Stochastic Differential Equations Homework Sheet 2 - solutions

Problem 1. Let $(\Omega, \mathcal{F}, P) = (\mathbb{R}_+, \mathcal{B}, \mu)$, where $\mathbb{R}_+ = [0, \infty)$, \mathcal{B} denotes the Borel σ -algebra on $[0, \infty)$ and μ is a probability measure on $[0, \infty)$ with no mass on single points, i.e. $\mu(\{x\}) = 0$ for every $x \in \mathbb{R}_+$. Define

$$X_t(\omega) = \begin{cases} 1 & \text{if } t = \omega, \\ 0 & \text{otherwise,} \end{cases}$$
 (1)

and

$$Y_t(\omega) = 0 \quad \text{for all} \quad (t, \omega) \in \mathbb{R}_+ \times \mathbb{R}_+.$$
 (2)

Prove that $\{X_t\}_{t\in\mathbb{R}_+}$ and $\{Y_t\}_{t\in\mathbb{R}_+}$ have the same finite-dimensional distributions and that $\{X_t\}_{t\in\mathbb{R}_+}$ is a version of $\{Y_t\}_{t\in\mathbb{R}_+}$. (Note that, nevertheless, $t\mapsto Y_t(\omega)$ is continuous for all ω and $t\mapsto X_t(\omega)$ is discontinuous for all ω).

Solution. (i) Claim: Equality in law of the finite-dimensional distributions. Proof: Fix $k \in \mathbb{N}$ and times $t_1, \ldots, t_k \in \mathbb{R}_+$. Put

$$A_i := \{ \omega \in \Omega : \omega = t_i \} = \{ t_i \}, \qquad A := \bigcup_{i=1}^k A_i.$$

Since μ is non-atomic, $\mu(A_i) = 0$ for each i, hence $\mu(A) = 0$. For $\omega \notin A$ we have $X_{t_i}(\omega) = 0 = Y_{t_i}(\omega)$. Therefore, for any Borel sets $F_1, \ldots F_k \subset \mathbb{R}_+$,

$$\mu(\{\omega: X_{t_1}(\omega) \in F_1, \dots, X_{t_k}(\omega) \in F_k\}) = \mu(\{\omega: X_{t_1}(\omega) \in F_1, \dots, X_{t_k}(\omega) \in F_k\} \setminus A)$$

$$= \mu(\{\omega: Y_{t_1}(\omega) \in F_1, \dots, Y_{t_k}(\omega) \in F_k\} \setminus A)$$

$$= \mu(\{\omega: Y_{t_1}(\omega) \in F_1, \dots, Y_{t_k}(\omega) \in F_k\}) \quad (3)$$

(ii) Claim: X is a version of Y. Proof: For each fixed $t \geq 0$,

$$\mu(X_t \neq Y_t) = \mu(X_t \neq 0) = \mu(\{\omega = t\}) = \mu(\{t\}) = 0,$$

since μ has no mass on single points.

Problem 2. Let X and Y be two independent random variables with finite variances. Show that

$$var(X + Y) = var(X) + var(Y).$$

Solution. Recall that for any random variable Z,

$$var(Z) = E[Z^2] - (E[Z])^2.$$

We compute:

$$var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}.$$

Expanding the square gives

$$E[(X+Y)^2] = E[X^2] + 2E[XY] + E[Y^2],$$

and

$$E[X+Y] = E[X] + E[Y].$$

Hence

$$(E[X+Y])^2 = (E[X] + E[Y])^2 = (E[X])^2 + 2E[X]E[Y] + (E[Y])^2.$$

Subtracting, we obtain

$$var(X + Y) = (E[X^2] - (E[X])^2) + (E[Y^2] - (E[Y])^2) + 2(E[XY] - E[X]E[Y]).$$

Let us call the last term $2 \operatorname{Cov}(X, Y)$. Since X and Y are independent, E[XY] = E[X]E[Y], and therefore

$$Cov(X, Y) = 0.$$

It follows that

$$var(X + Y) = var(X) + var(Y).$$

Remark: The result immediately generalizes to finite sums of independent random variables.

Problem 3. Let X be a real-valued random variable with finite second moment, i.e., $E[X^2] < \infty$.

