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Stochastic Differential Equations
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Problem 1. Let P be a probability measure. Suppose P (A) = 3
4

and P (B) = 1
3
. Show

that
1

12
≤ P (A ∩B) ≤ 1

3
.

Solution. For any events A,B,

P (A ∩B) ≤ min{P (A), P (B)}, P (A ∩B) ≥ P (A) + P (B)− 1. (1)

The first inequality follows from the fact that A ∩B is a subset of A and of B, and from
the monotonicity of P . To show the second inequality, we write

A ∪B = A ⊔ (B\A) = A ⊔ (B\(A ∩B)).

Since P (A ∪ B) ≤ P (Ω) = 1 and P (B\C) = P (B) − P (C) for C ⊂ B, we obtain the
second inequality in (1).

Hence, by (1),

P (A ∩B) ≤ min
(
3
4
, 1
3

)
= 1

3
, P (A ∩B) ≥ 3

4
+ 1

3
− 1 = 1

12
.

Therefore,
1

12
≤ P (A ∩B) ≤ 1

3
.

Problem 2. Let Ω be an infinite set (countable or not) and let

G = {A ⊆ Ω : A is finite} ∪ {A ⊆ Ω : Ω \ A is finite}

be the family of all finite or cofinite subsets of Ω. Show that G is an algebra of sets but
not a σ-algebra.

Solution. Algebra. (i) ∅ ∈ G (finite) and Ω ∈ G (cofinite). (ii) If A ∈ G, then A is
finite or cofinite. In either case Ac is cofinite or finite, respectively; hence Ac ∈ G. (iii) If
A,B ∈ G, then:

• finite ∪ finite is finite;

• finite ∪ cofinite is cofinite, because (finite ∪ cofinite)c=finitec∩ cofinitec is finite;

• cofinite ∪ cofinite is cofinite because (A ∪ B)c = Ac ∩ Bc, an intersection of finite
sets, hence finite.
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Thus G is closed under complements and finite unions, so it is an algebra.

Not a σ-algebra. We produce a countable family (An)n≥1 ⊂ G whose union is not in G.

Case 1: Ω countably infinite. Identify Ω with N and set An = {2n} (singletons, hence
in G). Then

∞⋃
n=1

An = {2, 4, 6, . . . }

is infinite and has infinite complement {1, 3, 5, . . . }, so it is neither finite nor cofinite.
Hence it is not in G.

Case 2: Ω uncountable. Choose distinct points x1, x2, · · · ∈ Ω and let An = {xn}.
Each An is finite, so An ∈ G. But

S :=
∞⋃
n=1

An = {xn : n ≥ 1}

is countably infinite, and since Ω is uncountable, Ω \ S is infinite; thus S is neither finite
nor cofinite, so S /∈ G.

In either case, G fails to be closed under countable unions; therefore it is not a σ-algebra.

Problem 3. Let {H1, . . . , Hk} be a finite partition of Ω with P (Hi) > 0 for all i.

(a) Prove the law of total probability :

P (B) =
k∑

i=1

P (B | Hi)P (Hi).

(b) Use this result to derive the following formula

P (Hj | B) =
P (B | Hj)P (Hj)∑k
i=1 P (B | Hi)P (Hi)

.

under the assumption P (B) ̸= 0.

Solution. (a) Law of total probability. Since {H1, . . . , Hk} is a partition of Ω, the
sets B ∩Hi are pairwise disjoint and

B =
k⋃

i=1

(B ∩Hi).

By finite additivity,

P (B) =
k∑

i=1

P (B ∩Hi) =
k∑

i=1

P (B | Hi)P (Hi),
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where P (Hi) > 0 ensures P (B | Hi) is well-defined.

(b) Bayes rule with a partition. Fix j ∈ {1, . . . , k} with P (Hj) > 0. By the definition
of conditional probability,

P (Hj | B) =
P (Hj ∩B)

P (B)
=

P (B | Hj)P (Hj)

P (B)
.

