

Stochastic Differential Equations

Homework Sheet 13

Problem 1. Let $\{B_t\}_{t \in \mathbb{R}_+}$ be one-dimensional Brownian motion. Show that the process $Y_t = e^{B_t}$ satisfies

$$dY_t = \frac{1}{2}Y_t dt + Y_t dB_t. \quad (1)$$

Solution. Recall the Itô formula in the simplest form:

$$dg(B_t) = g'(B_t)dB_t + \frac{1}{2}g''(B_t)dt. \quad (2)$$

We compute

$$dY_t = d(e^{B_t}) = e^{B_t} dB_t + \frac{1}{2}e^{B_t} dt = \frac{1}{2}Y_t dt + Y_t dB_t. \quad (3)$$

Problem 2. For fixed $a, b \in \mathbb{R}$ consider the following 1-dimensional equation

$$dY_t = \frac{b - Y_t}{1 - t} dt + dB_t, \quad 0 \leq t < 1, Y_0 = a. \quad (4)$$

Verify that

$$Y_t = a(1 - t) + bt + (1 - t) \int_0^t \frac{dB_s}{1 - s}, \quad 0 \leq t < 1 \quad (5)$$

solves the equation and prove that $\lim_{t \rightarrow 1} Y_t = b$ a.s.

Hint 1: Use the ‘more general case’ of the Itô formula from the lecture.

Hint 2: Integration by parts may be useful for proving $\lim_{t \rightarrow 1} Y_t = b$.

Remark: The process $\{Y_t\}_{t \in [0,1]}$ is called the Brownian bridge.

Solution. Recall the Itô formula

$$dY_t = \frac{\partial g}{\partial t}(t, X_t)dt + \frac{\partial g}{\partial x}(t, X_t)dX_t + \frac{1}{2} \frac{\partial^2 g}{\partial x^2}(t, X_t)(dX_t)^2, \quad (6)$$

with $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0$, $dB_t \cdot dB_t = dt$. Choose

$$X_t = \int_0^t \frac{dB_s}{1 - s}, \quad (7)$$

that is, equivalently,

$$dX_t = \frac{1}{1-t} dB_t. \quad (8)$$

Then we have, by (9)

$$Y_t = a(1-t) + bt + (1-t) \int_0^t \frac{dB_s}{1-s} = a(1-t) + bt + (1-t)X_t =: g(t, X_t). \quad (9)$$

By the Itô formula, we have

$$\begin{aligned} dY_t &= (-a + b - X_t)dt + (1-t)dX_t = (-a + b - X_t)dt + dB_t \\ &= \frac{b - Y_t}{1-t} dt + dB_t, \end{aligned} \quad (10)$$

where in the second step we used (8) and in the third step (9).

Let us now prove that $\lim_{t \rightarrow 1} Y_t = b$. It is clear from (9), that it suffices to show that

$$\lim_{t \rightarrow 1} (1-t) \int_0^t \frac{dB_s}{1-s} = 0. \quad (11)$$

For this purpose, we apply integration by parts

$$(1-t) \int_0^t \frac{dB_s}{1-s} = B_t - (1-t) \int_0^t B_s d\left(\frac{1}{1-s}\right). \quad (12)$$

We choose a new variable $u := \frac{1-t}{1-s}$ in the integral. Then

$$(12) = B_t - \int_{1-t}^1 B_{1-\frac{1}{u}(1-t)} du. \quad (13)$$

B_s above and in the following stand for $B_s(\omega)$ for some fixed ω , since we want to obtain the limit almost surely. Almost surely means here, that we restrict attention to ω for which $s \mapsto B_s(\omega)$ is continuous. Such ω form a subset of Ω of measure one. Furthermore, we extend $s \mapsto B_s(\omega)$ to negative s by zero and denote the resulting function by $\mathbb{R} \ni s \mapsto \tilde{B}_s(\omega)$. (It is continuous since $B_0 = 0$). Given all this, we can write

$$B_t - \int_{1-t}^1 B_{1-\frac{1}{u}(1-t)} du = B_t - \int_0^1 \tilde{B}_{1-\frac{1}{u}(1-t)} du, \quad (14)$$

since the integrand vanishes for $u \in [0, 1-t]$ as it corresponds to negative s . Now we get

$$\lim_{t \rightarrow 1} \int_0^1 \tilde{B}_{1-\frac{1}{u}(1-t)} du = B_1 \quad (15)$$

by continuity of $\mathbb{R} \ni s \mapsto \tilde{B}_s(\omega)$ and dominated convergence.

