(SpB∗2α)B∗2,t{g2,t}Ω
= E(SpB∗2α− SpB∗1α)B1,t{g1,t}E(SpB∗2α)B∗2,t{g2,t}Ω.

(263)

We know from Problem 1 of HS5 that (Hm−Hm)∩Sp (H,P ) = {0} (the difference
of two vectors on a mass-shell is spacelike or zero). Since {0} is isolated from
the rest of the spectrum, we also have (SpB∗2α − SpB∗1α) ∩ Sp (H,P ) = {0}, if
SpB∗1α, SpB∗2α are in small neighbourhoods of Hm. �

Note that this relation corresponds to a(f)a∗(f)Ω = Ω〈Ω, a(f)a∗(f)Ω〉.

2.1.5 Scattering states and their Fock space structure

Theorem 2.16 Let B∗1 , . . . , B
∗
n be creation operators and g1, . . . , gn be regular

positive energy KG wave packets with disjoint velocity supports. Then there exists
the n-particle scattering state:

Ψ+ = lim
t→∞

B∗1,t{g1,t} . . . B∗n,t{gn,t}Ω. (264)

The state Ψ+ depends only on the single-particle vectors Ψi = B∗i,t{gi,t}Ω, (which
are time independent by Lemma 2.13 (a)) and possibly on the velocity supports
V (gi)

2. Therefore we can write

Ψ+ = Ψ1 ×out · · · ×out Ψn. (265)

Proof. Let Ψt := B∗1,t{g1,t} . . . B∗n,t{gn,t}Ω. To show the existence of the limit
limt→∞Ψt we use the Cook’s method: Suppose we know that

‖∂tΨt‖ ≤
C

t1+η
, η > 0. (266)

Then we can verify the Cauchy condition for convergence as follows:

‖Ψt1 −Ψt2‖ = ‖
∫ t2

t1

dt ∂tΨt‖ ≤
∫ t2

t1

dt‖∂tΨt‖ ≤
∫ t2

t1

dt
C

t1+η
= C ′

(
1

tη1
− 1

tη2

)
.(267)

This is arbitrarily small for t1, t2 ≥ T , T sufficiently large so the Cauchy condition
holds.

2This latter dependence will be excluded below.
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Thus it suffices to check (266). We have

∂tΨt =
n∑
i=1

B∗1,t{g1,t} . . . ∂t(B∗i,t{gi,t}) . . . B∗n,t{gn,t}Ω

=
n∑
i=1

n∑
j=i+1

B∗1,t{g1,t} . . . [∂t(B∗i,t{gi,t}), B∗j,t{gj,t}] . . . B∗n,t{gn,t}Ω, (268)

since by Lemma 2.13 (a), ∂t(B
∗
i,t(gi,t))Ω = 0. Now we have that

‖B∗i,t{gi,t}‖ = O(td/2), (269)

∂t(B
∗
t {gt}) = Ḃ∗t {gt}+B∗t {ġt}, (270)

‖[B∗1,t{g1,t}, B∗2,t{g2,t}]‖ = O(t−∞) (271)

By sub-multiplicativity of the norm (‖AB‖ ≤ ‖A‖‖B‖), we get

‖∂tΨt‖ ≤
n∑
i=1

n∑
j=i+1

‖B∗1,t{g1,t}‖ . . . ‖[∂t(B∗i,t{gi,t}), B∗j,t{gj,t}]‖ . . . ‖B∗n,t{gn,t}‖

≤
n∑
i=1

n∑
j=i+1

O(t(n−2)d/2)O(t−∞) = O(t−∞). (272)

Second part of the theorem: let B̃∗i,t{g̃i,t}, i = 1, . . . , n be HR creation operators

satisfying the assumptions of the theorem and s.t. B̃∗i,t{g̃i,t}Ω = B∗i,t{gi,t}Ω and
velocity supports of g̃i are contained in the velocity supports of gi. By iterating
the relation

B∗1,t{g1,t} . . . B∗n,t{gn,t}Ω = B∗1,t{g1,t} . . . B∗n−1,t{gn−1,t}B̃∗n,t{g̃n,t}Ω
= B̃∗n,t{g̃n,t}B∗1,t{g1,t} . . . B∗n−1,t{gn−1,t}Ω +O(t−∞),

(273)

which follows again from (269) and from (245). By taking the limit t → ∞, we
obtain that Ψ+ coincides with the scattering state Ψ̃+ constructed using B̃∗i,t{g̃i,t}.
�

Theorem 2.17 . Let Ψ+ and Ψ̃+ be two scattering states with n and ñ particles,
respectively. Then

〈Ψ̃+,Ψ+〉 = δn,ñ
∑
σ∈Sn

〈Ψ̃1,Ψσ1〉 . . . 〈Ψ̃n,Ψσn〉, (274)

U(x̃,Λ)(Ψ1 ×out · · · ×out Ψn) = (U(x̃,Λ)Ψ1)×out · · · ×out (U(x̃,Λ)Ψn),(275)

where (x̃,Λ) ∈ P↑+ and Sn is the set of permutations of an n-element set.
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Proof. We assume here that n = ñ (it is easy to check that the scalar product is
zero otherwise by following the steps below). To prove (274), we set for simplicity
of notation Bi(t) := Bi,t{gi,t}, B̃j(t) := B̃j,t{g̃j,t}. We assume that (274) holds for
n− 1 and compute

〈Ψ̃t,Ψt〉 = 〈Ω, B̃n(t) . . . B̃1(t)B1(t)∗ . . . Bn(t)∗Ω〉

=
n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . [B̃1(t), Bk(t)
∗] . . . Bn(t)∗Ω〉

=
n∑
k=1

n∑
l=k+1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . [[B̃1(t), Bk(t)
∗], Bl(t)

∗] . . . Bn(t)∗Ω〉

+
n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗B̃1(t)Bk(t)
∗Ω〉. (276)

The terms involving double commutators vanish by Lemma 2.14 (b) and Lemma 2.13 (d).
In view of the last part of Theorem 2.16, we can assume without loss that all the
HR creation operators involved in (276) satisfy the assumptions of Lemma 2.15.
Then the last term on the r.h.s. of (276) factorizes as follows

n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗Ω〉〈Ω, B̃1(t)Bk(t)
∗Ω〉 (277)

by Lemma 2.15 (a). Now by the induction hypothesis the expression above fac-
torizes in the limit t→∞ and gives (274).

Let us give some details of the last step above: Let Sn be the set of permutations
of an n-element set and let σ ∈ Sn. Now consider all σ ∈ Sn such that σ1 = k.
Each such permutation gives rise to a permutation ρ ∈ S(k)

n−1 of an n − 1 element
set, which maps (2, . . . , n) to (1, . . . , ǩ, . . . , n). ρ is given by

ρ2 = σ2, . . . , ρn = σn. (278)

We have∑
σ∈Sn

〈Ψ̃1,Ψσ1〉 . . . 〈Ψ̃n,Ψσn〉 =
n∑
k=1

〈Ψ̃1,Ψk〉
∑

ρ∈S(k)
n−1

〈Ψ̃2,Ψρ2〉 . . . 〈Ψ̃n,Ψρn〉 (279)

Proof of (275) is left for the Homeworks. �

Remark 2.18 It follows from this theorem, that scattering states depend only on
single-particle states Ψi and not on velocity supports of gi (cf. Theorem 2.16).
Indeed, for two vectors Ψ+ and Ψ̃+ as in the last part of the proof of Theorem 2.16,
we can now verify that ‖Ψ+ − Ψ̃+‖2 = 0 without assuming that velocitiy supports
of g̃i are contained in velocity supports of gi.
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2.1.6 Wave operators and the scattering matrix

From Theorem 2.16 it is not clear if any of the scattering states Ψ+ are non-zero.
Theorem 2.17 reduces this problem to showing that the HR creation operators
create non-zero single-particle states from the vacuum. Actually they create a
dense set in the single-particle subspace Hm := E(Hm)H.

