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Problem 1. Let {Bt}t∈R+ be one-dimensional Brownian motion. Show that the process
Yt = eBt satisfies

dYt =
1

2
Ytdt+ YtdBt. (1)

Solution. Recall the Itô formula in the simplest form:

dg(Bt) = g′(Bt)dBt +
1

2
g′′(Bt)dt. (2)

We compute

dYt = d(eBt) = eBtdBt +
1

2
eBtdt =

1

2
Ytdt+ YtdBt. (3)

Problem 2. For fixed a, b ∈ R consider the following 1-dimensional equation

dYt =
b− Yt

1− t
dt+ dBt, 0 ≤ t < 1, Y0 = a. (4)

Verify that

Yt = a(1− t) + bt+ (1− t)

∫ t

0

dBs

1− s
, 0 ≤ t < 1 (5)

solves the equation and prove that limt→1 Yt = b a.s.

Hint 1: Use the ‘more general case’ of the Itô formula from the lecture.

Hint 2: Integration by parts may be useful for proving limt→1 Yt = b.

Remark: The process {Yt}t∈[0,1) is called the Brownian bridge.

Solution. Recall the Itô formula

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2, (6)

with dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt. Choose

Xt =

∫ t

0

dBs

1− s
, (7)

1



that is, equivalently,

dXt =
1

1− t
dBt. (8)

Then we have, by (9)

Yt = a(1− t) + bt+ (1− t)

∫ t

0

dBs

1− s
= a(1− t) + bt+ (1− t)Xt =: g(t,Xt). (9)

By the Itô formula, we have

dYt=(−a+ b−Xt)dt+ (1− t)dXt = (−a+ b−Xt)dt+ dBt

=
b− Yt

1− t
dt+ dBt, (10)

where in the second step we used (8) and in the third step (9).

Let us now prove that limt→1 Yt = b. It is clear from (9), that it suffices to show that

lim
t→1

(1− t)

∫ t

0

dBs

1− s
= 0. (11)

For this purpose, we apply integration by parts

(1− t)

∫ t

0

dBs

1− s
= Bt − (1− t)

∫ t

0

Bsd(
1

1− s
). (12)

We choose a new variable u := 1−t
1−s

in the integral. Then

(12)=Bt −
∫ 1

1−t

B1− 1
u
(1−t)du. (13)

Bs above and in the following stand for Bs(ω) for some fixed ω, since we want to obtain
the limit almost surely. Almost surely means here, that we restrict attention to ω for
which s 7→ Bs(ω) is continuous. Such ω form a subset of Ω of measure one. Furthermore,
we extend s 7→ Bs(ω) to negative s by zero and denote the resulting function by R ∋ s 7→
B̃s(ω). (It is continuous since B0 = 0). Given all this, we can write

Bt −
∫ 1

1−t

B1− 1
u
(1−t)du = Bt −

∫ 1

0

B̃1− 1
u
(1−t)du, (14)

since the integrand vanishes for u ∈ [0, 1− t] as it corresponds to negative s. Now we get

lim
t→1

∫ 1

0

B̃1− 1
u
(1−t)du = B1 (15)

by continuity of R ∋ s 7→ B̃s(ω) and dominated convergence.
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Problem 3. Show that there is a solution {Xt}t∈R+ of the one-dimensional stochastic
differential equation

dXt = ln(1 +X2
t )dt+XtdBt, X0 = a ∈ R. (16)

Does the result still hold if we replace XtdBt with χ{Xt>0}XtdBt above?

Hint: Verify the assumptions of the ‘existence and uniqueness theorem’ from the lecture.

Solution. We recall the theorem in a slightly shortened form:

Theorem 0.1. Let (Ω,F , P ) be the probability space of the d-dimensional Brownian
motion. Let T > 0 and b( · , · ) : [0, T ] × Rn → Rn, σ( · , · ) : [0, T ] × Rn → Rn×d be
measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T ] (17)

for some constant C and s.t. the Lipschitz property property holds

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, x, y ∈ Rd, t ∈ [0, T ] (18)

for some constant D. Let Z be a random variable which is independent of the σ-algebra
F (d)

∞ generated by Bs( · ), s ≥ 0, and s.t. E[|Z|2] < ∞. Then the stochastic differential
equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ], X0 = Z, (19)

has a unique t-continuous solution {Xt}t∈[0,T ].