Problem 3. Show that there is a solution $\{X_t\}_{t \in \mathbb{R}_+}$ of the one-dimensional stochastic differential equation

$$dX_t = \ln(1 + X_t^2)dt + X_t dB_t, \quad X_0 = a \in \mathbb{R}. \quad (16)$$

Does the result still hold if we replace $X_t dB_t$ with $\chi_{\{X_t > 0\}} X_t dB_t$ above?

Hint: Verify the assumptions of the ‘existence and uniqueness theorem’ from the lecture.

Solution. We recall the theorem in a slightly shortened form:

Theorem 0.1. *Let (Ω, \mathcal{F}, P) be the probability space of the d -dimensional Brownian motion. Let $T > 0$ and $b(\cdot, \cdot) : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n$, $\sigma(\cdot, \cdot) : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^{n \times d}$ be measurable functions satisfying*

$$|b(t, x)| + |\sigma(t, x)| \leq C(1 + |x|), \quad x \in \mathbb{R}^n, t \in [0, T] \quad (17)$$

for some constant C and s.t. the Lipschitz property property holds

$$|b(t, x) - b(t, y)| + |\sigma(t, x) - \sigma(t, y)| \leq D|x - y|, \quad x, y \in \mathbb{R}^d, t \in [0, T] \quad (18)$$

for some constant D . Let Z be a random variable which is independent of the σ -algebra $\mathcal{F}_\infty^{(d)}$ generated by $B_s(\cdot)$, $s \geq 0$, and s.t. $E[|Z|^2] < \infty$. Then the stochastic differential equation

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \quad t \in [0, T], \quad X_0 = Z, \quad (19)$$

has a unique t -continuous solution $\{X_t\}_{t \in [0, T]}$.

We have $b(t, x) = \ln(1 + x^2)$ and $\sigma(t, x) = x$. As measurability is obvious, it suffices to check (17) and (18). Regarding (17), we first note that $1 + u \leq e^u$ (obvious by drawing graphs) hence, for $u > 0$,

$$\ln(u) \leq \ln(1 + u) \leq u. \quad (20)$$

Thus, for $u = (1 + |x|^2)^{1/2}$,

$$\ln(1 + |x|^2) \leq 2(1 + |x|^2)^{1/2} \leq 2(1 + |x|). \quad (21)$$

Consequently,

$$\frac{|b(t, x)| + |\sigma(t, x)|}{(1 + |x|)} \leq \frac{\ln(1 + x^2) + |x|}{(1 + |x|)} \leq \frac{2 + 3|x|}{1 + |x|} \leq 3. \quad (22)$$

Regarding (18), obviously,

$$|\sigma(t, x) - \sigma(t, y)| \leq |x - y|. \quad (23)$$

Furthermore, setting $z := x - y$, we have

$$\begin{aligned} |b(t, x) - b(t, y)| &= |\ln(1 + (y + z)^2) - \ln(1 + y^2)| = \left| \int_0^1 \frac{d}{du} \ln(1 + (y + uz)^2) du \right| \\ &= \left| \int_0^1 \frac{2(y + uz)z}{1 + (y + uz)^2} du \right| \leq 2\sqrt{2}|z|. \end{aligned} \quad (24)$$

Here in the last step we used the Cauchy-Schwarz inequality for series as follows:

$$|y + uz| \leq 1 + |y + uz| = 1 \cdot 1 + 1 \cdot |y + uz| \leq (1^2 + 1^2)^{1/2}(1^2 + |y + uz|^2)^{1/2}. \quad (25)$$

Regarding the case of $\sigma(t, x) = \chi_{\{x>0\}}x$ the only part of the proof that has to be reconsidered is (23). Clearly, for $x > 0$ and $y > 0$ (23) holds as before. For $x \leq 0$, $y \leq 0$ (23) holds trivially. It suffices to cover the mixed case $x > 0$, $y \leq 0$:

$$|\sigma(t, x) - \sigma(t, y)| = |\chi_{\{x>0\}}x - \chi_{\{y>0\}}y| = |\chi_{\{x>0\}}x| = x \leq x - y \leq |x - y|, \quad (26)$$

where in the next-to-the-last step we made use of the fact that y is non-positive.