Lemma 2.19 Vectors of the form B∗t {gt}Ω form a dense subspace of the single-
particle space Hm.

Proof. First we recall the definition of HR creation operators:

Definition 2.20 (a) Let B∗ ∈ Aa−loc be s.t. SpB∗α ⊂ V+ is compact, SpB∗α ∩
Sp(H,P ) ⊂ Hm. Such B∗ will be called a creation operator.
(b) Let B∗ be a creation operator and gt be given by (253). Then

B∗t {gt} :=

∫
ddxB∗t (x)gt(x), B∗t (x) := U(t, x)B∗U(t, x)∗, (280)

is called a Haag-Ruelle (HR) creation operator.

Now let Aloc :=
⋃
O⊂Rd+1 A(O) be the ∗-algebra of strictly local operators. By

definition of A, Aloc is norm dense in A and by irreducibility of A it is also
irreducible, in particular Ω is cyclic for Aloc.

Note that for any A ∈ Aloc and f ∈ S(Rd+1) s.t. suppf̂ compact and suppf̂ ∩
Sp(H,P ) ⊂ Hm we have that B∗ = A(f) is a creation operator. Moreover

B∗Ω = (2π)(d+1)/2f̂(H,P )AΩ. (281)

Next, we know from the proof of Lemma 2.13, that

B∗t {gt}Ω = (2π)d/2ĝ(P )B∗Ω = (2π)d/2(2π)(d+1)/2ĝ(P )f̂(H,P )AΩ. (282)

We can choose gn, fn within the above restrictions s.t. s- limn→∞ gn(P )fn(H,P ) =
E(Hn). Since AΩ can approximate in norm arbitrary vector in H, this proves the
claim. �

By a small modification of the above argument one gets:

Lemma 2.21 Vectors of the form B∗t {gt}Ω, where SpB∗α ⊂ ∆ and ∆ ⊂ V + is a
Borel set, form a dense subspace in E(∆)Hm.

Let Γ(Hm) be the symmetric Fock space over Hm. Let Ψ1, . . . ,Ψn be as in Theo-
rem 2.16. We define the outgoing wave operator W out : Γ(Hm)→ H by extending
by linearity the relation:

W out(a∗(Ψ1) · · · a∗(Ψn)Ω) = Ψ1 ×out · · · ×out Ψn. (283)

This operator is densely defined by Lemma 2.21, and the fact that the subspace
of vectors

a∗(Ψ1) · · · a∗(Ψn)Ω ∈ Γ(Hm), (284)
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where Ψ1, . . .Ψn ’live’ on disjoint subsets of Hm is dense in Hm. (We do not prove
this latter fact here, but the argument is similar as in Problem 2 of HS5).

Analogously we define the incoming wave operator:

W in(a∗(Ψ1) · · · a∗(Ψn)Ω) = Ψ1 ×in · · · ×in Ψn, (285)

where Ψ1 ×in · · · ×in Ψn is defined by taking the limit t → −∞ in Theorem 2.16
(the proof goes the same way). We also define the S-matrix: S : Γ(Hm)→ Γ(Hm)
by the formula

S = (W out)∗W in. (286)

1. If S = I we say that the theory is non-interacting. Easy to see in free fields.
If S 6= I we say that the theory is interacting. Known in ϕ4

2.

2. If RanW out = RanW in = H we say that the theory is asymptotically com-
plete. (All vectors in H can be interpreted as configurations of particles).
Easy to see in free fields. Partial results in ϕ4

2. Interacting HK theories which
are asymptotically complete constructed only recently in d=1 [18].

Remark 2.22 There is a different definition of the scattering matrix which we
used in (232): Let Hin = RanW− and Hout = RanW+. Let S̃ : Hout → Hin be
defined as follows:

S̃(Ψ1 ×out · · · ×out Ψn) = Ψ1 ×in · · · ×in Ψn. (287)

While S and S̃ are different operators, their matrix elements coincide in the fol-
lowing sense:

〈a∗(Ψ1) · · · a∗(Ψn)Ω, Sa∗(Ψ′1) · · · a∗(Ψ′n)Ω〉
= 〈Ψ1 ×out · · · ×out Ψn,Ψ

′
1 ×in · · · ×in Ψ′n〉

= 〈Ψ1 ×out · · · ×out Ψn, S̃(Ψ′1 ×out · · · ×out Ψ′n)〉. (288)

Somewhat imprecisely, one can say that asymptotic completeness is equivalent to
unitarity of S̃ as an operator on H. (To be meaningful, this statement requires
Hin = H, which is part of the definition of asymptotic completeness).

Let Um(x̃,Λ) := U(x̃,Λ)|Hm . From (275), we get

W in/out ◦ Γ(Um(x̃,Λ)) = U(x̃,Λ) ◦W in/out. (289)

Consequently, the S-matrix is Lorentz invariant:

S = Γ(Um(x̃,Λ))SΓ(Um(x̃,Λ))∗. (290)
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2.2 Scattering theory of massless particles

Now we assume that Sp(H,P ) is like in massless free quantum field theory i.e.
Sp(H,P ) = V+, {0} is a simple eigenvalue of (H,P ) corresponding to the eigen-
vector Ω and the spectral subspace of the boundary of the lightcone H0 contains
vectors orthogonal to Ω. We denote

• H0 := E(H0)H.

• H1 := H0 ∩ Ω⊥.

H1 is the single-particle subspace of the massless particles. The projection on H1

is denoted E1.

Remark 2.23 Such shape of the spectrum can also be expected in the vacuum
representation of QED.

2.2.1 Propagation properties of solutions of the KG and wave equation

Consider the following wave packets (t ≥ 0)

ft(x) = (2π)−d/2
∫
ddp

(
ei(µm(p)t+px)f̂+(p) + ei(−µm(p)t+px)f̂−(p)

)
, (291)

where

f̂±(p) = f̂1(p)± iµm(p)f̂2(p), f1, f2 ∈ C∞0 (Rd). (292)

1. For m > 0 this is a solution of the KG equation with the following property:
If f1, f2 supported in G ⊂ Rd then ft supported in G+ tB1, where B1 is the
unit ball.

2. For m = 0 and d > 1 odd this is a solution of the wave equation with
the following property: If f1, f2 supported in G ⊂ Rd then ft supported in
G+ tS1, where S1 is the unit sphere. (Huyghens principle).

Below in this section ft will be the solution of the wave equation, d is odd and
d > 1.