(a) Let $Y \ge 0$ be any nonnegative random variable and let a > 0. Show that

$$P(Y \ge a) \le \frac{E[Y]}{a}.$$

(b) Apply part (a) with $Y = (X - E[X])^2$ and $a = \varepsilon^2$ for $\varepsilon > 0$. Conclude that

$$P(|X - E[X]| \ge \varepsilon) \le \frac{E[(X - E[X])^2]}{\varepsilon^2}.$$

(c) Recall that $var(X) := E[(X - E[X])^2]$. Rewrite the bound from part (b) in terms of var(X).

Solution. (a) Since $Y \ge 0$ and a > 0,

$$E[Y] \ = \ E\big[Y\,\chi_{\{Y < a\}}\big] + E\big[Y\,\chi_{\{Y \ge a\}}\big] \ \ge \ E\big[a\,\chi_{\{Y \ge a\}}\big] \ = \ a\,P(Y \ge a).$$

Dividing by a yields $P(Y \ge a) \le E[Y]/a$. This bound is called the Markov inequality.

(b) Take $Y = (X - E[X])^2 \ge 0$ and $a = \varepsilon^2$ with $\varepsilon > 0$. Then

$$P(|X - E[X]| \ge \varepsilon) = P((X - E[X])^2 \ge \varepsilon^2) \le \frac{E[(X - E[X])^2]}{\varepsilon^2}.$$

(c) By definition $var(X) = E[(X - E[X])^2]$, so

$$P(|X - E[X]| \ge \varepsilon) \le \frac{\operatorname{var}(X)}{\varepsilon^2}.$$

The last two bounds are called Chebyshev's inequalities.

Problem 4. Let $\{B_t\}_{t\in\mathbb{R}_+}$ be 2-dimensional Brownian motion and set

$$D_{\rho} := \{ y \in \mathbb{R}^2 : |y| < \rho \} \text{ for } \rho > 0.$$
 (4)

Compute $P^{x=0}(B_t \in D_\rho)$ for some fixed t > 0.

Solution. By the construction of the Brownian motion via the Kolmogorov's extension theorem, we have

$$P(B_t \in D_\rho) = \int_{D_\rho} p(t, 0, y) dy, \tag{5}$$

where

$$p(t, 0, y) = \frac{1}{2\pi t} e^{-\frac{|y|^2}{2t}}, \quad y \in \mathbb{R}^2.$$

We compute

$$P^{x=0}(B_t \in D_\rho) = \int_{|y| < \rho} p(t, 0, y) \, dy = \int_0^{2\pi} \int_0^\rho \frac{1}{2\pi t} \, e^{-\frac{r^2}{2t}} \, r \, dr \, d\theta = \int_0^\rho \frac{1}{t} \, e^{-\frac{r^2}{2t}} \, r \, dr.$$

Let $u = \frac{r^2}{2t}$ so that r dr = t du. Then

$$P^{x=0}(B_t \in D_\rho) = \int_0^{\rho^2/(2t)} e^{-u} du = 1 - e^{-\frac{\rho^2}{2t}}.$$

As expected, for small t the probability is almost 1, whereas for large t it is almost zero.

Problem 5. Show that:

(a) $I := \int_{\mathbb{R}} e^{-\frac{x^2}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2}$. Hint: For example, write $I^2 = \int_{\mathbb{R}^2} e^{-\frac{1}{2\sigma^2}(x^2+y^2)} dx dy$ and go to polar coordinates.

(b)
$$\int_{\mathbb{R}} e^{ikx} e^{-\frac{x^2}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2} e^{-\frac{k^2\sigma^2}{2}}$$
.

(c) $\int_{\mathbb{R}^d} e^{i\langle k,x\rangle} e^{-\frac{\langle x,C^{-1}x\rangle}{2}} dx = \sqrt{(2\pi)^d \det(C)} e^{-\frac{\langle k,Ck\rangle}{2}}$, where C is a $d\times d$ symmetric matrix with strictly positive eigenvalues. Hint: Diagonalize the matrix, change variables and use the previous item.

