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Problem 1. A large class of automorphisms of W is obtained as follows

α(W (z)) = c(z)W (Sz) (1)

where c(z) ∈ C\{0} and S : Cn → Cn a continuous bijection. Show that Weyl relations
impose the following restrictions on c, S:

c(z + z′) = c(z)c(z′), c(−z) = c(z), |c(z)| = 1, (2)

S(z + z′) = S(z) + S(z′), S(−z) = −S(z), Im〈Sz, Sz′〉 = Im〈z, z′〉. (3)

Note that these relations imply that z 7→ S(z) is a real-linear map and that S is symplectic.

Solution: Let us compute

0 = α
(
W (z)W (z′)− e

i
2
Im〈z|z′〉W (z + z′)

)
= c(z)c(z′)W (S(z))W (S(z′))− e

i
2
Im〈z|z′〉c(z + z′)W (S(z + z′))

= c(z)c(z′)e
i
2
Im〈S(z)|S(z′)〉W (S(z) + S(z′))− e

i
2
Im〈z|z′〉c(z + z′)W (S(z + z′)). (4)

Hence

S(z + z′) = S(z) + S(z′). (5)

and

c(z)c(z′)

c(z + z′)
= e

i
2
(Im〈z|z′〉−Im〈S(z)|S(z′)〉). (6)

On the other hand

0 = α(W (z)∗ −W (−z)) = (α(W (z)))∗ − α(W (−z))

= (c(z)W (S(z)))∗ − c(−z)W (S(−z))

= c(z)W (−S(z))− c(−z)W (S(−z)). (7)

Which gives

S(−z) = −S(z), c(z) = c(−z). (8)

Now from α(1) = 1 we get c(0)W (S(0)) = W (0). Hence c(0) = 1 and S(0) = 0.
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Now let us set

1

2
(Im〈z|z′〉 − Im〈S(z)|S(z′)〉) =: φ(z, z′) (9)

Then (6) gives

c(z)c(z′)

c(z + z′)
= eiφ(z,z

′) (10)

Since S(−z) = −S(z), we have φ(−z,−z′) = φ(z, z′). But since c(−z) = c(z), we have

eiφ(z,z
′) =

c(−z)c(−z′)
c(−z − z′)

= e−iφ(z,z
′) (11)

Hence 2φ(z, z′) = 2πn, n ∈ Z. Since for z = z′ we have φ(z, z′) = 0 and φ is continuous
in z, z′, we get φ(z, z′) = 0 for all z, z′ i.e.

Im 〈z|z′〉 = Im〈S(z)|S(z′)〉, (12)

c(z)c(z′) = c(z + z′). (13)

Problem 2. Show that, for continuous c and S, automorphisms from Problem 4 are
unitarily implementable in all irreducible representations satisfying the Criterion.
Hint: Use the von Neumann uniqueness theorem.

Solution: Note that π ◦ α is again an irreducible representation. Since S and c are
continuous, we obtain that

z 7→ 〈Ψ1|π ◦ α(W (z))Ψ2〉 = c(z)〈Ψ1|π(W (Sz))Ψ2〉 (14)

i.e. π ◦ α satis�es the Criterion. Thus it is unitarily equivalent to the Schroedinger
representation π1 which is in turn unitarily equivalent to π

π ◦ α(W ) = Uαπ1(W )U−1α = UαUπ(W )U−1U−1α . (15)

Problem 3. Let η : R × R → S1 (where S1 is the unit circle on the complex plane)
be a continuous function, di�erentiable in the second variable, that satis�es the "cocycle
relation":

η(r, s+ t)η(s, t) = η(r + s, t)η(r, s) (16)

and

η(s, 0) = η(0, t) = 1. (17)

Show that "the cocycle is a coboundary" that is

η(s, t) =
ξ(s)ξ(t)

ξ(s+ t)
(18)

for some continuous ξ : R→ S1.
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Hints:

(i) First show that η̃(s, t) := η(s,t)
η(t,s)

satis�es

η̃(s, t1 + t2) = η̃(s, t1)η̃(s, t2), η̃(s1 + s2, t) = η̃(s1, t)η̃(s2, t). (19)

Conclude from this and continuity that η̃(s, t) = 1 i.e. η is symmetric (η(s, t) =
η(t, s)). Hence, η is di�erentiable in both variables.

(ii) Write η(s, t) = eiφ(s,t). Show that the symmetry and cocycle relation imply

φ1(0, t) = φ2(t, 0), (20)

φ1(s, t) = φ1(0, s+ t)− φ1(0, s), (21)

φ2(s, t) = φ2(s+ t, 0)− φ2(t, 0). (22)

where φ1(s, t) := ∂rφ(r + s, t)|r=0 and φ2(s, t) = ∂rφ(s, t+ r)|r=0.