Side remark: Since $x \mapsto \chi_{\{x>0\}}$ is discontinuous, Lipschitz continuity seems to be in danger. However, by drawing a graph, it is clear that $x \mapsto \chi_{\{x>0\}}x$ is continuous. This is what saves the estimate.

Problem 4. Solve the following equation:

$$dY_t = \mu Y_t dt + \sigma dB_t, \quad Y_0 = 0, \quad (27)$$

where μ , σ are real coefficients. The solution is called the *Ornstein-Uhlenbeck process* with $Y_0 = 0$.

Solution. We pick $\tilde{B} \in C^1(\mathbb{R}_+)$ and consider an ordinary differential equation of the same form as (27):

$$\frac{d\tilde{Y}_t}{dt} - \tilde{\mu}\tilde{Y}_t = \tilde{\sigma}\frac{d\tilde{B}_t}{dt}. \quad (28)$$

A strategy to solve such inhomogeneous linear ODE is the following:

(i) First, solve the corresponding homogeneous equation:

$$\frac{d\tilde{Y}_t}{dt} - \tilde{\mu}\tilde{Y}_t = 0. \quad (29)$$

Clearly, this is solved by $\tilde{Y}_t = Ce^{\tilde{\mu}t}$.

(ii) Next, we look for a solution of the inhomogeneous equation in the form $\tilde{Y}_t = C_t e^{\tilde{\mu}t}$, where we let the constant C depend on time (this is called the ‘method of variation of coefficients’). By substituting $\tilde{Y}_t = C_t e^{\tilde{\mu}t}$ to (28), we get

$$e^{\tilde{\mu}t} \frac{d\tilde{C}_t}{dt} = \tilde{\sigma} \frac{d\tilde{B}_t}{dt} \quad \Rightarrow \quad C_t = \tilde{\sigma} \int_0^t e^{-\tilde{\mu}s} \frac{d\tilde{B}_s}{ds} ds \quad (30)$$

Thus the solution of the ODE (28) has the form

$$\tilde{Y}_t = e^{\tilde{\mu}t} \tilde{\sigma} \int_0^t e^{-\tilde{\mu}s} \frac{d\tilde{B}_s}{ds} ds. \quad (31)$$

Now we come back to the SDE (27). Formula (31) suggests that:

$$Y_t = e^{\tilde{\mu}t} \tilde{\sigma} \int_0^t e^{-\tilde{\mu}s} dB_s, \quad (32)$$

where the integral is now interpreted as an Itô integral. We restate the Itô formula for $Y_t = g(t, X_t)$

$$dY_t = \frac{\partial g}{\partial t}(t, X_t) dt + \frac{\partial g}{\partial x}(t, X_t) dX_t + \frac{1}{2} \frac{\partial^2 g}{\partial x^2}(t, X_t) (dX_t)^2, \quad (33)$$

with $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0$, $dB_t \cdot dB_t = dt$. Choose

$$X_t = \tilde{\sigma} \int_0^t e^{-\tilde{\mu}s} dB_s \quad \text{i.e.} \quad dX_t = \tilde{\sigma} e^{-\tilde{\mu}t} dB_t. \quad (34)$$

$$Y_t = g(t, X_t) := e^{\tilde{\mu}t} X_t. \quad (35)$$

By (33),

$$dY_t = \tilde{\mu} e^{\tilde{\mu}t} X_t + e^{\tilde{\mu}t} \tilde{\sigma} (e^{-\tilde{\mu}t} dB_t) = \tilde{\mu} Y_t + \tilde{\sigma} dB_t. \quad (36)$$

Thus the equation is satisfied for $\mu = \tilde{\mu}$ and $\sigma = \tilde{\sigma}$.

Side remark: The Ornstein-Uhlenbeck process is the Brownian motion with friction. It corresponds to the Newton equation

$$m \frac{dv}{dt} = -\gamma v + \sigma' \frac{dB_t}{dt} \quad (37)$$

describing velocity v of a fluid particle of mass m moving under a velocity dependent friction force $-\gamma v$ and experiencing random collisions with other particles, modeled by the white noise term $\sigma' \frac{dB_t}{dt}$.