2.2.2 Asymptotic fields

Some definitions:

1. Aloc :=
⋃
O⊂Rd+1 A(O) is the ∗-algebra of strictly local operators.

2. For A ∈ Aloc s.t. 〈Ω, AΩ〉 = 0 and ft a solution of the wave equation as in
the previous subsection, we define

At{ft} :=

∫
ddxAt(x)ft(x). (293)
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3. We define an averaging function hT as follows: For h ∈ C∞0 (R) s.t. h ≥ 0
and

∫
dt h(t) = 1, we set

hT (t) =
1

T ε
h
(
(t− T )/T ε

)
, 0 < ε < 1. (294)

Note that
∫
dt hT ... essentially amounts to the averaging 1

T ε

∫ T+T ε

T
dt.... Now

we set

AT :=

∫
dt hT (t)At{ft}. (295)

Lemma 2.24 We have

lim
T→∞

ATΩ = (2π)d/2E1f−(P )AΩ, (296)

where E1 is the projection on the single-particle subspace H1.

Proof. We compute

ATΩ =

∫
dt hT (t)At{ft}Ω

= (2π)d/2
∫
dt hT (t) (ei(H+|P |)tf̂+(P ) + ei(H−|P |)tf̂−(P ))AΩ (297)

By Lemma 2.25 below, which is a variant of the Ergodic Theorem, we get

s- lim
T→∞

∫
dt hT (t) ei(H+|P |)t = |Ω〉〈Ω|, (298)

s- lim
T→∞

∫
dt hT (t) ei(H−|P |)t = E(H0). (299)

However, recall that 〈Ω, AΩ〉 = 0, so the term involving ei(H+|P |)t vanishes and
E(H0)AΩ = E1AΩ. �

Let B be a self-adjoint operator and F its spectral measure. The conventional
Mean Ergodic Theorem says that

s- lim
T→∞

1

T

∫ T

0

dteitB = F ({0}). (300)

Note that F ({0}) is the subspace of all Ψ s.t. BΨ = 0 or, equivalently, of all
invariant vectors of t 7→ eitB.

Lemma 2.25 Let B be a self-adjoint operator and F its spectral measure. Then

s- lim
T→∞

∫
dt hT (t)eitB = F ({0}). (301)

Consequently, for B± = H ± |P |, we have

s- lim
T→∞

∫
dt hT (t) eiB+t = |Ω〉〈Ω|, (302)

s- lim
T→∞

∫
dt hT (t) eiB−t = E(H0). (303)
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Proof. First, let Ψ ∈ RanF ({0}). Then eitBΨ = Ψ and we have∫
dt hT (t)eitBΨ =

∫
dt hT (t)Ψ =

∫
dt

1

T ε
h
(
(t− T )/T ε

)
Ψ

=

∫
dt

1

T ε
h
(
t/T ε

)
Ψ =

∫
dt h(t)Ψ = Ψ. (304)

Now let Φ ∈
(
RanF ({0})

)⊥
. We have

ΦT :=

∫
dt hT (t)eitBΦ = (2π)1/2ĥT (B)Φ = (2π)1/2eiTBĥ(T εB)Φ, (305)

where we made use of the fact that ĥT (ω) = eiTωĥ(T εω) (easy computation). Thus
we get

‖ΦT‖2 = (2π)〈Φ, |ĥ|2(T εB)Φ〉 →
T→∞

(2π)|ĥ|2(0)〈Φ, F ({0})Φ〉 = 0, (306)

where we made use of properties of the spectral calculus and dominated conver-
gence. This concludes the proof of (301).

To show the last part of the lemma, let F± be the spectral measure of B±.
Suppose Ψ+ ∈ RanF+{0}. Then (H + |P |)Ψ+ = 0, hence 〈Ψ+, (H + |P |)Ψ+〉 = 0,
hence, since H and |P | are positive

〈Ψ+, HΨ+〉 = 0, and 〈Ψ+, |P |Ψ+〉 = 0. (307)

From the first identity we get ‖H1/2Ψ+‖ = 0, therefore H1/2Ψ+ = 0 and conse-
quently HΨ+ = 0. The second identity gives analogously |P |1/2Ψ+ = 0, hence
|P |2Ψ+ = 0, hence

〈Ψ+, (P
2
1 + · · ·+ P 2

d )Ψ+〉 = 0. (308)

Since all terms are positive, PiΨ+ = 0. Thus we have that Ψ+ is an eigenvector
of (H,P ) with eigenvalue {0}. Since we assume that this eigenvalue is simple, we
have that Ψ+ is proportional to Ω.

Suppose Ψ− ∈ RanF−{0}. This means that (H−|P |)Ψ− = 0 which just means
that Ψ− ∈ RanE(H0). �

Definition 2.26 Given an open bounded region O we call future tangent of O
the set V +(O) of all points in Rd+1 which have positive timelike distance from O.

Proposition 2.27 Let O be an open bounded region and suppose that At=0{ft=0} ∈
A(O) and let B ∈ A(O1), where O1 ⊂ V +(O) is an open bounded region. Then

lim
T→∞

ATBΩ = (2π)d/2BE1f−(P )AΩ. (309)

Thus Aout := limT→∞AT exists on the domain

D(O) := {BΩ |B ∈ A(O1),O1 ⊂ V +(O)}. (310)

as an operator.
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Remark 2.28 It turns out that D(O) is dense.

Proof. Let A ∈ A(OA), OA ⊂ Rd+1, and ft=0 be localized in a bounded region
G ⊂ Rd. Then

At=0{ft=0} ∈ A(OA + (0, G)), (311)

At=0{ft} ∈ A(OA + (0, G+ tS1)), (312)

At{ft} ∈ A(OA + (0, G+ tS1) + te0) (313)

= A(OA + (0, G) + t(1, S1)), (314)

where e0 is the unit timelike vector. We can set O = OA + (0, G) so that we get

At{ft} ∈ A(O + t(1, S1)). (315)

Now the time averaging gives

AT ∈
⋃

t∈T+T εsupph

A(O + t(1, S1)) =
⋃

t∈T (1+T−(1−ε)supph)

A(O + t(1, S1)). (316)

Note that t(1, S1) are lightlike vectors. Above we take union over t in some compact
interval (because supph is compact), whose length grows slower than T . Thus AT
commutes with B by locality, for T sufficiently large. By the previous lemma we
have (309). �

We would like to construct scattering states using the formula

Aout
1 . . . Aout

n−1A
out
n Ω (317)

but this is only possible if we have sufficient control over the domains of asymp-
totic fields. For example, we need to know that Aout

n Ω is in the domain of Aout
n−1.

Furthermore, Aout
i are asymptotic fields and not asymptotic creation operators.

One has to extract the creation parts by suitable smearing e.g. proceeding from
Aout
i to Ai(f) for f̃ supported in a neighbourhood of the upper lightcone. We skip

the details.

