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Stochastic Differential Equations
Homework Sheet 2 - solutions

Problem 1. Let (Q,F,P) = (R4, B, pu), where Ry = [0,00), B denotes the Borel o-
algebra on [0, 00) and p is a probability measure on [0, c0) with no mass on single points,
i.e. u({x}) =0 for every x € R,. Define

1 ift=w,
Xi(w) = (1)
0 otherwise,

and
Yi(w)=0 forall (t,w)eR; xR,. (2)

Prove that {X;}icr, and {Y;}icr, have the same finite-dimensional distributions and that
{Xi}ier, is a version of {Y;}icr,. (Note that, nevertheless, ¢t — Y;(w) is continuous for
all w and t — X;(w) is discontinuous for all w).

Solution. (i) Claim: Equality in law of the finite-dimensional distributions. Proof:
Fix k € N and times t;,...,t € R,. Put

Ai={weQw=t}={t}, A=JA
Since p is non-atomic, u(A;) = 0 for each ¢, hence u(A) = 0. For w ¢ A we have

X, (w) =0 =Y}, (w). Therefore, for any Borel sets Fi,... F, C Ry,

p({w: Xy (W) € Fr,..., Xy (w) € Fir}) =p({w: Xy (w) € F1, ..., Xy, (w) € Fr}\A)
=p({w: Y, (w) € F1,..., Y, (w) € Fi}\A)
=p({w: Y, (w) € Fi,.... Y, (w) € Fi}) (3)

~— —

(ii) Claim: X is a version of Y. Proof: For each fixed t > 0,
p(Xe #Yy) = p(Xe #0) = p({w = t}) = p({t}) = 0,

since 1 has no mass on single points.

Problem 2. Let X and Y be two independent random variables with finite variances.
Show that
var(X +Y) = var(X) + var(Y).
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Solution. Recall that for any random variable 7,
var(Z) = E[Z%] — (E[Z])*.
We compute:
var(X +Y) = E[(X +Y)?] — (E[X + Y])*.
Expanding the square gives
E[(X +Y)% = E[X? + 2E[XY] + E[Y?],
and
EX +Y]=FE[X]|+ E[Y]

Hence
(B[X +Y])? = (B[X] + E[Y])? = (E[X])* + 2E[X]E[Y] + (E[Y]).

Subtracting, we obtain
var(X +Y) = (E[X?] - (E[X])*) + (E[Y?] — (E[Y])?) + 2(E[XY] — E[X]E[Y]).

Let us call the last term 2Cov(X,Y). Since X and Y are independent, E[XY] =
E[X]E[Y], and therefore
Cov(X,Y)=0.

It follows that
var(X +Y) = var(X) 4 var(Y').

Remark: The result immediately generalizes to finite sums of independent random vari-
ables.

Problem 3. Let X be a real-valued random variable with finite second moment, i.e.,
E[X?] < .

(a) Let Y > 0 be any nonnegative random variable and let a > 0. Show that
ElY]

P(Y >a) <
¥ za) <=

(b) Apply part (a) with Y = (X — E[X])? and a = &? for € > 0. Conclude that
BI(X — BIX]?)

2

P(|X - E[X]| > ¢) <
(c) Recall that var(X) := E[(X — E[X])?]. Rewrite the bound from part (b) in terms
of var(X).
Solution. (a) Since Y > 0 and a > 0,
ElY] = E[Y xyy<a}] + E[Y Xpysat] > Elaxgpysa] = aP(Y > a).

Dividing by a yields P(Y > a) < E[Y]/a. This bound is called the Markov inequal-
ity.



(b) Take Y = (X — E[X])? > 0 and a = £? with € > 0. Then

P(X = E[X]| 2 &) = P((X - E[X])? > &) <

(c) By definition var(X) = E[(X — E[X])?%], so

var(X) .