Problem 5. Let $(B^{(1)}, B^{(2)})$ be two-dimensional Brownian motion. We define the complex Brownian motion as follows

$$\mathbb{B}_t = B_t^{(1)} + i B_t^{(2)}, \quad (38)$$

where i is the imaginary unit. Let $F(z) = F(x^{(1)} + ix^{(2)}) = u(x^{(1)}, x^{(2)}) + iv(x^{(1)}, x^{(2)})$ be an analytic function, i.e. F satisfies the Cauchy-Riemann equations

$$\frac{\partial u(x^{(1)}, x^{(2)})}{\partial x^{(1)}} = \frac{\partial v(x^{(1)}, x^{(2)})}{\partial x^{(2)}}, \quad \frac{\partial u(x^{(1)}, x^{(2)})}{\partial x^{(2)}} = -\frac{\partial v(x^{(1)}, x^{(2)})}{\partial x^{(1)}}, \quad z = x^{(1)} + ix^{(2)}, \quad (39)$$

and we define $Z_t = F(\mathbb{B}_t)$. Prove that

$$dZ_t = F'(\mathbb{B}_t) d\mathbb{B}_t. \quad (40)$$

Use this to solve the complex stochastic differential equation

$$dZ_t = \alpha Z_t d\mathbb{B}_t, \quad Z_0 = 1. \quad (41)$$

Solution. We recall the Itô formula for multi-dimensional Brownian motion from HS12 and Øksendal, Subsection 4.2: Let $B_t = (B_t^{(1)}, B_t^{(2)})$ denote the 2-dimensional Brownian motion. Consider the process:

$$dX_t = u_t dt + v_t dB_t, \quad (42)$$

where

$$dX_t = \begin{bmatrix} dX_t^{(1)} \\ dX_t^{(2)} \end{bmatrix}, \quad u_t = \begin{bmatrix} u_t^{(1)} \\ u_t^{(2)} \end{bmatrix}, \quad v_t = \begin{bmatrix} v_t^{(1,1)}, v_t^{(1,2)} \\ v_t^{(2,1)}, v_t^{(2,2)} \end{bmatrix}, \quad dB_t = \begin{bmatrix} dB_t^{(1)} \\ dB_t^{(2)} \end{bmatrix}. \quad (43)$$

Let g be a C^2 map from $\mathbb{R}_+ \times \mathbb{R}^2$ to \mathbb{R}^2 :

$$g(t, x) = \begin{bmatrix} g^{(1)}(t, x) \\ g^{(2)}(t, x) \end{bmatrix}. \quad (44)$$

Then the process $Y_t = g(t, X_t)$ is given by

$$dY_t^{(k)} = \frac{\partial g^{(k)}}{\partial t}(t, X_t)dt + \sum_i \frac{\partial g^{(k)}}{\partial x^{(i)}}(t, X_t)dX_t^{(i)} + \frac{1}{2} \sum_{i,j} \frac{\partial^2 g^{(k)}}{\partial x^{(i)} \partial x^{(j)}}(t, X_t)dX_t^{(i)}dX_t^{(j)}, \quad (45)$$

where $k \in \{1, 2\}$, $i, j \in \{1, 2\}$ and $dB_t^{(i)}dB_t^{(j)} = \delta_{i,j}dt$, $dB_t^{(i)}dt = dt dB_t^{(i)} = 0$.

We denote $x = (x^{(1)}, x^{(2)})$ and $z = x^{(1)} + ix^{(2)}$. We choose $X_t = B_t$ and

$$g(t, x) = \begin{bmatrix} u(x) \\ v(x) \end{bmatrix}, \quad (46)$$

which is a representation of the complex valued function F as a pair consisting of its real (u) and imaginary (v) part. As this function is t -independent, the first term on the r.h.s. of (45) is zero. The second term has the form,