Definition 2.29 Let U ⊂ Rd+1 be a possibly unbounded open region and

A(U) :=
⋃
O⊂U

A(O), (318)

where O are bounded regions. We say that U has the Reeh-Schlieder property if

A(U)Ω = H. (319)

Remark 2.30 Remark 2.28 says that the future tangent V +(O) has the Reeh-
Schlieder property. One can also show this property for other unbounded regions
e.g. spacelike strings (PICTURE). One can also show the Reeh-Schlieder property
for bounded regions

A(O)Ω = H (320)
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under the additional assumption of ’weak additivity’:( ⋃
x̃∈Rd+1

A(O + x̃)

)′′
= A′′ for any open bounded O. (321)

This assumption always holds if the local algebras are generated by a quantum field
(as for example in the case of free fields or ϕ4

2).
The Reeh-Schlieder property (320) demonstrates the non-local character of the

vacuum (e.g. by measuremants here on earth one can create a state describing
several particles behind the moon).

2.3 Superselection structure and statistics

We start from a Haag-Kastler net in the vacuum representation (A, α). We denote
by H0 the Hilbert space in the vacuum representation.

Fact: Observations cannot change the total charge of a state. If ”charged
particles” are created by such operations it seems to be inevitable that particles
carrying opposite charge are created as well.

Consequence: The net (A, α) on H0 describes states carrying the same charge
as the vacuum since π(A)Ω = H0. The vacuum Ω carries no charge.

Question: Where are the states carrying a non-zero charge? Idea: these states
are described by suitable representations of (A, α). We need a criterion for selecting
”interesting representations”.

2.3.1 Localizable charges

Intuitively speaking, charges which have no effect at large distances, like isospin,
strangeness etc. are covered. (However, electric charge is excluded). Starting
point:

O → A(O) = A(O)′′ (322)

von Neuman algebras without loss of generality. Notation: A =
⋃
OA(O)

‖·‖
.

Doplicher-Haag-Roberts [DHR] criterion: A representation (π,H) of (A, α)
describes an elementary system carrying a localizable charge if:

i) (π,H) is irreducible.

ii) Continuous unitary (projective) representation U of P ↑+ satisfying the rela-
tivistic spectral condition acts on H:

U(x̃) =

∫
V+

eip̃x̃dE(p̃). (323)

iii) For all double cones O ⊂ Rs+1 one has

π|A(O′) ' ι|A(O′), (324)
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where O′ is the set of all poits spacelike separated from O, ι is the identical
(defining) representation of A on H0, i.e. ι(A)Φ0 = AΦ0, A ∈ A, Φ0 ∈ H0.
Moreover,

A(O′) :=
⋃
O1⊂O′

A(O1)
‖·‖
, (325)

where O1 are double cones. (Important: there is no double cone, which
surrounds O.)

Physical justification: by making measurements in O′ one cannot determine the
total charge of the state, since there may be particles carrying exactly the opposite
charge which go through O and do not enter O′. Phrased differently: charged
states, if subject to observations (only) in O′ cannot be distinguished from states
that carry zero charge.

Questions:

* How to describe composition (”adding”) of charges?

* Why are there ”opposite” charges (antiparticles)?

* Why is there (only) Bose and Fermi statistics?

* Where are the charged (non-observable) fields?

All questions have a satisfactory answer in the case of localizable charges. (Work
in progress on charges of electromagnetic type).

Definition 2.31 A theory (A, α) satisfies Haag duality if for every double cone
O one has

A(O′)′ = A(O)′′ = A(O). (326)

Comment: A(O) ⊂ A(O′)′ follows from locality. Haag duality may be inter-
preted as a maximality condition on the local algebras A(O) (i.e. one cannot add
any further operators to A(O) without violating locality!). It holds in free field
theories [Araki]. Later Bisognano and Wichmann established this condition in the
Wightman framework of QFT.

2.3.2 DHR-Analysis

Structural analysis of all representations carrying localizable charges. First, we
note that since

π|A(O′) ' ι|A(O′), (327)

there exists an isometry V : H0 → H, s.t.

π(A)V = V ι(A) = V A for A ∈ A(O′). (328)

Note that the unitary V depends on the choice of O. Define a representation
(γ,H0) s.t. γ(A) = V −1π(A)V for all A ∈ A. By construction (γ,H0) ' (π,H).
Moreover,

γ|A(O′) = ι|A(O′), (329)
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i.e. on O′ the charged and the vacuum representations are identical. It also holds
that γ(A(O1)) ⊂ A(O1) if O ⊂ O1 and hence γ(A) ⊂ A so γ is an endomorphism
of A. In fact, suppose A1 ∈ A(O1), B′ ∈ A(O′1), then

B′γ(A1) = γ(B′)γ(A1) = γ(B′A1) = γ(A1B
′) = γ(A1)γ(B′) = γ(A1)B′. (330)

It follows that γ(A1) ∈ A(O′1)′ = A(O1), where in the last step we made use of
Haag duality. We summarize:

Lemma 2.32 Representations corresponding to localizable charges can be described
by (γ,H0), where γ is an (endo)morphism of A. Moreover, it is localized, i.e. for
some (chosen) region O it holds that γ|A(O′) = ι|A(O′).

Intuitively, γ corresponds to ’operation’ of creating a charge in O. Let ω = ω0 ◦ γ,
where ω0( · ) = 〈Ω, ·Ω〉 is the vacuum state. Then

ω|A(O) 6= ω0, (331)

ω|A(O′) = ω0. (332)

Definition 2.33 The class of representations, which are unitarily equivalent to
(π,H) is called the (superselection) sector of (π,H).

Physics does not depend on a representation but only on a sector. Next, we
study the relation between γ1, γ2 corresponding to different choices of O1, O2. By
definition

γi(A) = V −1
i π(A)Vi for A ∈ A, (333)

where Vi : H0 → H. Consequently

V1γ1(A)V −1
1 = π(A) = V2γ2(A)V −1

2 , (334)

V −1
2 V1γ1(A) = γ2(A)V −1

2 V1. (335)

Note that V2,1 := V −1
2 V1 ∈ B(H0). For A ∈ A(O′3), where O3 is a double cone

containing O1 and O2 inside, we have γ1(A) = γ2(A) = A i.e.

V −1
2 V1A = AV −1

2 V1. (336)

Thus, V21 = V −1
2 V1 ∈ A(O′3)′ = A(O3), by the Haag duality. Conclusion: the

intertwiners V21 are elements of the algebra of observables.
Interpretation: if ω0 is the vacuum state, then ω0γi describes a charged state

with charge localized in Oi:

ω0(γi(A)) = ω0(A) for A ∈ A(O′i) (337)

i.e. with regard to measurements in O′i the state ω0γi looks like the vacuum. On
the other hand, ω0γi does not belong to the vacuum sector i.e. it is charged.
Phrased differently: ω0γi describes a ”charge” sitting in Oi. Thus γi may be
regarded as the operation of putting a charge inside of Oi. (γi is ”localized” in
Oi). The intertwiners are the operators of shifting the charge from O1 to O2.
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2.3.3 Composite sectors

Morphisms can be composed. Let γ1, γ2 and V21 = V −1
2 V1 as above. Then,

γ2(γ1(A)) = V21γ1(γ1(A))V −1
21 = V21γ

2
1(A)V −1

21 (338)

γ1(γ2(A)) = γ1(V21γ1(A)V −1
21 ) = γ1(V21)γ2

1(A)γ1(V21)−1 (339)

Thus, V21γ1(V21)−1γ1(γ2(A)) = γ2(γ1(A))V21γ1(V21)−1 for A ∈ A, hence γ1 ◦γ2 and
γ2 ◦ γ1 are unitarily equivalent as they are related by the intertwiners

ε(γ1, γ2) = V21γ1(V21)−1. (340)

Program: Understand the properties of ε(γ1, γ2), which exchange the localization
regions of charges.

