
Prof. UAM dr hab. Wojciech Dybalski AMU Poznań
Winter semester 2025/26

Stochastic Differential Equations
Homework Sheet 2 - solutions

Problem 1. Let (Ω,F , P ) = (R+,B, µ), where R+ = [0,∞), B denotes the Borel σ-
algebra on [0,∞) and µ is a probability measure on [0,∞) with no mass on single points,
i.e. µ({x}) = 0 for every x ∈ R+. Define

Xt(ω) =

1 if t = ω,

0 otherwise,
(1)

and

Yt(ω) = 0 for all (t, ω) ∈ R+ × R+. (2)

Prove that {Xt}t∈R+ and {Yt}t∈R+ have the same finite-dimensional distributions and that
{Xt}t∈R+ is a version of {Yt}t∈R+ . (Note that, nevertheless, t 7→ Yt(ω) is continuous for
all ω and t 7→ Xt(ω) is discontinuous for all ω).

Solution. (i) Claim: Equality in law of the finite-dimensional distributions. Proof:
Fix k ∈ N and times t1, . . . , tk ∈ R+. Put

Ai := {ω ∈ Ω : ω = ti} = {ti}, A :=
k⋃

i=1

Ai.

Since µ is non-atomic, µ(Ai) = 0 for each i, hence µ(A) = 0. For ω /∈ A we have
Xti(ω) = 0 = Yti(ω). Therefore, for any Borel sets F1, . . . Fk ⊂ R+,

µ
(
{ω : Xt1(ω) ∈ F1, . . . , Xtk(ω) ∈ Fk}

)
=µ
(
{ω : Xt1(ω) ∈ F1, . . . , Xtk(ω) ∈ Fk}\A

)
=µ
(
{ω : Yt1(ω) ∈ F1, . . . , Ytk(ω) ∈ Fk}\A

)
=µ
(
{ω : Yt1(ω) ∈ F1, . . . , Ytk(ω) ∈ Fk}

)
(3)

(ii) Claim: X is a version of Y . Proof: For each fixed t ≥ 0,

µ
(
Xt ̸= Yt

)
= µ

(
Xt ̸= 0

)
= µ({ω = t}) = µ({t}) = 0,

since µ has no mass on single points.

Problem 2. Let X and Y be two independent random variables with finite variances.
Show that

var(X + Y ) = var(X) + var(Y ).
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Solution. Recall that for any random variable Z,

var(Z) = E[Z2]− (E[Z])2.

We compute:
var(X + Y ) = E[(X + Y )2]− (E[X + Y ])2.

Expanding the square gives

E[(X + Y )2] = E[X2] + 2E[XY ] + E[Y 2],

and
E[X + Y ] = E[X] + E[Y ].

Hence
(E[X + Y ])2 = (E[X] + E[Y ])2 = (E[X])2 + 2E[X]E[Y ] + (E[Y ])2.

Subtracting, we obtain

var(X + Y ) = (E[X2]− (E[X])2) + (E[Y 2]− (E[Y ])2) + 2(E[XY ]− E[X]E[Y ]).

Let us call the last term 2Cov(X, Y ). Since X and Y are independent, E[XY ] =
E[X]E[Y ], and therefore

Cov(X,Y ) = 0.

It follows that
var(X + Y ) = var(X) + var(Y ).

Remark: The result immediately generalizes to finite sums of independent random vari-
ables.

Problem 3. Let X be a real-valued random variable with finite second moment, i.e.,
E[X2] < ∞.

(a) Let Y ≥ 0 be any nonnegative random variable and let a > 0. Show that

P (Y ≥ a) ≤ E[Y ]

a
.

(b) Apply part (a) with Y = (X − E[X])2 and a = ε2 for ε > 0. Conclude that

P
(
|X − E[X]| ≥ ε

)
≤ E[(X − E[X])2]

ε2
.

(c) Recall that var(X) := E[(X − E[X])2]. Rewrite the bound from part (b) in terms
of var(X).

Solution. (a) Since Y ≥ 0 and a > 0,

E[Y ] = E
[
Y χ{Y <a}

]
+ E

[
Y χ{Y≥a}

]
≥ E

[
aχ{Y≥a}

]
= aP (Y ≥ a).

Dividing by a yields P (Y ≥ a) ≤ E[Y ]/a. This bound is called the Markov inequal-
ity.
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(b) Take Y = (X − E[X])2 ≥ 0 and a = ε2 with ε > 0. Then

P
(
|X − E[X]| ≥ ε

)
= P

(
(X − E[X])2 ≥ ε2

)
≤ E[(X − E[X])2]

ε2
.

(c) By definition var(X) = E[(X − E[X])2], so

P
(
|X − E[X]| ≥ ε

)
≤ var(X)

ε2
.

The last two bounds are called Chebyshev’s inequalities.

Problem 4. Let {Bt}t∈R+ be 2-dimensional Brownian motion and set

Dρ := { y ∈ R2 : |y| < ρ} for ρ > 0. (4)

Compute P x=0(Bt ∈ Dρ) for some fixed t > 0.