Solution. (a) Let

$$I := \int_{\mathbb{R}} e^{-\frac{x^2}{2\sigma^2}} \, dx.$$

Then

$$I^{2} = \left(\int_{\mathbb{R}} e^{-\frac{x^{2}}{2\sigma^{2}}} dx \right) \left(\int_{\mathbb{R}} e^{-\frac{y^{2}}{2\sigma^{2}}} dy \right) = \int_{\mathbb{R}^{2}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}} dx dy.$$

Passing to polar coordinates (r, θ) with $x = r \cos \theta$, $y = r \sin \theta$, $dx dy = r dr d\theta$, we obtain

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr d\theta = 2\pi \int_{0}^{\infty} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr.$$

Let $u = \frac{r^2}{2\sigma^2}$, so $du = \frac{r}{\sigma^2} dr$ and $r dr = \sigma^2 du$. Then

$$I^2 = 2\pi\sigma^2 \int_0^\infty e^{-u} du = 2\pi\sigma^2.$$

Taking the positive square root (the integral is positive),

$$I = \sqrt{2\pi\sigma^2}.$$

(b) Consider

$$\int_{\mathbb{R}} e^{ikx} e^{-\frac{x^2}{2\sigma^2}} dx.$$

Complete the square:

$$-\frac{x^2}{2\sigma^2} + ikx = -\frac{1}{2\sigma^2} \left(x^2 - 2i\sigma^2 k \, x \right) = -\frac{(x - i\sigma^2 k)^2}{2\sigma^2} - \frac{\sigma^2 k^2}{2}.$$

Hence

$$\int_{\mathbb{R}} e^{ikx} e^{-\frac{x^2}{2\sigma^2}} dx = e^{-\frac{\sigma^2 k^2}{2}} \int_{\mathbb{R}} e^{-\frac{(x - i\sigma^2 k)^2}{2\sigma^2}} dx.$$

The integrand is an entire function with Gaussian decay, so the contour can be shifted from \mathbb{R} to $\mathbb{R} + i\sigma^2 k$; the value equals the real-axis Gaussian integral from part (a):

$$\int_{\mathbb{R}} e^{-\frac{(x-i\sigma^2k)^2}{2\sigma^2}} dx = \int_{\mathbb{R}} e^{-\frac{x^2}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2}.$$

Therefore,

$$\int_{\mathbb{R}} e^{ikx} e^{-\frac{x^2}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2} e^{-\frac{\sigma^2 k^2}{2}}.$$

(c) Let C be symmetric with strictly positive eigenvalues. Then there exists an orthogonal matrix Q and a diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_d)$ with $\lambda_j > 0$ such that

$$C = Q\Lambda Q^{\mathsf{T}}, \qquad C^{-1} = Q\Lambda^{-1}Q^{\mathsf{T}}.$$

Set $y = Q^{\top}x$ and $q = Q^{\top}k$. Orthogonality gives dx = dy, and

$$\langle x, C^{-1}x \rangle = x^\top C^{-1}x = y^\top \Lambda^{-1}y = \sum_{j=1}^d \frac{y_j^2}{\lambda_j}, \qquad \langle k, x \rangle = q^\top y = \sum_{j=1}^d q_j y_j.$$

Thus the integral factorizes:

$$\int_{\mathbb{R}^d} e^{i\langle k, x \rangle} e^{-\frac{\langle x, C^{-1}x \rangle}{2}} dx = \prod_{j=1}^d \left(\int_{\mathbb{R}} e^{iq_j y_j} e^{-\frac{y_j^2}{2\lambda_j}} dy_j \right).$$

By part (b) with $\sigma^2 = \lambda_j$ and k replaced by q_j ,

$$\int_{\mathbb{R}} e^{iq_j y_j} e^{-\frac{y_j^2}{2\lambda_j}} dy_j = \sqrt{2\pi\lambda_j} e^{-\frac{\lambda_j q_j^2}{2}}.$$

Multiplying over j,

$$\int_{\mathbb{R}^d} e^{i\langle k, x \rangle} e^{-\frac{\langle x, C^{-1} x \rangle}{2}} dx = \left(\prod_{j=1}^d \sqrt{2\pi \lambda_j} \right) e^{-\frac{1}{2} \sum_{j=1}^d \lambda_j q_j^2} = \sqrt{(2\pi)^d \det C} e^{-\frac{1}{2} q^\top \Lambda q}.$$

Finally, since $q = Q^{\top}k$ and Q is orthogonal,

$$q^{\top} \Lambda q = k^{\top} Q \Lambda Q^{\top} k = k^{\top} C k = \langle k, C k \rangle.$$

Hence

$$\int_{\mathbb{R}^d} e^{i\langle k, x \rangle} e^{-\frac{\langle x, C^{-1} x \rangle}{2}} dx = \sqrt{(2\pi)^d \det(C)} e^{-\frac{\langle k, Ck \rangle}{2}}.$$

To be discussed in class: 17.10.2025