Further simplifying assumption (not needed): (π,H) describes a ”simple sec-
tor” i.e. for any two equivalent representations (γi,H0,i), i = 1, 2 the composed
representation γ1 ◦ γ2 is irreducible.

Fact: (π,H) describes a ”simple sector” iff γi are automorphism of A, i.e. are
invertible.
Proof: Suppose γi are automorphisms. Then γ1 ◦ γ2 is unitarily equivalent to the
GNS representation of ω := ω0 ◦ γ1 ◦ γ2. Recall that a GNS representation is
irreducible iff the state is pure. It is easy to see that ω is pure exploiting the that
that ω0 is pure and γ1 ◦ γ2 is an automorphism. Thus (π,H) describes a simple
sector. For the opposite implication see the computation above Theorem 2.35
below. �

2.3.4 Exchange symmetry

Let γ1, γ2 be localized in spacelike separated regions O1, O2. We want to show

that γ1 ◦ γ2(A) = γ2 ◦ γ1(A) for A ∈ A. Since A =
⋃
OA(O)

‖·‖
it is sufficient

to prove equality for A ∈ A(O), where O is arbitrarily large. Let O3,O4 ⊂ O′,
O5 ⊂ O′6 (such a choice of O3 . . .O6 is always possible. See Figure 1). Consider
γi, i = 1 . . . 4, which are localized in Oi, i = 1 . . . 4.

γ1(A) = V13γ3(A)V −1
13 for V13 ∈ A(O5) (341)

γ2(A) = V24γ4(A)V −1
24 for V24 ∈ A(O6). (342)

Let A ∈ A(O)

γ1(γ2(A)) = γ1(V24γ4(A)V −1
24 ) = V24γ1(A)V −1

24 = V24V13γ3(A)V −1
13 V

−1
24

= V13V24AV
−1

24 V
−1

13 = . . . = γ2(γ1(A)). (343)

Thus, γ1 ◦ γ2 = γ2 ◦ γ1 ”operations” commute at spacelike distances.
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2.3.5 Statistics of simple sectors

Recall that ε(γ1, γ2)γ1γ2(A) = γ2γ1(A)ε(γ1, γ2) for A ∈ A. Consequence: if O1,
O2 are spacelike separated

ε(γ1, γ2)γ1 ◦ γ2(A) = γ1 ◦ γ2(A)ε(γ1, γ2) for A ∈ A. (344)

As (γ1 ◦ γ2,H0) is by assumption irreducible, we obtain from Schur’s Lemma
ε(γ1, γ2) ∈ TI, where T = { z ∈ C | |z| = 1 }.

Consider the geometrical situation O2 ⊂ O3 and O1 ∼ O3, (where ∼ denotes
spacelike separation). Choose γ3 in O3 which is equivalent to γ2, i.e.

γ3(A) = V32γ2(A)V −1
32 for A ∈ A, (345)

where V32 ∈ A(O3). Then

γ3(A) = V32γ2(A)V −1
32 = V32V21γ1(A)V −1

21 V
−1

32 , (346)

so V31 = V32V21. It follows that

ε(γ1, γ3) = V31γ1(V −1
31 ) = V32V21γ1(V −1

21 V
−1

32 )

= V21γ1(V −1
21 ) = ε(γ1, γ2). (347)

Here we made use of the fact that V21γ1(V −1
21 ) is a complex phase and that

γ1(V −1
32 ) = V −1

32 .
In a similar manner, taking O1 ⊂ O3, O3 ∼ O2, one can show that ε(γ3, γ2) =

ε(γ1, γ2). Thus ε(·, ·) stays constant under ”local changes” of the automorphisms
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provided that their localization regions stay spacelike separated. Next, we note
that

ε(γ1, γ2)−1 = (V21γ1(V −1
21 ))−1 = (γ2(V −1

21 )V21)−1 = V −1
21 γ2(V21) = ε(γ2, γ1), (348)

where in the second step we made use of V21γ1(A) = γ2(A)V21, A ∈ A. Finally,
we assume that the dimension of spacetime d + 1 > 2. Deformation argument in
order to exchange O1 and O2 by a sequence of double cones which stay spacelike
separated: (See Figure 2 for a sequence of bases of such double cones).

ε(γ1, γ2) = ε(γ3, γ2) = ε(γ3, γ4) = ε(γ5, γ6) = ε(γ7, γ6) = . . . = ε(γ2, γ1) = ε(γ1, γ2)−1.
(349)

Summing up:

Theorem 2.34 If the dimension of spacetime d + 1 > 2 and (π,H) is a simple
sector, then either ε(γ1, γ2) = 1 when O1 ∼ O2 or ε(γ1, γ2) = −1 when O1 ∼ O2.
(Bose-Fermi alternative in relativistic QFT).

Remark 1.If d + 1 = 2, analysis is possible. Strange forms of statistics appear
(”braid group statistics”).
Remark 2. γ1(A) = V12γ2(A)V −1

12 = V12AV
−1

12 if γ2 is localized in a region
spacelike separated to O. Consequently

γ1(A) = lim
”O2→∞”

V12AV
−1

12 for A ∈
⋃
O

A(O). (350)

Where ”O2 → ∞” means that O2 tends to spacelike infinity. By continuity, one
has convergence for all A ∈ A. (Physical picture: creation of a charge at spacelike
infinity and transport of this charge by transporters V12 to region O1).
Remark 3. Composite sectors: γ1 ◦ γ2 exists, providing a mechanism for ”adding
of charges”. Let γ1, γ2 ' γ i.e. Uiγi(A) = γ(A)Ui for i = 1, 2, with Ui ∈ A. Then
one has γ1 ◦ γ2 ' γ ◦ γ = γ2. In fact

γ1(γ2(A)) = γ1(U2γ(A)U−1
2 ) = γ1(U2)γ1γ(A)γ1(U−1

2 )

= γ1(U2)U1γ(γ(A))U−1
1 γ1(U2)−1. (351)

i.e. γ1(U2)U1 is an intertwiner between γ2 and γ1 ◦ γ2. Thus all composite repre-
sentations are equivalent. In particular γ1 ◦ γ2 ' γ2 ◦ γ1 with intertwiner

ε(γ1, γ2) = V21γ1(V12)−1. (352)

2.3.6 Existence of compensating (”negative”) charges

Charges can be added: γ1◦γ2, γ1◦γ2◦ . . .◦γn. Structure of a semigroup. Question:
can we ”subtract charges”? (i.e. do we actually have a group?). Answer: yes!