Solution. By the construction of the Brownian motion via the Kolmogorov’s extension
theorem, we have

P (Bt ∈ Dρ) =

∫
Dρ

p(t, 0, y)dy, (5)

where
p(t, 0, y) =

1

2πt
e−

|y|2
2t , y ∈ R2.

We compute

P x=0(Bt ∈ Dρ) =

∫
|y|<ρ

p(t, 0, y) dy =

∫ 2π

0

∫ ρ

0

1

2πt
e−

r2

2t r dr dθ =

∫ ρ

0

1

t
e−

r2

2t r dr.

Let u = r2

2t
so that r dr = t du. Then

P x=0(Bt ∈ Dρ) =

∫ ρ2/(2t)

0

e−u du = 1− e−
ρ2

2t .

As expected, for small t the probability is almost 1, whereas for large t it is almost zero.

Problem 5. Show that:

(a) I :=
∫
R e−

x2

2σ2 dx =
√
2πσ2.

Hint: For example, write I2 =
∫
R2 e−

1
2σ2 (x

2+y2)dxdy and go to polar coordinates.

(b)
∫
R eikxe−

x2

2σ2 dx =
√
2πσ2 e−

k2σ2

2 .

(c)
∫
Rd ei⟨k,x⟩e−

⟨x,C−1x⟩
2 dx =

√
(2π)ddet(C) e−

⟨k,Ck⟩
2 , where C is a d×d symmetric matrix

with strictly positive eigenvalues. Hint: Diagonalize the matrix, change variables
and use the previous item.

3



Solution. (a) Let

I :=

∫
R

e−
x2

2σ2 dx.

Then
I2 =

(∫
R

e−
x2

2σ2 dx

)(∫
R

e−
y2

2σ2 dy

)
=

∫
R2

e−
x2+y2

2σ2 dx dy.

Passing to polar coordinates (r, θ) with x = r cos θ, y = r sin θ, dx dy = r dr dθ, we obtain

I2 =

∫ 2π

0

∫ ∞

0

e−
r2

2σ2 r dr dθ = 2π

∫ ∞

0

e−
r2

2σ2 r dr.

Let u = r2

2σ2 , so du = r
σ2 dr and r dr = σ2 du. Then

I2 = 2πσ2

∫ ∞

0

e−u du = 2πσ2.

Taking the positive square root (the integral is positive),

I =
√
2πσ2.

(b) Consider ∫
R

eikx e−
x2

2σ2 dx.

Complete the square:

− x2

2σ2
+ ikx = − 1

2σ2

(
x2 − 2iσ2k x

)
= −(x− iσ2k)2

2σ2
− σ2k2

2
.

Hence ∫
R

eikx e−
x2

2σ2 dx = e−
σ2k2

2

∫
R

e−
(x−iσ2k)2

2σ2 dx.

The integrand is an entire function with Gaussian decay, so the contour can be shifted
from R to R+ iσ2k; the value equals the real-axis Gaussian integral from part (a):∫

R
e−

(x−iσ2k)2

2σ2 dx =

∫
R

e−
x2

2σ2 dx =
√
2πσ2.

Therefore, ∫
R

eikx e−
x2

2σ2 dx =
√
2πσ2 e−

σ2k2

2 .

(c) Let C be symmetric with strictly positive eigenvalues. Then there exists an orthogonal
matrix Q and a diagonal matrix Λ = diag(λ1, . . . , λd) with λj > 0 such that

C = QΛQ⊤, C−1 = QΛ−1Q⊤.
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Set y = Q⊤x and q = Q⊤k. Orthogonality gives dx = dy, and

⟨x,C−1x⟩ = x⊤C−1x = y⊤Λ−1y =
d∑

j=1

y2j
λj

, ⟨k, x⟩ = q⊤y =
d∑

j=1

qjyj.

Thus the integral factorizes:∫
Rd

ei⟨k,x⟩ e−
⟨x,C−1x⟩

2 dx =
d∏

j=1

(∫
R

eiqjyj e−
y2j
2λj dyj

)
.

By part (b) with σ2 = λj and k replaced by qj,∫
R

eiqjyj e−
y2j
2λj dyj =

√
2πλj e−

λjq
2
j

2 .

Multiplying over j,∫
Rd

ei⟨k,x⟩ e−
⟨x,C−1x⟩

2 dx =
( d∏

j=1

√
2πλj

)
e−

1
2

∑d
j=1 λjq

2
j =

√
(2π)d detC e−

1
2
q⊤Λq.

Finally, since q = Q⊤k and Q is orthogonal,

q⊤Λq = k⊤QΛQ⊤k = k⊤Ck = ⟨k, Ck⟩.

Hence ∫
Rd

ei⟨k,x⟩e−
⟨x,C−1x⟩

2 dx =
√

(2π)d det(C) e−
⟨k,Ck⟩

2 .

To be discussed in class: 17.10.2025
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