$$\begin{bmatrix} \sum_i \frac{\partial g^{(1)}}{\partial x^{(i)}}(t, X_t)dX_t^{(i)} \\ \sum_i \frac{\partial g^{(2)}}{\partial x^{(i)}}(t, X_t)dX_t^{(i)} \end{bmatrix} = \begin{bmatrix} \frac{\partial u(x)}{\partial x^{(1)}}, \frac{\partial u(x)}{\partial x^{(2)}} \\ \frac{\partial v(x)}{\partial x^{(1)}}, \frac{\partial v(x)}{\partial x^{(2)}} \end{bmatrix} \begin{bmatrix} dB^{(1)} \\ dB^{(2)} \end{bmatrix} = \begin{bmatrix} \frac{\partial u(x)}{\partial x^{(1)}}, \frac{\partial u(x)}{\partial x^{(2)}} \\ -\frac{\partial u(x)}{\partial x^{(2)}}, \frac{\partial u(x)}{\partial x^{(1)}} \end{bmatrix} \begin{bmatrix} dB^{(1)} \\ dB^{(2)} \end{bmatrix}, \quad (47)$$

where, in the second step, we made use of the Cauchy-Riemann equations. On the other hand, the r.h.s. of (40) gives

$$\begin{aligned} F'(\mathbb{B}_t)d\mathbb{B}_t &= \frac{1}{2} \left(\frac{\partial}{\partial x^{(1)}} - i \frac{\partial}{\partial x^{(2)}} \right) (u(x) + iv(x)) (dB_t^{(1)} + idB_t^{(2)}) \\ &= \frac{1}{2} \left(\frac{\partial u(x)}{\partial x^{(1)}} + i \frac{\partial v(x)}{\partial x^{(1)}} - i \frac{\partial u(x)}{\partial x^{(2)}} + \frac{\partial v(x)}{\partial x^{(2)}} \right) (dB_t^{(1)} + idB_t^{(2)}) \\ &= \frac{1}{2} \left(\frac{\partial u(x)}{\partial x^{(1)}} - i \frac{\partial u(x)}{\partial x^{(2)}} - i \frac{\partial u(x)}{\partial x^{(2)}} + \frac{\partial u(x)}{\partial x^{(1)}} \right) (dB_t^{(1)} + idB_t^{(2)}) \\ &= \left(\frac{\partial u(x)}{\partial x^{(1)}} - i \frac{\partial u(x)}{\partial x^{(2)}} \right) (dB_t^{(1)} + idB_t^{(2)}) \\ &= \frac{\partial u(x)}{\partial x^{(1)}} dB_t^{(1)} + \frac{\partial u(x)}{\partial x^{(2)}} dB_t^{(2)} + i \left(\frac{\partial u(x)}{\partial x^{(1)}} dB_t^{(2)} - \frac{\partial u(x)}{\partial x^{(2)}} dB_t^{(1)} \right). \end{aligned} \quad (48)$$

Rewriting the real and imaginary parts of this expression as components of a column vector we obtain (47). We still have to show that the last term on the r.h.s. of (45) vanishes. By the Cauchy-Riemann equations:

$$\frac{\partial^2 g^{(1)}}{\partial x^{(1)} \partial x^{(1)}} = \frac{\partial^2 u}{\partial x^{(1)} \partial x^{(1)}} = \frac{\partial^2 v}{\partial x^{(1)} \partial x^{(2)}} = -\frac{\partial^2 u}{\partial x^{(2)} \partial x^{(2)}} \quad (49)$$

Consequently,

$$\begin{aligned} & \sum_{i,j} \frac{\partial^2 g^{(1)}}{\partial x^{(i)} \partial x^{(j)}}(t, X) dX_t^{(i)} dX_t^{(j)} \\ &= \frac{\partial^2 u}{\partial x^{(1)} \partial x^{(1)}}(dB_t^{(1)})^2 + 2 \frac{\partial^2 u}{\partial x^{(1)} \partial x^{(2)}} dB_t^{(1)} dB_t^{(2)} + \frac{\partial^2 u}{\partial x^{(2)} \partial x^{(2)}}(dB_t^{(2)})^2 = 0, \end{aligned} \quad (50)$$

where in the last step we used that $(dB^{(1)})^2 = (dB^{(2)})^2 = dt$, $dB^{(1)} dB^{(2)} = 0$ and (49). The case of $g^{(2)}$ is treated analogously.

Regarding the last question, it is clear from (40) that the solution of (41) is $Z_t = e^{\alpha \mathbb{B}_t}$.

To be discussed in class: 30.01.2026