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Problem 1. Let {B,},cr, be one-dimensional Brownian motion. Show that the process

Y, = P satisfies
dY; = %Yidt + Y,dB;.
Solution. Recall the [t6 formula in the simplest form:
dg(B:) = ¢'(B;)dB; + %g”(Bt)dt.
We compute

1 1
dY, = d(eP) = P1dB, + EeBtdt = 5Yidt +Y,dB,.

Problem 2. For fixed a,b € R consider the following 1-dimensional equation

dY; = - ttdt+dBt, 0<t<1,Y,=a.
Verify that
t 4B,
Yt:a(l—t)+bt+(1—t)/1 , 0<t<1
0 — S

solves the equation and prove that lim;,_,; Y, = b a.s.
Hint 1: Use the ‘more general case’ of the It6 formula from the lecture.
Hint 2: Integration by parts may be useful for proving lim; ,; Y; = b.

Remark: The process {Y;}sc[0,1) is called the Brownian bridge.

Solution. Recall the It6 formula

dg dg 19%g
dY, = a(t,Xt)dt + a—x(t,Xt)dXt + 5@(@ Xp)(dXy)?,

with dt - dt = dt - dB; = dB; -dt =0, dB;-dB; = dt. Choose

t
B
Xt:/ dsu
01_8

(1)



that is, equivalently,
1

Then we have, by (9)

Yt:a(l—t)+bt+(1—t)/t a5, =a(l—t)+bt+(1-t)X, =:g(t, Xy). (9)

o L—s
By the It6 formula, we have

dY,=(—a+b— X,)dt + (1 — t)dX, = (—a+ b — X,)dt + dB,

Y,
= 1 _ttdt+dBt, (10)

where in the second step we used (8) and in the third step (9).

Let us now prove that lim; ,; Y; = b. It is clear from (9), that it suffices to show that

lim(1 — t) /t B, _, (11)

t—1 1—s

For this purpose, we apply integration by parts

(1—t)/0 a5, :Bt—(l—t)/o Bud(——). (12)

1—5 I
We choose a new variable u := %T_i in the integral. Then
1
(12) = Bt — / Bl_%(l_t)du. (13)
1—t

Bs above and in the following stand for B,(w) for some fixed w, since we want to obtain
the limit almost surely. Almost surely means here, that we restrict attention to w for
which s — Bg(w) is continuous. Such w form a subset of 2 of measure one. Furthermore,
we extend s — Bg(w) to negative s by zero and denote the resulting function by R 3 s +—
By(w). (It is continuous since By = 0). Given all this, we can write

1 1
Bt — / Bl_%(l_t)du = Bt — / Bl_%(l_t)du, (14)
1-t 0

since the integrand vanishes for u € [0, 1 — ] as it corresponds to negative s. Now we get

1

t—1 0

by continuity of R 3 s — B,(w) and dominated convergence.



Problem 3. Show that there is a solution {X,}icr, of the one-dimensional stochastic
differential equation

dX,; =In(1+ X7)dt + X;,dB;, Xo=a€R. (16)
Does the result still hold if we replace X;dB; with x(x,>0;X¢dB; above?
Hint: Verify the assumptions of the ‘existence and uniqueness theorem’ from the lecture.
Solution. We recall the theorem in a slightly shortened form:

Theorem 0.1. Let (Q, F, P) be the probability space of the d-dimensional Brownian
motion. Let T > 0 and b(-,-) : [0,T] x R® — R™, o(-, ) : [0,7] x R* — R™4 pe
measurable functions satisfying

b(t, )] + ot )| < C(L+ Jaf), = € Rt € [0,T] (17)
for some constant C' and s.t. the Lipschitz property property holds
b(t.2) = bit,y)| + |o(t,2) — ot y)| < Dl —yl, zyeRLte0,T]  (18)

for some constant D. Let Z be a random variable which is independent of the o-algebra
FD generated by By(-), s > 0, and s.t. E[|Z|*] < oco. Then the stochastic differential
equation

dXt = b(t, Xt>dt + O'(t, Xt)dBt, te [O, T], XO = Z, (19)
has a unique t-continuous solution {X}ieo1)-

