

Stochastic Differential Equations

Homework Sheet 11

Problem 1. Recall the following definition:

Definition 0.1. Let $\mathcal{V}_H(S, T)$ be the class of functions

$$(t, \omega) \mapsto f(t, \omega) : \mathbb{R}_+ \times \Omega \rightarrow \mathbb{R} \quad (1)$$

such that

- (i) f is $\mathcal{B}(\mathbb{R}_+) \times \mathcal{F}$ -measurable.
- (ii') There exists a filtration $\{\mathcal{H}_t\}_{t \in \mathbb{R}_+}$ s.t. $(B_t, \mathcal{H}_t)_{t \in \mathbb{R}_+}$ is a martingale and f is $\{\mathcal{H}_t\}_{t \in \mathbb{R}_+}$ -adapted.
- (iii) $E \left[\int_S^T f(t, \cdot)^2 dt \right] < \infty$.

In the context of this definition a function $\varphi \in \mathcal{V}_H(S, T)$ is called elementary if it has the form

$$\varphi(t, \omega) = \sum_{j \geq 0} e_j(\omega) \chi_{[t_j, t_{j+1})}(t), \quad (2)$$

where e_j is \mathcal{H}_{t_j} -measurable. Prove the following generalization of the Itô lemma:

Lemma 0.2. If $\varphi \in \mathcal{V}_H(S, T)$ is elementary, then

$$E \left[\left(\int_S^T \varphi(t, \cdot) dB_t(\cdot) \right)^2 \right] = E \left[\int_S^T \varphi(t, \cdot)^2 dt \right]. \quad (3)$$

Hint: You can use without proof, that for any filtration $\{\mathcal{H}_t\}_{t \in \mathbb{R}_+}$, for which $(B_t, \mathcal{H}_t)_{t \in \mathbb{R}_+}$ is a continuous martingale, $(B_t^2 - t, \mathcal{H}_t)_{t \in \mathbb{R}_+}$ is also a martingale (cf. Baldi "Stochastic calculus", Theorem 5.16, Example 5.4).

Problem 2. Let $(\Omega, \{\mathcal{H}_t\}_{t \in \mathcal{T}}, \mathcal{F}, P)$ be a filtered probability space. Let $\tau : \Omega \rightarrow \overline{\mathcal{T}}$ be a stopping time, i.e. $\{\tau \leq t\} \subset \mathcal{H}_t$ for any $t \in \mathcal{T}$.

- (a) Show that for any $s \in \mathcal{T}$ also $\tau(\cdot) \wedge s := \min(\tau(\cdot), s)$ is a stopping time.
- (b) Show that the stopping time $\tau \wedge s$ is bounded by s . That is, $P(\tau \wedge s \leq s) = 1$.

Problem 3. Let $X \in L^\infty(\Omega, \mathcal{F}, P)$ and $Y \in L^1(\Omega, \mathcal{F}, P)$. Show that

$$E[X \cdot Y | \mathcal{H}] = X \cdot E[Y | \mathcal{H}], \quad (4)$$

if X is \mathcal{H} -measurable. (Recall that in the lecture we covered $X \in L^\infty(\Omega, \mathcal{F}, P), Y \in L^2(\Omega, \mathcal{F}, P)$ and $X, Y \in L^2(\Omega, \mathcal{F}, P)$.)

Problem 4. Let $f \in \mathcal{V}(0, T)$ be such that

$$\lim_{s \rightarrow t} E[|f(s, \cdot) - f(t, \cdot)|^2] = 0 \quad (5)$$

for $s, t \in [0, T]$. Show that the following limit exists in $L^2(P)$

$$\int_0^T f(t, \cdot) dB_t = \lim_{n \rightarrow \infty} \sum_j f(t_j, \cdot) (\Delta B_j). \quad (6)$$

Check that $f(t, \omega) = g(B_t(\omega))$ for any bounded, continuous function $g : \mathbb{R} \rightarrow \mathbb{R}$ satisfies (5).

Remark 0.3. Since $f \in \mathcal{V}(0, T)$ we know already that the l.h.s. of (6) exists as an L^2 -limit of elementary functions. But we do not know yet if the particular choice on the r.h.s. of (6) does the job.

Note that for $f(t, \omega) = B_t(\omega)^2$ we have verified (6) already in HS8, Problem 5.

To be discussed in class: 16.01.2026