Substituting the result from part (a) for P (B) gives

P (Hj | B) =
P (B | Hj)P (Hj)∑k
i=1 P (B | Hi)P (Hi)

.

Problem 4. A disease affects 1% of a population. A test for the disease has:

• sensitivity P (+ | D) = 0.99 (true positive rate). That is, a person who has the
disease will have a positive test result with probability 0.99.

• specificity P (− | D) = 0.95 (true negative rate). That is, a person who does not
have the disease will have a negative test result with probability 0.95.

If a randomly chosen person tests positive, what is P (D | +), i.e., the probability that a
positively tested person has the disease? Hint: Use Problem 3.

Solution. Let Ω = {all people in the population}. We are interested in subsets:

• D - people having the disease.

• D - people not having the disease.

• + - people positively tested.

• − - people negatively tested.

Obviously Ω = D ∪ D̄ so we can choose the partition H1 = D, H2 = D̄. We also have
(+) ∪ (−) = Ω.

We have some information about the probability P on Ω: P (D) = 0.01, hence P (D) =
0.99. From the specificity we have P (+ | D) = 1− 0.95 = 0.05. Here we used that

P (+|D̄) + P (−|D̄) =
P (+ ∩ D̄)

P (D̄)
+

P (− ∩ D̄)

P (D̄)
=

P (D̄)

P (D̄)
= 1. (2)

By Bayes’ rule,

P (D | +) =
P (+ | D)P (D)

P (+ | D)P (D) + P (+ | D)P (D)
=

0.99 · 0.01
0.99 · 0.01 + 0.05 · 0.99

=
1

6
≈ 16.7%.

Therefore, P (D | +) =
1

6
≈ 16.7%.

So sensitivity and specificity above 90% does not mean that the test is good. The reason
is that with such small proportion of population having the disease, specificity 0.95 will
generate plenty of false positive results.
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Problem 5. A box contains two coins:

• Coin A is fair: P (H | A) = 1
2
,

• Coin B is biased: P (H | B) = 3
4
.

One coin is chosen at random (so P (A) = P (B) = 1
2
) and tossed.

(a) The first toss is heads. Compute P (B | H).

(b) The coin is tossed again and the second toss is also heads. Compute P (B | HH).

(c) (Generalization) After n heads in a row, express P (B | Hn) in closed form.

Solution. (a) By Bayes’ rule,

P (B | H) =
P (H | B)P (B)

P (H | B)P (B) + P (H | A)P (A)
=

3
4
· 1
2

3
4
· 1
2
+ 1

2
· 1
2

=
3

5
= 0.6.

(b) Conditioned on the chosen coin, tosses are independent, so

P (HH | B) =
(

3
4

)2
= 9

16
, P (HH | A) =

(
1
2

)2
= 1

4
.

Thus,

P (B | HH) =
P (HH | B)P (B)

P (HH | B)P (B) + P (HH | A)P (A)
=

9
16

· 1
2

9
16

· 1
2
+ 1

4
· 1
2

=
9
32

9
32

+ 1
8

=
9

13
≈ 0.6923.

(c) After n heads in a row,

P (Hn | B) =
(

3
4

)n
, P (Hn | A) =

(
1
2

)n
.

Hence,

P (B | Hn) =
P (Hn | B)P (B)

P (Hn | B)P (B) + P (Hn | A)P (A)
=

(3
4
)n · 1

2

(3
4
)n · 1

2
+ (1

2
)n · 1

2

=
3n

3n + 2n
.

Problem 6. Let (Ω,F , P ) be a probability space.

(a) (Continuity from below) Let (An)n≥1 be an increasing sequence of events (An ⊆
An+1 for all n). Show that

P

(
∞⋃
n=1

An

)
= lim

n→∞
P (An).
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(b) (Continuity from above) Let (Bn)n≥1 be a decreasing sequence of events (Bn+1 ⊆
Bn for all n). Show that

P

(
∞⋂
n=1

Bn

)
= lim

n→∞
P (Bn).

