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Problem 1. A large class of automorphisms of WV is obtained as follows
a(W(z)) = c(2)W(5z) (1)

where ¢(z) € C\{0} and S : C" — C" a continuous bijection. Show that Weyl relations
impose the following restrictions on ¢, S

c(z + 2') = c(2)e(2), o(=z)=c(z), le(z)] =1, (2)
S(z+2)=58(z)+ S(z), S(—2)=-5(2), Im(Sz,S57) =1Im(z,2). (3)

Note that these relations imply that z — S(z) is a real-linear map and that S is symplectic.

Solution: Let us compute

0 =a(WE)W() - W(z—f—z'))
= c(2)e(z")W(S(2 )) (S(2') — 2™ ez + YW (S (2 + 2))
= ¢(2)c(2)er™EPISENW (5(2) + () — e2™FH ez 4 YW (S(2 + 2).  (4)
Hence
S(z+2")=5(z) + 5(¢) (5)
and
c(2)c(2) — p3(Im(z]2)~Im(S(2)[S(='))
clz+2) ’ (6)

= (c(=)W(5(2)))
= ()W (=5(2)) = e(=2)W(5(=2)) (7)
Which gives
S(=z) = =S(2), c(z) =c(~2) (8)

Now from a(1) = 1 we get ¢(0)W(S(0)) = W(0). Hence ¢(0) =1 and S(0) =



Now let us set

5 (Im(z2") = Im(S(2)[S(2))) =: é(z, 2') (9)
Then (6) gives
c(2)c(2') — (id(z2)
c(z+2) (10)

Since S(—z) = —5(z), we have ¢p(—z,—2") = ¢(z, 2). But since ¢(—z) = ¢(z), we have

eiqb(z,z') _ _ e—icf)(z,z’) (11)

Hence 2¢(z, 2') = 2mn, n € Z. Since for z = 2’ we have ¢(z,2') = 0 and ¢ is continuous
in z, 2/, we get ¢(z,2') =0 for all z, 2" i.e.
Im (z[2") = Im(S(2)[S(z")), (12)
c(z)e(2) = e(z+ 7). (13)

Problem 2. Show that, for continuous ¢ and S, automorphisms from Problem 4 are
unitarily implementable in all irreducible representations satisfying the Criterion.
Hint: Use the von Neumann uniqueness theorem.

Solution: Note that 7 o « is again an irreducible representation. Since S and c are
continuous, we obtain that

2= (U o a(W(2))Ws) = c(2)(Wq|m(W(Sz))Ws) (14)

i.,e. m o « satisfies the Criterion. Thus it is unitarily equivalent to the Schroedinger
representation 7y which is in turn unitarily equivalent to 7

moa(W) = Usm (W)U = UUn(W)U U (15)

Problem 3. Tet n: R x R — S! (where S! is the unit circle on the complex plane)
be a continuous function, differentiable in the second variable, that satisfies the "cocycle
relation":

n(r,s +4)n(s,t) =n(r +s,t)n(r, s) (16)
and
n(s,0) =n(0,t) = 1. (17)
Show that "the cocycle is a coboundary" that is
_ &(s)€()

for some continuous & : R — S*.



Hints:

(i) First show that 7(s,t) := ng? satisfies

~

(s t1 +ta2) = 17(s, t1)7(s,t2),  7(s1 + s2,t) = 7j(s1,1)7)(82, 1) (19)

Conclude from this and continuity that 7(s,t) = 1 i.e. 7 is symmetric (n(s,t) =
n(t,s)). Hence, n is differentiable in both variables.