We have b(t,r) = In(1 + 2?) and o(t,z) = x. As measurability is obvious, it suffices to
check (17) and (18). Regarding (17), we first note that 1 + u < e* (obvious by drawing
graphs) hence, for u > 0,

In(u) <In(l+u) <u. (20)
Thus, for u = (1 + |z|?)Y/2,
In(1+ o) < 2(1 + [2P)V2 < 2(1 + Ja]). (21)
Consequently,
b(t,x o(t,x In(1+ 22) + |z| _ 2+ 3|x
|(7(i|:||x|§, < ((;——I—|3c|j;| < 1++||;c||§3' (22)
Regarding (18), obviously,
ot x) —o(t,y)] < |z —yl. (23)



Furthermore, setting z := x — y, we have

b(t, z) — b(t,y)|=|In(1+ (y + 2)?) — In(1 +?)| = {/O %m(l + (y + uz)?) du
y+uz
o [ 2 ) < 20 24)

Here in the last step we used the Cauchy-Schwarz inequality for series as follows:

ly +uz| <14 |y+uz|=1-1+1-|y+uz| <12+ 1HY2(12 + Jy +uz)V2 (25)

Regarding the case of o(t,2) = x{z>0}« the only part of the proof that has to be recon-
sidered is (23). Clearly, for x > 0 and y > 0 (23) holds as before. For z < 0, y < 0 (23)
holds trivially. It suffices to cover the mixed case x > 0, y < 0:

o(t, ) — o(t,9)] = [X{z>03 — Xgg=0py| = [Xgesopz| =2 <w—y < |z —y[,  (26)
where in the next-to-the-last step we made use of the fact that y is non-positive.

Side remark: Since z +— X{y>0} is discontinuous, Lipschitz continuity seems to be in
danger. However, by drawing a graph, it is clear that x + x>0y is continuous. This is
what saves the estimate.

Problem 4. Solve the following equation:
dY, = pYydt + odB;, Yy =0, (27)

where u, o are real coefficients. The solution is called the Ornstein-Uhlenbeck process
with Yy = 0.

Solution. We pick B € C'(R,) and consider an ordinary differential equation of the
same form as (27):

dy, ~ dBt
— — Y, = 28
a T T (28)
A strategy to solve such inhomogeneous linear ODE is the following:
(i) First, solve the corresponding homogeneous equation:
dy,
— Y, =0. 29
dt ey (29)

Clearly, this is solved by Y, = Cef,

(ii) Next, we look for a solution of the inhomogeneous equation in the form Y, = C,ef,
where we let the constant C' depend on time (this is called the ‘method of variation
of coefficients’). By substituting Y; = Cief* to (28), we get

2dCy  _dB, [t _;.dB
P — 5= C, = As 24 30
a a7 ‘7/09’ s (30)
Thus the solution of the ODE (28) has the form
- o [t L.dB
Y, = e’“%/o e_’“%ds. (31)

4



Now we come back to the SDE (27). Formula (31) suggests that:
~ t ~
v / e dB,, (32)
0

where the integral is now interpreted as an It integral. We restate the It6 formula for
)/t = g(ta Xt)

dg 2

dY; = S (t X)dt + gg (t, X0)dX, + %%(t,xt)(dxt){ (33)
with dt - dt = dt - dB, = dB, -dt =0, dB,-dB; = dt. Choose
X;=6 / t e "dB, ie. dX;=de "dB,. (34)
Y :g(t,OXt) = e X, (35)
By (33),
dY, = fie X, + eMG(e ™dB,) = pY; + 6dB,. (36)

Thus the equation is satisfied for y = 1 and o = &.

Side remark: The Ornstein-Uhlenbeck process is the Brownian motion with friction. It
corresponds to the Newton equation
v dBt
=—yw+o'— 37
Ta T dt (37)
describing velocity v of a fluid particle of mass m moving under a velocity dependent
friction force —vyv and experiencing random collisions with other particles, modeled by

the white noise term o’ dﬁ*.