We have b(t, x) = ln(1 + x2) and σ(t, x) = x. As measurability is obvious, it suffices to
check (17) and (18). Regarding (17), we first note that 1 + u ≤ eu (obvious by drawing
graphs) hence, for u > 0,

ln(u) ≤ ln(1 + u) ≤ u. (20)

Thus, for u = (1 + |x|2)1/2,

ln(1 + |x|2) ≤ 2(1 + |x|2)1/2 ≤ 2(1 + |x|). (21)

Consequently,

|b(t, x)|+ |σ(t, x)|
(1 + |x|)

≤ ln(1 + x2) + |x|
(1 + |x|)

≤ 2 + 3|x|
1 + |x|

≤ 3. (22)

Regarding (18), obviously,

|σ(t, x)− σ(t, y)| ≤ |x− y|. (23)
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Furthermore, setting z := x− y, we have

|b(t, x)− b(t, y)|= | ln(1 + (y + z)2)− ln(1 + y2)| =
∣∣ ∫ 1

0

d

du
ln(1 + (y + uz)2) du

∣∣
=
∣∣ ∫ 1

0

2(y + uz)z

1 + (y + uz)2
du

∣∣ ≤ 2
√
2|z|. (24)

Here in the last step we used the Cauchy-Schwarz inequality for series as follows:

|y + uz| ≤ 1 + |y + uz| = 1 · 1 + 1 · |y + uz| ≤ (12 + 12)1/2(12 + |y + uz|2)1/2. (25)

Regarding the case of σ(t, x) = χ{x>0}x the only part of the proof that has to be recon-
sidered is (23). Clearly, for x > 0 and y > 0 (23) holds as before. For x ≤ 0, y ≤ 0 (23)
holds trivially. It suffices to cover the mixed case x > 0, y ≤ 0:

|σ(t, x)− σ(t, y)| = |χ{x>0}x− χ{y>0}y| = |χ{x>0}x| = x ≤ x− y ≤ |x− y|, (26)

where in the next-to-the-last step we made use of the fact that y is non-positive.

Side remark: Since x 7→ χ{x>0} is discontinuous, Lipschitz continuity seems to be in
danger. However, by drawing a graph, it is clear that x 7→ χ{x>0}x is continuous. This is
what saves the estimate.

Problem 4. Solve the following equation:

dYt = µYtdt+ σdBt, Y0 = 0, (27)

where µ, σ are real coefficients. The solution is called the Ornstein-Uhlenbeck process
with Y0 = 0.

Solution. We pick B̃ ∈ C1(R+) and consider an ordinary differential equation of the
same form as (27):

dỸt

dt
− µ̃Ỹt = σ̃

dB̃t

dt
. (28)

A strategy to solve such inhomogeneous linear ODE is the following:

(i) First, solve the corresponding homogeneous equation:

dỸt

dt
− µ̃Ỹt = 0. (29)

Clearly, this is solved by Ỹt = Ceµ̃t.

(ii) Next, we look for a solution of the inhomogeneous equation in the form Ỹt = Cteµ̃t,
where we let the constant C depend on time (this is called the ‘method of variation
of coefficients’). By substituting Ỹt = Cteµ̃t to (28), we get

eµ̃t
dC̃t

dt
= σ̃

dB̃t

dt
⇒ Ct = σ̃

∫ t

0

e−µ̃sdB̃s

ds
ds (30)

Thus the solution of the ODE (28) has the form

Ỹt = eµ̃tσ̃
∫ t

0

e−µ̃sdB̃s

ds
ds. (31)

4



Now we come back to the SDE (27). Formula (31) suggests that:

Yt = eµ̃tσ̃
∫ t

0

e−µ̃sdBs, (32)

where the integral is now interpreted as an Itô integral. We restate the Itô formula for
Yt = g(t,Xt)

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2, (33)

with dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt. Choose

Xt= σ̃

∫ t

0

e−µ̃sdBs i.e. dXt = σ̃e−µ̃tdBt. (34)

Yt= g(t,Xt) := eµ̃tXt. (35)

By (33),

dYt = µ̃eµ̃tXt + eµ̃tσ̃(e−µ̃tdBt) = µ̃Yt + σ̃dBt. (36)

Thus the equation is satisfied for µ = µ̃ and σ = σ̃.

Side remark: The Ornstein-Uhlenbeck process is the Brownian motion with friction. It
corresponds to the Newton equation

m
dv

dt
= −γv + σ′dBt

dt
(37)

describing velocity v of a fluid particle of mass m moving under a velocity dependent
friction force −γv and experiencing random collisions with other particles, modeled by
the white noise term σ′ dBt

dt
.