(ii) Write (s, t) = €"*"). Show that the symmetry and cocycle relation imply

¢1(07t) - ¢2(t7 0)7 (20)
d1(s,t) = 91(0,s +t) — 1(0, 5), (21)
¢2(S’ t) = ¢2(5 +1, 0) - ¢2(tv O) (22)

where ¢1(s,t) := 0,¢0(r + s,1)|,—0 and ¢o(s,t) = 0,d(s,t + r)|r=o-
(iii) Define f(e) := ¢(es,et) so that

1
os.t) = [ deo.fe) (23)

0
Use this representation and (20), (21), (22) to construct ¢ s.t. £(s) = e~ in (18).

Remark 0.1 The following solution gives the answer only locally i.e. we will get (18)
for s, t,s +t in some neighbourhood of zero. The problem is that a priori we can write
n(s,t) = Y with continuous and differentiable ¢(s,t) only locally. Improvements may
follow.

Solution: First we show that n(s,t) = n(t, s). Let us define

N (s, t)
n(s,t) = —n(t’ e (24)
We show that
77](7“, 5+ t) = 77(7", S)ﬁ
’f](?” + s, t) = ﬁ(T‘, t)ﬁ(s

In fact, by a repetitive application of (16), we have

_ on(rys+t)  nlrs+n(st)  nlr+s,t)n(r,s)
s +1) = n(s+tr)  n(s+t,r)n(s,t)  nls,t+rntr)

e = A0 0

and analogously for (26). By Stone’s theorem, we have

(r,t), (25)
1),

- ﬁ(?“, 3)77(T’ t)

(s, t) = eMO f(s 1) = 20 (28)
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and by continuity of 77 we can conclude that A\;, Ay are continuous in some neighbourhood
of zero. Thus we can write

A (8)t = Xa(t)s + 2mn(s,t), n(s,t) € Z. (29)

Setting ¢, s = 0 we conclude that n(0,0) = 0, thus, by continuity of A;, A9, it must remain
zero in some neighbourhood of zero. There we have

Ails) _ Aa(t)
s t

(30)
Setting some fixed t = t; we conclude that A;(s) = ¢s, hence in a neighbourhood of zero
(s, t) = et (31)

Since 7(s,s) = 1 for all s, we get ¢ = 0. Hence 7(s,t) = 0 for small s,¢ and by the group
property for all s,t. So we have

(s, t) = n(t;s). (32)
Now we write (s, t) = ¢, Relation (16) gives
o(r,s+t)+ o(s, t) — o(r + s,t) — @(r, s) = 2mn(r, s, t). (33)
Since we have (17), we can demand that

®(s,0) = ¢(0,t) = 0. (34)

As ¢ is continuous, we then get n(r,s,t) = 0. By an analogous argument we get from
(32)

o(s,t) = P(t, s). (35)
Now we know that ¢ is differentiable and differentiate (35) w.r.t. s at zero. We get

¢1 (07 t) = ¢2(t7 O)a (36)

where we use the notation ¢;(s,t) := 0,¢(r + s,t)|,—¢ and analogously for ¢,.

Now we differentiate (33) w.r.t. . This gives

d1(s,t) = 91(0,s + 1) — $1(0, 5). (37)

Similarly, by differentiating (33) w.r.t. ¢ at zero we get

Go(r, 8) + ¢2(s,0) — Po(r + 5,0) = 0. (38)

By renaming variables (r, s) — (s,t) :
¢2(37 t) = ¢2(5 +1, 0) - ¢2(t7 0) (39)
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Now we consider the function f(e) = ¢(es, et). Clearly f(1) = ¢(s,t), f(0) =0 so

¢(s,t):/0 dsc?af(s):/o de (so1(es, et) + tda(es, et)).

Using (37), (39) we get

6(s,1) — /0 dz (3(61(0,£(s + £)) — 61(0,25)) + t(da(e(s + 1),0) — dal(ct, 0))

= /0 de ((s+1)91(0,e(s + 1)) — s¢1(0,e5) — tn (0, t)),

where in the last step we used (36). Thus setting

we can write

Hence we obtained that

¢(s,t) = d(s +1) — d(s) — (1)

77(8715> =

i) =i (t)

e—id(s+t)

o(s) = S/o de ¢1(0,€s)

(41)

(42)

(43)

(44)



