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Stochastic Differential Equations
Homework Sheet 1 - solutions

Problem 1. Let P be a probability measure. Suppose P(A) = 2 and P(B) = 3. Show
that

1 1
— < P(ANnB) < -.
12 — (AnB) < 3
Solution. For any events A, B,
P(ANB) <min{P(A),P(B)}, P(ANB)> P(A)+ P(B) - 1. (1)

The first inequality follows from the fact that A N B is a subset of A and of B, and from
the monotonicity of P. To show the second inequality, we write

AUB =AU (B\A) =AU (B\(ANB)).

Since P(AU B) < P(2) = 1 and P(B\C) = P(B) — P(C) for C C B, we obtain the
second inequality in (1).

Hence, by (1),

P(ANB)<min($,1) =1 PANB)>3+
Therefore,
S
Problem 2. Let 2 be an infinite set (countable or not) and let
G ={ACQ: Aisfinite} U {ACQ: Q\ A is finite}

be the family of all finite or cofinite subsets of 2. Show that G is an algebra of sets but
not a o-algebra.

Solution. Algebra. (i) @ € G (finite) and Q2 € G (cofinite). (ii) If A € G, then A is
finite or cofinite. In either case A° is cofinite or finite, respectively; hence A° € G. (iii) If
A, B € G, then:

e finite U finite is finite;
e finite U cofinite is cofinite, because (finite U cofinite)°=finite°N cofinite® is finite;

e cofinite U cofinite is cofinite because (A U B)® = A°N B¢, an intersection of finite
sets, hence finite.



Thus G is closed under complements and finite unions, so it is an algebra.

Not a o-algebra. We produce a countable family (A,),>1 C G whose union is not in G.

Case 1: 2 countably infinite. Identify Q2 with N and set A,, = {2n} (singletons, hence
in G). Then

A, ={2.456,..}

n=1
is infinite and has infinite complement {1,3,5,...}, so it is neither finite nor cofinite.
Hence it is not in G.

Case 2: (2 uncountable. Choose distinct points 1, zq,--- € Q and let A, = {x,}.
Each A, is finite, so A,, € G. But

S::UAn:{xn: n>1}
n=1

is countably infinite, and since 2 is uncountable, Q \ S is infinite; thus S is neither finite
nor cofinite, so S ¢ G.

In either case, G fails to be closed under countable unions; therefore it is not a o-algebra.

Problem 3. Let {H,..., Hy} be a finite partition of 2 with P(H;) > 0 for all .

(a) Prove the law of total probability:

P(B) = Y P(B | H,) P(H).

i=1
(b) Use this result to derive the following formula

P(B | Hj) P(H;)

P(Hj | B) = 2521 P(B | H;) P(H;)

under the assumption P(B) # 0.

Solution. (a) Law of total probability. Since {H;,..., H;} is a partition of €, the
sets B N H; are pairwise disjoint and

By finite additivity,



where P(H;) > 0 ensures P(B | H;) is well-defined.

(b) Bayes rule with a partition. Fix j € {1,...,k} with P(H;) > 0. By the definition
of conditional probability,

_ P(H;NB) _ P(B| H;) P(H))
P ="pE = PB)
Substituting the result from part (a) for P(B) gives
P(B | H;) P(H;
2_i- P(B | Hi) P(H)

Problem 4. A disease affects 1% of a population. A test for the disease has:

e sensitivity P(+ | D) = 0.99 (true positive rate). That is, a person who has the
disease will have a positive test result with probability 0.99.

e specificity P(— | D) = 0.95 (true negative rate). That is, a person who does not
have the disease will have a negative test result with probability 0.95.

If a randomly chosen person tests positive, what is P(D | +), i.e., the probability that a
positively tested person has the disease? Hint: Use Problem 3.

Solution. Let Q = {all people in the population}. We are interested in subsets:

e D - people having the disease.
e D - people not having the disease.
e + - people positively tested.

e — - people negatively tested.

Obviously 2 = D U D so we can choose the partition H, = D, Hy = D. We also have
(HU(=) =%

We have some information about the probability P on : P(D) = 0.01, hence P(D) =
0.99. From the specificity we have P(+ | D) =1 — 0.95 = 0.05. Here we used that
P(+NnD) P(—nD) P(D)

P(B) T PD) PD) " @)

P(+|D) + P(~|D) =

By Bayes’ rule,

P(D|+) = P(+|D)P(D) 0.99 - 0.01 -

1
I = -~ 16.7%.
P(+ | D)P(D) + P(+ | D)P(D) 0.99-0.01+0.05-0.99 6 °

1
Therefore, P(D | +) = i 16.7%.

So sensitivity and specificity above 90% does not mean that the test is good. The reason
is that with such small proportion of population having the disease, specificity 0.95 will
generate plenty of false positive results.