Solution. (a) Define Cn := An \ An−1 (with A0 = ∅). Then Cn ∩ Cm = ∅ for n ̸= m
and

⋃∞
n=1 Cn =

⋃∞
n=1An. Moreover An =

⋃n
k=1Ck, hence

P (An) =
n∑

k=1

P (Ck).

Taking n → ∞ gives, by σ-additivity,

lim
n→∞

P (An) =
∞∑
k=1

P (Ck) = P

(
∞⋃
n=1

Cn

)
= P

(
∞⋃
n=1

An

)
.

(b) Let Dn := B1 \Bn. Then (Dn) is increasing, and
∞⋃
n=1

Dn = B1 \
∞⋂
n=1

Bn.

By part (a),

lim
n→∞

P (Dn) = P

(
∞⋃
n=1

Dn

)
= P (B1)− P

(
∞⋂
n=1

Bn

)
.

But P (Dn) = P (B1)− P (Bn), hence

lim
n→∞

P (Bn) = P

(
∞⋂
n=1

Bn

)
.

Problem 7. Let (Ω,F , P ) be a probability space and (An)n≥1 a sequence of events. Recall
the limsup (“infinitely often”) event

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak = {ω : ω ∈ An for infinitely many n}.

Prove:

(i) If
∑∞

n=1 P (An) < ∞, then

P

(
lim sup
n→∞

An

)
= 0.

(ii) If the events (An) are independent and
∑∞

n=1 P (An) = ∞, then

P

(
lim sup
n→∞

An

)
= 1.
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Hint for (ii): Use independence to write P
(⋂m

k=nA
c
k

)
=
∏m

k=n(1 − P (Ak)) and the in-
equality 1− x ≤ e−x for x ∈ [0, 1].

Solution. (i) First Borel–Cantelli. Set Bn :=
⋃∞

k=nAk. Then (Bn)n∈N is a decreasing
sequence of events and lim supn→∞ An =

⋂∞
n=1Bn. By subadditivity,

P (Bn) ≤
∞∑
k=n

P (Ak).

Since
∑∞

k=1 P (Ak) < ∞, the tail sums
∑∞

k=n P (Ak) → 0 as n → ∞. By continuity of
probability from above and previous exercise

P

(
lim sup
n→∞

An

)
= P

(
∞⋂
n=1

Bn

)
= lim

n→∞
P (Bn) ≤ lim

n→∞

∞∑
k=n

P (Ak) = 0.

(ii) Second Borel–Cantelli. Let Cn :=
⋂∞

k=nA
c
k be the event that no Ak occurs for

k ≥ n. Then(
lim sup
n→∞

An

)c

=
∞⋃
n=1

Cn, hence P

(
lim sup
n→∞

An

)
= 1− lim

n→∞
P (Cn),

using that (Cn) is increasing as less sets get intersected when n increases.

Since independence of (Ak) implies independence of (Ac
k), for each m > n,

P

(
m⋂

k=n

Ac
k

)
=

m∏
k=n

(1− P (Ak)) ≤ exp

(
−

m∑
k=n

P (Ak)

)
,

since 1− x ≤ e−x for x ∈ [0, 1]. Now we write

P (Cn) = lim
m→∞

P

(
m⋂

k=n

Ac
k

)
≤ exp

(
−

∞∑
k=n

P (Ak)

)
,

where, in the first step, we used the previous exercise and

Cn =
∞⋂
k=n

Ac
k =

∞⋂
m=n

m⋂
k=n

Ac
k =

∞⋂
m=n

Dn,m, (3)

for a decreasing (in m) family Dn,m.

If
∑∞

k=1 P (Ak) = ∞, then the tail sums
∑∞

k=n P (Ak) → ∞, so P (Cn) → 0 as n → ∞.
Therefore,

P

(
lim sup
n→∞

An

)
= 1− lim

n→∞
P (Cn) = 1.

To be discussed in class: 10.10.2025
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