(iii) De�ne f(ε) := φ(εs, εt) so that

φ(s, t) =

∫ 1

0

dε ∂εf(ε). (23)

Use this representation and (20), (21), (22) to construct φ̃ s.t. ξ(s) = e−iφ̃(s) in (18).

Remark 0.1 The following solution gives the answer only locally i.e. we will get (18)
for s, t, s + t in some neighbourhood of zero. The problem is that a priori we can write
η(s, t) = eiφ(s,t), with continuous and di�erentiable φ(s, t) only locally. Improvements may
follow.

Solution: First we show that η(s, t) = η(t, s). Let us de�ne

η̃(s, t) =
η(s, t)

η(t, s)
. (24)

We show that

η̃(r, s+ t) = η̃(r, s)η̃(r, t), (25)

η̃(r + s, t) = η̃(r, t)η̃(s, t). (26)

In fact, by a repetitive application of (16), we have

η̃(r, s+ t) =
η(r, s+ t)

η(s+ t, r)
=
η(r, s+ t)η(s, t)

η(s+ t, r)η(s, t)
=
η(r + s, t)η(r, s)

η(s, t+ r)η(t, r)

= η̃(r, s)η̃(r, t)
η(r + s, t)η(s, r)

η(s, t+ r)η(r, t)
= η̃(r, s)η̃(r, t). (27)

and analogously for (26). By Stone's theorem, we have

η̃(s, t) = eiλ1(s)t, η̃(s, t) = eiλ2(t)s, (28)
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and by continuity of η̃ we can conclude that λ1, λ2 are continuous in some neighbourhood
of zero. Thus we can write

λ1(s)t = λ2(t)s+ 2πn(s, t), n(s, t) ∈ Z. (29)

Setting t, s = 0 we conclude that n(0, 0) = 0, thus, by continuity of λ1, λ2, it must remain
zero in some neighbourhood of zero. There we have

λ1(s)

s
=
λ2(t)

t
(30)

Setting some �xed t = t0 we conclude that λ1(s) = cs, hence in a neighbourhood of zero

η̃(s, t) = eicst. (31)

Since η̃(s, s) = 1 for all s, we get c = 0. Hence η̃(s, t) = 0 for small s, t and by the group
property for all s, t. So we have

η(s, t) = η(t, s). (32)

Now we write η(s, t) = eiφ(s,t). Relation (16) gives

φ(r, s+ t) + φ(s, t)− φ(r + s, t)− φ(r, s) = 2πn(r, s, t). (33)

Since we have (17), we can demand that

φ(s, 0) = φ(0, t) = 0. (34)

As φ is continuous, we then get n(r, s, t) = 0. By an analogous argument we get from
(32)

φ(s, t) = φ(t, s). (35)

Now we know that φ is di�erentiable and di�erentiate (35) w.r.t. s at zero. We get

φ1(0, t) = φ2(t, 0), (36)

where we use the notation φ1(s, t) := ∂rφ(r + s, t)|r=0 and analogously for φ2.

Now we di�erentiate (33) w.r.t. r. This gives

φ1(s, t) = φ1(0, s+ t)− φ1(0, s). (37)

Similarly, by di�erentiating (33) w.r.t. t at zero we get

φ2(r, s) + φ2(s, 0)− φ2(r + s, 0) = 0. (38)

By renaming variables (r, s) 7→ (s, t) :

φ2(s, t) = φ2(s+ t, 0)− φ2(t, 0). (39)
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Now we consider the function f(ε) = φ(εs, εt). Clearly f(1) = φ(s, t), f(0) = 0 so

φ(s, t) =

∫ 1

0

dε ∂εf(ε) =

∫ 1

0

dε (sφ1(εs, εt) + tφ2(εs, εt)). (40)

Using (37), (39) we get

φ(s, t) =

∫ 1

0

dε
(
s(φ1(0, ε(s+ t))− φ1(0, εs)) + t(φ2(ε(s+ t), 0)− φ2(εt, 0))

)
=

∫ 1

0

dε
(
(s+ t)φ1(0, ε(s+ t))− sφ1(0, εs)− tφ1(0, εt)), (41)

where in the last step we used (36). Thus setting

φ̃(s) := s

∫ 1

0

dε φ1(0, εs) (42)

we can write

φ(s, t) = φ̃(s+ t)− φ̃(s)− φ̃(t). (43)

Hence we obtained that

η(s, t) =
e−iφ̃(s)e−iφ̃(t)

e−iφ̃(s+t)
. (44)
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