Problem 5. A box contains two coins:

e Coin A is fair: P(H | A) =

1
27
e Coin B is biased: P(H | B) = 3.

One coin is chosen at random (so P(A) = P(B) = 3) and tossed.

(a) The first toss is heads. Compute P(B | H).

(b) The coin is tossed again and the second toss is also heads. Compute P(B | HH).
(c) (Generalization) After n heads in a row, express P(B | H") in closed form.

Solution. (a) By Bayes’ rule,

P(H | B)P(B) 13 3
P(B|H) = = 4 2 ==-=0.6.
P(H|B)P(B)+P(H|APA) 3.141.1 5
(b) Conditioned on the chosen coin, tosses are independent, so
2 2
PHH|B) = (3) =%, PHH|A)=(1) =1
Thus,
P(HH | B)P(B) 2.1 2 9
P(B|HH) = = 55— 2 = — ~0.6923.
P(HH | B)P(B)+ P(HH | A)P(A) -1+ 3-5 &++ 13

(c) After n heads in a row,

par By =(3), pur A= (1)

Hence,

. P(H" | B)P(B) e
PO = B BYPB) + PU [ APA) ~ (G-

Problem 6. Let (€2, F, P) be a probability space.

(a) (Continuity from below) Let (A4,),>1 be an increasing sequence of events (A, C
A, 41 for all n). Show that

P(G An> = lim P(A,).

n—oo



(b) (Continuity from above) Let (B,,),>1 be a decreasing sequence of events (B, 1 C
B,, for all n). Show that

P<ﬂ Bn> — lim P(B,).
n—oo
n=1

Solution. (a) Define C,, := A, \ A,—1 (with Ay = @). Then C, N C,, = & for n # m
and | J>7, C, = U2, A,. Moreover A, = J;_, C, hence

ey
k=1

Taking n — oo gives, by o-additivity,

JLIEOP(An):iP Cy) = (UC) (O An>.

n=1

(b) Let D,, := By \ B,,. Then (D,,) is increasing, and

U D =Bi\[)B..
n=1

() -no-(fe)

But P(D,) = P(B;) — P(B,), hence

JYizs, P(B (ﬂB>

Problem 7. Let (2, F, P) be a probability space and (A4,),>1 a sequence of events. Recall
the limsup (“infinitely often”) event

By part (a),

limsup A, = m U A, = {w: w € A, for infinitely many n}.

=00 n=1k=n

Prove:

(i) If >>>°, P(A,) < oo, then
P (lim sup An) = 0.

n—oo

(ii) If the events (A,) are independent and Y>> | P(A,) = oo, then

P <lim sup An) =1
n—oo

5



Hint for (ii): Use independence to write P((;-, A¢) = [Tj-,(1 — P(Ax)) and the in-
equality 1 —x < e for z € [0,1].

Solution. (i) First Borel-Cantelli. Set B, := J;_,, As. Then (B, ),en is a decreasing
sequence of events and limsup,, ,. A, =\ —, B,. By subadditivity,

B, < iP(Ak).

Since Y2, P(Ay) < oo, the tail sums Y - P(A;) — 0 as n — co. By continuity of
probability from above and previous exercise

P(limsupAn) = P<| |Bn> = lim P(B,) < lim g P(A;) = 0.
n—o00 n—oo
n=1 k=n

n—oo

11 econ orel-Cantelli. Let C,, := _ e the event that no A; occurs for
(i) S dB 1-C 1li. Let C ﬂzin Af be th h A f
k > n. Then

n—o00 n—o00 n—oo

(lim sup An) = U C,, hence P(hm sup An) =1— lim P(C,),

using that (C,,) is increasing as less sets get intersected when n increases.

Since independence of (Aj) implies independence of (Af), for each m > n,

(ﬂ Ac) — ﬁ (1 —-P(Ag)) < exp(—iP(Ak)> ;

since 1 —x < e™* for z € [0, 1]. Now we write

P(C,) = n{gn@@P(ﬂ AC) < em(—ip(z‘lk)),

n

where, in the first step, we used the previous exercise and
k=n m=n k=n

for a decreasing (in m) family D,, p,.

If 2, P(Ax) = oo, then the tail sums >~ P(A;) — oo, so P(C,) — 0 as n — 0.
Therefore,

n—oo n—oo

P(limsup An) =1- lim P(C,) =1.

To be discussed in class: 10.10.2025