Problem 5. Let (BY, B?) be two-dimensional Brownian motion. We define the complex
Brownian motion as follows

B, = B +iBY, (38)

where i is the imaginary unit. Let F(2) = F(zM 4+ i2®) = u(2®, 2?) +iv(2M, 2?) be
an analytic function, i.e. F' satisfies the Cauchy-Riemann equations

Ou(z®,2®@)  Ju(z®,2®)  u(x®,2®)  du(zW, 2

Ox) n 0x(2) ’ 0x(2) T 9200 ’
and we define Z; = F(B;). Prove that

z=2W +iz® (39)

dZt = F/<Bt)d185t (40)
Use this to solve the complex stochastic differential equation

dZt = O{thBt, Z() =1. (41)

5



Solution. We recall the 1t6 formula for multi-dimensional Brownian motion from HS12
and Oksendal, Subsection 4.2: Let B, = (Bt(l), Bt@)) denote the 2-dimensional Brownian
motion. Consider the process:

dXt = Utdt + ’UtdBt, (42)
where
dX(l) u(l) ’U(l’l) U(1’2) dB(l)
dX; = ol w=1"t|, v=1|"%y ° , dB, = ¥ 43
t [dXt(Z) t UIEZ) t Ut(2,1)’ UIEQ,Q) t dBéQ) ( )

Let g be a C? map from R, x R? to R

1)
g (t,x)]
t,r) = . 44
g(t, x) [9(2)(75,1’) (44)
Then the process Y; = g(t, X;) is given by
w _ 99" (i) 029" ) 73 0)
dy, o (t, Xp)dt + E t Xy)dX,"” + = E m(t,X)dXt dX,”, (45)

where k € {1,2},4,j € {1,2} and dB{"dBY) = ¢, ;dt, dB" dt = dtdB" = 0.
We denote x = (M, 2?)) and z = 2V + iz(®. We choose X; = B; and

ot =[], (46)

which is a representation of the complex valued function F' as a pair consisting of its real
(u) and imaginary (v) part. As this function is t-independent, the first term on the r.h.s.
of (45) is zero. The second term has the form,

(1> ou(x ou(x oulzx
T ookl - &0 5| [0 - |l &l [e). w0
> % axu 5 (t, Xp)d X, 30 g0 | 4B 35 ga7 | 4B

where, in the second step, we made use of the Cauchy-Riemann equations. On the other
hand, the r.h.s. of (40) gives

, 1/ 9 0 . .
F'(B,)dB, == (0:16—1 - lm) (u(z) + iv(z))(dBY +idB?)

ou(z)  ov(z)  Ou(z)  Ov(x) -
2(895(1) +l x0T ar®@ + 92 (dB +1idB;”)

¢
! (au(a:) _,Qul@) L ou(x) au(x))(dBt(l) +idB®)

arD ~ Toz® T Tar@ T 5rm
x) 8u(x) o (2)
(8x(1) ~ g (@B +1dB;)
8u( ) au(x) 8u(a:) 2 Ou(z)
=SBl + SEaB® i S - SodB! (48)



Rewriting the real and imaginary parts of this expression as components of a column
vector we obtain (47). We still have to show that the last term on the r.h.s. of (45)
vanishes. By the Cauchy-Riemann equations:

) 92u 90 u
000z ~ 920920 ~ 920022 —  9r@9z@ (49)
Consequently,
> %(t,){)d}(ﬁ“d}(@
2y
9%u (1o 92w D)+ 0% ..
:W(dBt ) —I—QWdBt dB, —|—W(d3t )2 =0, (50)

where in the last step we used that (dBW)? = (dB®)? = dt, dBWdB® = 0 and (49).
The case of ¢g? is treated analogously.

Regarding the last question, it is clear from (40) that the solution of (41) is Z; = e*Bt.

To be discussed in class: 30.01.2026