One has to show that γ1 is invertible i.e. for each A ∈ A(O) there exists a
B ∈ A s.t. γ1(B) = A. Chain of equalities: A ∈ A(O), O1 ⊂ O, O ⊂ O′2
A = γ2(A) = V21γ1(A)V −1

21 = V21γ1(V21)−1︸ ︷︷ ︸
ε(γ1,γ2)=±1

γ1(V21)γ1(A)γ1(V21)−1 γ1(V21)V −1
21︸ ︷︷ ︸

ε(γ1,γ2)−1=±1

= γ1(V21AV
−1

21 ). (353)
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Putting B = V21AV
−1

21 ∈ A we have γ1(B) = A i.e. γ1(
⋃
OA(O)) =

⋃
OA(O),

and hence (continuity) γ1(A) = A, so γ−1
1 exists.

Theorem 2.35 Let (π,H) describe simple localizable charges. Then the mor-
phisms γ are automorphisms.

Properties of γ−1
1 :

* As γ1(A) = A if A ∈ A(O′1) one gets γ−1
1 (A) = A, A ∈ A(O′1).

* Let γ1, γ2 be equivalent, then, denoting V12 = V −1
21

V12γ2(A) = γ1(A)V12 for A ∈ A,
γ−1

2 (V12)A = γ−1
2 (γ1(A))γ−1

2 (V12),

γ−1
2 (V12)γ−1

1 (A) = γ−1
2 (A)γ−1

2 (V12) for A ∈ A, (354)

where in the last step we substituted A → γ−1
1 (A). Thus, γ−1

2 (V12) in-
tertwines γ−1

1 and γ−1
2 . Consequently, γ−1 describes a localizable charge

(modulo check of covariance and spectrum condition).

* Composed sector: (γ−1
2 ◦ γ1,H0) lies in the vacuum sector, i.e. equivalence

class of (ι,H0). We have from (354) that γ−1
2 (B) = γ−1

2 (V12)γ−1
1 (B)(γ−1

2 (V12))−1,
B ∈ A. Setting B := γ1(A) we get

γ−1
2 ◦ γ1(A) = γ−1

2 (V12)A(γ−1
2 (V12))−1 for A ∈ A. (355)

* Statistics of the ”opposite charge”. Suppose that γ1, γ2 are localized in
spacelike separated regions so that we have γ1 ◦ γ2 = γ2 ◦ γ1. We note, that
γ1 ◦ γ2 = γ2 ◦ γ1 trivially implies γ−1

1 ◦ γ−1
2 = γ−1

2 ◦ γ−1
1 . Then, making use of

ε(γ1, γ2) = V21γ1(V21)−1, V21γ1(A) = γ2(A)V21 and (354), which says that for
γi replaced with γ−1

i the intertwiner V21 should be replaced with γ−1
2 (V12),

we get

ε(γ−1
1 , γ−1

2 ) = γ−1
2 (V12)γ−1

1 (γ−1
2 (V12))−1

= γ−1
2 (V12γ

−1
1 (V −1

12 )) = γ−1
2 ◦ γ−1

1 (γ1(V12)V −1
12 )

= γ−1
2 ◦ γ−1

1 (V12 V
−1

12 γ1(V12)︸ ︷︷ ︸
ε(γ1,γ2)=±1

V −1
12 ) = ε(γ1, γ2), (356)

where in the second step we used γ−1
1 ◦ γ−1

2 = γ−1
2 ◦ γ−1

1 . Thus the charge
and the compensating charge have the same statistics, i.e.

ε(γ−1
1 , γ−1

2 ) = ε(γ1, γ2) for O1 ∼ O2. (357)
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2.3.7 Covariance of composite representations

By assumption, there exists a continuous unitary representation Uγ of P ↑+ (or

its covering group P̃ ↑+ in the case of fermionic sectors) satisfying the spectrum
condition and such that

Uγ(p)γ(A)Uγ(p)
−1 = γ(αp(A)) for p ∈ P ↑+, A ∈ A. (358)

Question: Do there exist also such representations for composite representations
γn (and γ−n)?

Definition 2.36 We call pγ(·) = αp ◦ γ ◦ α−1
p (·) a transported morphism.

Lemma 2.37 If γ is localized in O, then pγ is localized in pO.

Proof. Let A ∈ A((pO)′) = A(p(O)′) = αp(A(O′)) (e.g. if I translate the region
then its spacelike complement translates accordingly) thus A = αp(B) for some
B ∈ A(O′). Then

pγ(A) = αpγα
−1
p (αp(B)) = αp ◦ γ(B) = αp(B) = A, (359)

where we made use of the fact that γ is localized in O. �

Making use of αp(A) = U(p)AU(p)−1 on H0 one gets

pγ(A) = U(p)γα−1
p (A)U(p)−1 = U(p)Uγ(p)

−1︸ ︷︷ ︸
Γ(p)−1

γ(A)Uγ(p)U(p)−1︸ ︷︷ ︸
Γ(p)

for A ∈ A.

(360)
Γ(p) ∈ A(O1), where O1 contains both O and pO. In fact, suppose B ∈ A(O′1),
then

Γ(p)BΓ(p)−1 = Γ(p)γ(B)Γ(p)−1 =p γ(B) = B. (361)

Moreover, there holds the cocycle relation for Γ

Γ(p)αp(Γ(p′)) = Uγ(p)U(p)−1U(p)(Uγ(p
′)U(p′)−1)U(p)−1

= Uγ(pp
′)U(pp′)−1 = Γ(pp′). (362)

(A similar relation holds for the interaction picture Γ(t)αt(Γ(t′)) = Γ(t + t′), in
the context of Dyson equation in QM).

Theorem 2.38 Representations Uγn for composite sectors are defined recursively
as follows

Uγn(p) = γn−1(Γ(p))Uγn−1(p) for p ∈ P ↑+, (363)

for n ≥ 2.

Proof. By induction in n:
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a) First we show, by induction, that Uγn(p)γn(A)Uγn(p)−1 = γn(αp(A)).

Uγn(p)γn(A)Uγn(p)−1 = γn−1(Γ(p))Uγn−1(p)γn−1(γ(A))Uγn−1(p)−1γn−1(Γ(p)−1)

= γn−1(Γ(p))γn−1(αp(γ(A)))γn−1(Γ(p)−1)

= γn−1(Γ(p)αp(γ(A))Γ(p)−1) = γn−1(Uγ(p)γ(A)Uγ(p)
−1)

= γn−1(γ(αp(A))) = γn(αp(A)) (364)

b) Next we verify the group representation property

Uγn(p)Uγn(p′) = γn−1(Γ(p))Uγn−1(p)γn−1(Γ(p′))Uγn−1(p′)

= γn−1(Γ(p))γn−1(αp(Γ(p′)))Uγn−1(p)Uγn−1(p′)

= γn−1(Γ(p)αp(Γ(p′)))Uγn−1(pp′)

= γn−1(Γ(pp′))Uγn−1(pp′) = Uγn−1(pp′). (365)

c) p→ Uγn(p) is continuous in strong operator topology (Homework. Hints: note
that Γ(p) is localized in a fixed O1 for all p in a small neighbourhood of a given
p0 ∈ P ↑+.

γn−1|A(O1) = W ·W−1|A(O1), (366)

for some unitary W ∈ A depending on O1.
d) Spectrum condition (stability of states) - literature [DHR].
e) Same results hold for ”conjugate sector” (compensating charges) (γ−m,H0).
(Homework: first step is to determine Uγ−1(p)). �

Conclusion: All sectors are Poincaré covariant and stable (i.e. spectrum condition
holds).