P(X - BIX) 2 ¢) < =5

The last two bounds are called Chebyshev’s inequalities.
Problem 4. Let {B,},cr, be 2-dimensional Brownian motion and set

D, ={yeR®: |y <p} for p>0. (4)
Compute P*=%(B, € D,) for some fixed ¢ > 0.

Solution. By the construction of the Brownian motion via the Kolmogorov’s extension
theorem, we have

P(B: € Dy) =/ p(t,0,y)dy, (5)
DP
where
(t,0,y) = Lot € R?
b, v, y) = 9t 5 Yy .
We compute
27 rp 1 2 P 1 2
PfE:O(BtEDp>:/ p(t,o,y)dy:/ —thrdrdQ:/ Ze %% rdr.
lyl<p o Jo 2mt o t

Let u = 2—2 so that rdr = t du. Then

t
2

o2/(20) ,
P=(B, € D,) = / e du=1—e 2.
0

As expected, for small ¢ the probability is almost 1, whereas for large ¢ it is almost zero.

Problem 5. Show that:

(a) [ := fRe_#dm: V2ma?.

Hint: For example, write I? = [, e 22 @) 4y dy and go to polar coordinates.

) 2 2,2
(b) [pe™e 22 dr = V/2m0? e T,

x, _132 > . . .
() Jpa eitha) o= =5 gy = V (2m)ddet(C) e” g , where C'is a d x d symmetric matrix

with strictly positive eigenvalues. Hint: Diagonalize the matrix, change variables
and use the previous item.




Solution. (a) Let

I::/e_zmo2 dz.

R

I~ = e 202 dx e 22 dy | = e 202 dxdy.
R R R2

Passing to polar coordinates (r,0) with © = rcos @, y = rsinf, dx dy = r dr df, we obtain

2w poo 2 o0 2
_72:/ / e_wrdrd9:27r/ e 202 rdr.
o Jo 0
2

Let u = 5, s0 du = & dr and rdr = 0% du. Then

Then

I? = 27r02/ e “du = 2ro>.
0

Taking the positive square root (the integral is positive),

I =V2mo2.

e a?
e e 202 dx.
R

x? 1/, (x —i0?k)?  o%k?
2 Gk = ——— — 92 ) - _ —
502 + tkx 5,2 <3: 1wk x 52 5

2 2,2 —io2k)2
. =z _ o’k _(a: i0“k)
/e’kfce 202 dxr =€ 2 /e 202 dx.
R R

The integrand is an entire function with Gaussian decay, so the contour can be shifted
from R to R + i0?k; the value equals the real-axis Gaussian integral from part (a):

_ (z—io?k)? 22
e 22 dx= | e 222 dx = V2ro2.
R R

(b) Consider

Complete the square:

Hence

Therefore,

2 2,2
- _xZ _ ok
/em e 22 dy = V2no2e 2 .
R

(c) Let C be symmetric with strictly positive eigenvalues. Then there exists an orthogonal
matrix () and a diagonal matrix A = diag(Aq,..., Aq) with A; > 0 such that

C =QAQ", Clt=QA1QT.



Set y = Q 'z and ¢ = Q"k. Orthogonality gives dz = dy, and

d 2 d
_ _ _ Y;
(x,C'zy =2"C o=y A 1y:Z%, (k,x) =q y—quy]
j=1"7 j=1
Thus the integral factorizes:
. € C71m> d . y]2
/ k) o= = H / e'%Yie P dy; | .

By part (b) with ¢ = \; and k replaced by g;,

2

oYy _)‘jqu
eWie 2 dy; =/2mA\;je 2 .
R

Multiplying over 7,

itk z) 2 lo) —1d ag? a ~lgTA
e\ e 2 dxz( \/27r)\j>e 225=1%9 = /(2m)ddet C e 27 2,
Rd

j=1
Finally, since ¢ = Q "k and Q is orthogonal,
"N =Ek"QAQ"k = k"Ck = (k,Ck).

Hence
(k,Ck)

. x, —1g >
/ eilka) =25 gy — (2m)ddet(C) e 2
R4

To be discussed in class: 17.10.2025