Problem 5. Let (B(1), B(2)) be two-dimensional Brownian motion. We define the complex
Brownian motion as follows

Bt = B
(1)
t + iB

(2)
t , (38)

where i is the imaginary unit. Let F (z) = F (x(1) + ix(2)) = u(x(1), x(2)) + iv(x(1), x(2)) be
an analytic function, i.e. F satisfies the Cauchy-Riemann equations

∂u(x(1), x(2))

∂x(1)
=

∂v(x(1), x(2))

∂x(2)
,

∂u(x(1), x(2))

∂x(2)
= −∂v(x(1), x(2))

∂x(1)
, z = x(1) + ix(2), (39)

and we define Zt = F (Bt). Prove that

dZt = F ′(Bt)dBt. (40)

Use this to solve the complex stochastic differential equation

dZt = αZtdBt, Z0 = 1. (41)
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Solution. We recall the Itô formula for multi-dimensional Brownian motion from HS12
and Øksendal, Subsection 4.2: Let Bt = (B

(1)
t , B

(2)
t ) denote the 2-dimensional Brownian

motion. Consider the process:

dXt = utdt+ vtdBt, (42)

where

dXt =

[
dX

(1)
t

dX
(2)
t

]
, ut =

[
u
(1)
t

u
(2)
t

]
, vt =

[
v
(1,1)
t , v

(1,2)
t

v
(2,1)
t , v

(2,2)
t

]
, dBt =

[
dB

(1)
t

dB
(2)
t

]
. (43)

Let g be a C2 map from R+ × R2 to R2:

g(t, x) =

[
g(1)(t, x)
g(2)(t, x)

]
. (44)

Then the process Yt = g(t,Xt) is given by

dY
(k)
t =

∂g(k)

∂t
(t,Xt)dt+

∑
i

∂g(k)

∂x(i)
(t,Xt)dX

(i)
t +

1

2

∑
i,j

∂2g(k)

∂x(i)∂x(j)
(t,X)dX

(i)
t dX

(j)
t , (45)

where k ∈ {1, 2}, i, j ∈ {1, 2} and dB
(i)
t dB

(j)
t = δi,jdt, dB

(i)
t dt = dtdB

(i)
t = 0.

We denote x = (x(1), x(2)) and z = x(1) + ix(2). We choose Xt = Bt and

g(t, x) =

[
u(x)
v(x)

]
, (46)

which is a representation of the complex valued function F as a pair consisting of its real
(u) and imaginary (v) part. As this function is t-independent, the first term on the r.h.s.
of (45) is zero. The second term has the form,[∑

i
∂g(1)

∂x(i) (t,Xt)dX
(i)
t∑

i
∂g(2)

∂x(i) (t,Xt)dX
(i)
t

]
=

[
∂u(x)

∂x(1) ,
∂u(x)

∂x(2)

∂v(x)

∂x(1) ,
∂v(x)

∂x(2)

] [
dB(1)

dB(2)

]
=

[
∂u(x)

∂x(1) ,
∂u(x)

∂x(2)

−∂u(x)

∂x(2) ,
∂u(x)

∂x(1)

] [
dB(1)

dB(2)

]
, (47)

where, in the second step, we made use of the Cauchy-Riemann equations. On the other
hand, the r.h.s. of (40) gives

F ′(Bt)dBt=
1

2

(
∂

∂x(1)
− i

∂

∂x(2)

)
(u(x) + iv(x))(dB

(1)
t + idB

(2)
t )

=
1

2

(
∂u(x)

∂x(1)
+ i

∂v(x)

∂x(1)
− i

∂u(x)

∂x(2)
+

∂v(x)

∂x(2)

)
(dB

(1)
t + idB

(2)
t )

=
1

2

(
∂u(x)

∂x(1)
− i

∂u(x)

∂x(2)
− i

∂u(x)

∂x(2)
+

∂u(x)

∂x(1)

)
(dB

(1)
t + idB

(2)
t )

=

(
∂u(x)

∂x(1)
− i

∂u(x)

∂x(2)

)
(dB

(1)
t + idB

(2)
t )

=
∂u(x)

∂x(1)
dB

(1)
t +

∂u(x)

∂x(2)
dB

(2)
t + i

(
∂u(x)

∂x(1)
dB

(2)
t − ∂u(x)

∂x(2)
dB

(1)
t

)
. (48)
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Rewriting the real and imaginary parts of this expression as components of a column
vector we obtain (47). We still have to show that the last term on the r.h.s. of (45)
vanishes. By the Cauchy-Riemann equations:

∂2g(1)

∂x(1)∂x(1)
=

∂2u

∂x(1)∂x(1)
=

∂2v

∂x(1)∂x(2)
= − ∂2u

∂x(2)∂x(2)
(49)

Consequently,

∑
i,j

∂2g(1)

∂x(i)∂x(j)
(t,X)dX

(i)
t dX

(j)
t

=
∂2u

∂x(1)∂x(1)
(dB

(1)
t )2 + 2

∂2u

∂x(1)∂x(2)
dB

(1)
t dB

(2)
t +

∂2u

∂x(2)∂x(2)
(dB

(2)
t )2 = 0, (50)

where in the last step we used that (dB(1))2 = (dB(2))2 = dt, dB(1)dB(2) = 0 and (49).
The case of g(2) is treated analogously.

Regarding the last question, it is clear from (40) that the solution of (41) is Zt = eαBt .

To be discussed in class: 30.01.2026
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