Summary: Take a local, Poincaré covariant net A: O → A(O) on H0, satisfying
Haag-duality, for spacetime dimension d + 1 > 2. Consider any representation
describing a simple, localizable charge in the sense of DHR. Then

* Sectors can be described by localizable automorphisms γ of A

* Composition of sectors is possible: ”γn” (akin to the tensor products of
representations in group theory).

* existence of specific intertwiners (”permutation operators”) ε(γ1, γ2).

ε(γ1, γ2) = ±1 if O1 ∼ O2. (367)

(Bose and Fermi statistics).

* Charge conjugate sectors: γ−1 exists.

ε(γ−1
1 , γ−1

2 ) = ±1 if O1 ∼ O2. (368)

(Antiparticles)
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* Poincaré covariance and stability.

Remarks on extension of results:

* Non-simple sectors are completely understood in d > 2.

* String localized charges in d > 3: similar results.

π|A(S′) ' ι|A(S′), (369)

where S is a spacelike cone. Cone localization is the worst possible case in
theories of massive particles [Buchholz-Fredenhagen]. (Typically appears in
gauge theories).

* Localizable charges in d=2. (New types of statistics appear in low dimen-
sions: ”braid group statistics”). Anyons, plektons. [Fredenhagen, Rehren,
Schroer].

* Big open problem: Superselection structure of charges of electromagnetic
type.

2.3.8 Construction of charged fields

Goal: Construction of an algebra of charged Bose and Fermi fields describing the
sectors of (simple) localizable charges in d > 2. Consider a theory of a simple
additive charge i.e. γn is not unitarily equivalent to the identity representation.
(Excludes charges of multiplicative type, like univalence, where γ2 ' ι.)

(a) Construction of physical Hilbert space containing all charges H = H0 × Z
(direct sum). A Ψ ∈ H has a form

Φ = (. . . ,Ψ−2,Ψ−1,Ψ0,Ψ1, . . .Ψn, . . .), (370)

where Ψn ∈ H0, n ∈ Z.

(Φ, Φ̃) =
∑
n

(Φn, Φ̃n)0. (371)

In particular ‖Φ‖2 =
∑

n ‖Φn‖2
0 <∞. n is the ”charge”. (0, . . . ,Φn, 0, . . . , 0).

State with charge n.

(b) Construction of a (reducible!) representation (π,H) of A, fix localized auto-
morphism γ

(π(A)Φ)n := γn(A)Φn. (372)

Note: π(A) does not change the charge. Homework: Prove that (π,H)
is a representation, i.e. a ∗-homomorphism from A into B(H). Prove that
(π,H) is reducible. Hints: prove that the projection Pn defined by (PmΦ)n =
δm,nΦm commutes with π(A).
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(c) Construction of a continuous unitary representation Uπ of a Poincaré group

(Uπ(p)Φ)n = Uγn(p)Φn, n ∈ Z. (373)

Covariance:

(Uπ(p)π(A)Uπ(p)−1Φ)n = Uγn(p)(π(A)Uπ(p)−1Φ)n

= Uγnγ
n(A)(Uπ(p)−1Φ)n = Uγn(p)γn(A)Uγn(p)−1Φn

= γn(αp(A))Φn = (π(αp(A))Φ)n. (374)

Thus Uπ(p)π(A)Uπ(p)−1 = π(αp(A)) for A ∈ A.
Homework: Show that Uπ(p) is a unitary representation (i.e. Uπ(p)Uπ(p′) =
Uπ(pp′)) which is continuous.

Charged field operators. Goal: to introduce ”decent” field operators Ψ which
”shuffle” the components of the vector Φ:

(ΨΦ)n = Φn+1, n ∈ Z. (375)

Remark: Ψ decreases the charge by one unit. Consider a vector Φ̂ of charge
n0, i.e. Φ̂n = δn,n0Φn0 .

(ΨΦ̂)n = Φ̂n+1 = δn+1,n0Φn0 = δn,n0−1Φn0 . (376)

i.e. Ψ indeed decreases the charge ”n0” by one unit.
Homework: Prove that the Hilbert space adjoint Ψ∗ of Ψ satisfies (Ψ∗Φ)n =
Φn−1, i.e. Ψ∗ increases the charge by one unit.

Ψ is unitary:

‖ΨΦ‖2 =
∞∑

n=−∞

‖Φn+1‖2
0 = ‖Φ‖2, (377)

so Ψ maps H onto H. Moreover, the adjoint action of Ψ implements the
automorphic action of γ in (π,H).

(Ψπ(A)Ψ∗Φ)n = (π(A)Ψ∗Φ)n+1 = γn+1(A)(Ψ∗Φ)n+1

= γn+1(A)Φn = γn(γ(A))Φn = (π(γ(A))Φ)n. (378)

Thus Ψπ(A)Ψ∗ = (π(γ(A))Ψ)n for A ∈ A.

A Generalization of Haag-Ruelle theory to em-

bedded mass hyperboloids

If the mass hyperboloid and the vacuum are embedded in the continuous spectrum,
(PICTURE) the HR construction does not work as it stands. Once can however
adapt it [19]. This requires the use of more complicated HR creation operators,
defined as follows

B∗T :=

∫
dt hT (t)B∗t {gt}. (379)
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Here B∗t {gt} is defined as before and h ≥ 0,
∫
dt h(t) = 1, h̃ ∈ C∞0 (R) and

hT (t) =
1

T ε
h

(
t− T
T ε

)
, 0 < ε < 1. (380)

(Note that
∫
dt hT ... essentially amounts to the averaging 1

T ε

∫ T+T ε

T
dt...)

It is not difficult to show that SpB∗Tα shrinks, as T → ∞, to a subset of the
embedded mass hyperboloid. Thus

lim
T→∞

B∗TΩ ∈ E(Hm)H, (381)

but T 7→ B∗TΩ is no longer time-independent, hence ∂TB
∗
TΩ 6= 0. Due to this

complication, to prove the existence of scattering states

Ψ+ := lim
T→∞

B∗1,T . . . B
∗
n,TΩ (382)

(with disjoint velocity supports as before) via the Cook’s method one needs to
assume that for any fixed A ∈ Aloc there is c, ε > 0 such that for all δ > 0

‖E({(p0, p) | p0 ≥ 0, |p0 − µm(p)| ≤ δ})(1− E(Hm))AΩ‖ ≤ cδε. (383)

Given this condition, the construction can also be generalized to massless particles
(where Hm is H0 i.e. the boundary of the lightcone).

Note that property (383) trivially holds if the mass hyperboloid is isolated,
thus it is consistent with the Haag-Kastler axioms. However, it does not follow
form Haag-Kastler axioms (there are Haag-Kastler QFTs where it is violated).
This rises a question if scattering theory (for massive or massless particles) can
be developed without assuming (383). This turns out to be possible for massless
particles in space of odd dimension (i.e. d odd) thanks to the Huyghens principle.
The construction from [21], which avoids the Cook’s method altogether, will be a
topic in the later part of these lectures.

B Proof of the energy-momentum transfer rela-

tion

The energy-momentum transfer relation is an old and well known result, however
proofs available in the literature (e.g. [20]) are not very accessible. Here we give
an elementary argument found in [17].

Theorem B.1 Let A ∈ A and α be the group of space-time translation auto-
morphisms unitarily implemented by U and let E be the joint spectral measure of
the energy-momentum operators. We then have the energy-momentum transfer
relation

AE(∆) = E(∆ + SpAα)AE(∆) (384)

for any Borel subset ∆ ⊂ Rd+1.
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Before giving the proof let us give a heuristic argument: Recall that E(∆) =
χ∆(H,P ) where χ∆ is a characteristic function. We set P̃ = (H,P ) and write

E(∆) = χ∆(H,P ) = (2π)−
(d+1)

2

∫
dd+1x̃ eiP̃ ·x̃χ̌∆(x̃). (385)

This gives

AE(∆) = (2π)−
(d+1)

2

∫
dd+1x̃ AeiP̃ ·x̃χ̌∆(x̃)

= (2π)−
(d+1)

2

∫
dd+1x̃ eiP̃ ·x̃A(−x̃)χ̌∆(x̃)

= (2π)−
(d+1)

2

∫
dE(p̃)

∫
dd+1x̃ eip̃·x̃A(−x̃)χ̌∆(x̃)

= (2π)
(d+1)

2

∫
dE(p̃)

∫
dd+1q̃ Ǎ(p̃− q̃)χ∆(q̃) (386)

Recall that SpAα = supp Ǎ(·). Since p̃− q̃ ∈ SpAα and q̃ ∈ ∆ it follows from the
above that p̃ ∈ SpAα+ ∆. But the above computation is not rigorous - especially
in the last step where we integrate an operator valued distribution p̃ 7→ Ǎ(p̃ − q̃)
w.r.t. a spectral measure.

Proof. We can assume without loss of generality that ∆ is bounded. In fact,
if (384) holds for bounded ∆ and we have unbounded ∆1, we can decompose it
into a disjoint union of bounded Borel sets: ∆1 =

⋃
i ∆i. Then, using countable

additivity of the spectral measure, we have

AE(∆1) =
∑
i

AE(∆i) =
∑
i

E(∆i + SpAα)AE(∆i)

= E(∆ + SpAα)
∑
i

AE(∆i) = E(∆ + SpAα)AE(∆1). (387)

Thus we assume that ∆ is bounded.
Next, for any g ∈ S(Rd+1) we note that ĝ(H,P ) has the following properties:

1. ĝ(H,P ) = E(K)ĝ(H,P ) for any Borel K ⊃ supp(ĝ).

2. E(∆) = ĝ(H,P )E(∆) for any function g such that ĝ �∆= 1.

Now, let f, g ∈ S(Rd+1). We have that

A(f)ĝ(H,P ) = (2π)−(d+1)/2

∫
ddxdtddyds f(t, x)g(s, y)U(t, x)AU(t− s, x− y)∗

= (2π)−(d+1)/2

∫
ddzdrddyds f(r + s, z + y)g(s, y)U(s, y)α(r,z)(A)

=

∫
ddzdr ĥ(r,z)(H,P )α(r,z)(A), (388)
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where the function h(r,z)(s, y) = f(r + s, z + y)g(s, y) satisfies

supp(ĥ(r,z)) ⊂ supp(f̂) + supp(ĝ), (389)

because Fourier transform of a product is a convolution. Hence

A(f)ĝ(H,P ) = E
(
supp(f̂) + supp(ĝ)

)
A(f)ĝ(H,P ). (390)

To proceed we need some definitions:

1. For any set S ⊂ Rd+1 and ε > 0, we define Sε := {p̃ ∈ Rd+1 | dist(p̃, S) ≤ ε}.

2. Sc is the complement of S.

3. ϕ ∈ C∞(Rd+1) is function which is bounded (and all its derivatives are
bounded), ϕ �SpAα= 1 and ϕ �(SpAα)cε= 0.

Such function can be constructed as follows: Let χ(SpAα)ε be (sharp) char-
acteristic function of (SpAα)ε. Let η ∈ C∞0 (Rd+1), η ≥ 0,

∫
dd+1p̃ η(p̃) = 1,

supp η ⊂ { p̃ ∈ Rd+1 | |p̃| < ε/2 }. We set

ϕ(q̃) =

∫
dd+1p̃ χ(SpAα)ε(q̃ − p̃)η(p̃) =

∫
dd+1p̃ η(q̃ − p̃)χ(SpAα)ε(p̃) (391)

It is easy to see that for q̃ ∈ SpAα we have ϕ(q̃) = 1 and for q̃ /∈ (SpAα)ε
ϕ(q̃) = 0. Moreover, derivatives of ϕ is smooth (since η is smooth) and its
derivatives are bounded due to the following computation

|∂ni ϕ(q̃)| = |
∫
dd+1p̃ ∂ni η(q̃ − p̃)χ(SpAα)ε(p̃)| ≤ ‖∂ni η‖1 (392)

In view of the above we get a decomposition f̂ = f̂1 + f̂2 = ϕf̂ + (1 − ϕ)f̂ ,
where both f1, f2 are Schwartz functions (here it is important that ϕ has bounded
derivatives), and further

A(f) = A(f1) + A(f2). (393)

By definition of the Arveson spectrum, A(f2) = 0.
Let K be a compact set such that K ∩ (∆ + SpAα) = ∅, and consider g ∈

S(Rd+1) such that ĝ �∆= 1 and ĝ �∆c
ε
= 0. Then,

E(K)A(f)E(∆) = E(K)A(f1)ĝ(H,P )E(∆)

= E(K)E
(
supp(f̂1) + supp(ĝ)

)
A(f1)ĝ(H,P )E(∆). (394)

Since K is disjoint from the closed set ∆ + SpAα, there is ε small enough such that

dist
(
K, supp(f̂1) + supp(ĝ)

)
≥ dist (K, (SpAα)ε + ∆ε) > 0, (395)

and hence E(K)E
(
supp(f̂1) + supp(ĝ)

)
= 0. Therefore, E(K)A(f)E(∆) = 0.
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Finally, let (fn)n∈N be a sequence converging to Dirac δ:

fn(t, x) = (4πn−1)
− 1

2
(d+1)

e−n(t2+|x|2)/4. (396)

For any ψ, ψ′ ∈ H,

〈ψ′, A(fn)ψ〉 =

∫
ddxdt 〈U(t, x)ψ′, AU(t, x)ψ〉 fn(t, x)→ 〈ψ′, Aψ〉 , (397)

by the strong continuity of (t, x) 7→ U(t, x), U(0, 0) = 1 and the dominated con-
vergence theorem. Hence, for ∆, K as above,

E(K)AE(∆) = w− lim
n
E(K)A(fn)E(∆) = 0. (398)

The restriction of K being compact can be lifted by considering a countable par-
tition of the complement of ∆ + SpAα into bounded sets, so that the statement
above extends to any K such that K ∩ (∆ + SpAα) = ∅. It follows that

AE(∆)H ⊂
(
E
(
Rd+1 \ (∆ + SpAα)

)
H
)⊥

= E
(
∆ + SpAα

)
H, (399)

i.e. AE(∆) = E(∆ + SpAα)AE(∆) which proves the result. �
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