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Stochastic Differential Equations
Homework Sheet 3 - solutions

Problem 1. Show that

1

(2π)d/2

∫
Rd

dz
{
|z|2

}2e−
1
2
|z|2 = d(d+ 2), (1)

where |z|2 :=
∑d

i=1(zi)
2. Conclude that for R-valued random variable Z ∼ N(0, σ2) we

have E(Z4) = 3σ4.

Solution. By Problem 5 of HS2

I(a) :=

∫
Rd

e−
a
2
|z|2 dz = (2π)d/2 a−d/2, a > 0.

Differentiating under the integral,

I ′(a) =

∫
Rd

(
−1

2
|z|2

)
e−

a
2
|z|2 dz,

I ′′(a) =

∫
Rd

(
−1

2
|z|2

)2 e−
a
2
|z|2 dz.

Hence ∫
Rd

(
|z|2

)2 e−
a
2
|z|2 dz = 4 I ′′(a).

From the explicit formula for I(a) above

I ′′(a) = (2π)d/2
d

2

(
d

2
+ 1

)
a−

d
2
−2.

Therefore ∫
Rd

(
|z|2

)2 e−
a
2
|z|2 dz = (2π)d/2 d(d+ 2) a−

d
2
−2.

Thus for for a = 1 we obtain the claim.

Now if d = 1 and Z ∈ N(0, σ2), then Z/σ ∈ N(0, 1) (see lecture notes, construction of
Brownian motion via the CLT). Then

E[
(
Z/σ

)4
] = d(d+ 2) = 3, (2)

hence, E(Z4) = 3σ4.
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Problem 2. Let Y ∼ N(0, 1) and set for some a > 0

Z = Y χ{|Y |≤a} − Y χ{|Y |>a}. (3)

Show that also Z ∼ N(0, 1). Also, show that Y + Z is not normal, hence X = (Y, Z)
is not a multi-normal random variable. (In this exercise non-degenerate (multi-)normal
distributions are meant).

Notation: χ{|Y |≤a}(ω) := χ{y∈R : |y|≤a}(Y (ω)). The function χ{|Y |>a} is defined analogously.

Solution. Step 1: Z is standard normal.

Let ϕZ(u) = E[eiuZ ]. Then, we verify that, for any characteristic function χA,

eiuY χA =χAc + eiuY χA, (4)

by checking separately for ω ∈ A and ω ∈ Ac. Setting A = {|Y | ≤ a} and Ac = {|Y | > a},
we have

eiuZ = eiuY χAe−iuY χAc = (χAc + eiuY χA)(χA + e−iuY χAc) = eiuY χA + e−iuY χAc . (5)

Hence,
ϕZ(u) = E

[
eiuY χ{|Y |≤a}

]
+ E

[
e−iuY χ{|Y |>a}

]
.

Compute the second term explicitly via the density of Y :

E
[
e−iuY χ{|Y |>a}

]
=

∫
|y|>a

e−iuy e−y2/2

√
2π

dy.

With the change of variables x = −y we get∫
|y|>a

e−iuy e−y2/2

√
2π

dy =

∫
|x|>a

eiux
e−x2/2

√
2π

dx = E
[
eiuY χ{|Y |>a}

]
.

Hence
ϕZ(u) = E

[
eiuY χ{|Y |≤a}

]
+ E

[
eiuY χ{|Y |>a}

]
= E

[
eiuY

]
= e−u2/2.

Therefore Z ∼ N(0, 1).

Step 2: Y + Z is not normal. By definition,

Y + Z =

{
2Y, |Y | ≤ a,

0, |Y | > a.

If |Y | ≤ a then Y ≤ a so 2Y ≤ 2a, hence (Y + Z) > 2a cannot occur in this case. If
|Y | > a then Y + Z = 0 ≤ 2a, so (Y + Z) > 2a also cannot occur. Therefore

P (Y + Z > 2a) = 0.

But any non-degenerate Gaussian random variable has an everywhere strictly positive
density. Consequently, Y + Z cannot be such a Gaussian.

Step 3: (Y, Z) is not jointly normal. If (Y, Z) were jointly normal (non-degenerate),
then every nontrivial linear combination, in particular Y + Z, would be normal (non-
degenerate), contradicting Step 2. Thus X = (Y, Z) is not multi-normal.
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Problem 3. Suppose Xk : Ω → Rd are normal for all k and Xk → X in L2(Ω), i.e.

E[|Xk −X|2] → 0 as k → ∞. (6)

Show that X is normal.

Solution. The most direct solution appear to be to write

E[exp(i⟨u,Xk⟩)] = exp

(
− 1

2
⟨u,Cku⟩+ i⟨u,mk⟩

)
(7)

and then use the formulas from the lecture expressing Ck and mk in terms of Xk (as done
in class).

Here we give a different argument: First, note that |ei⟨u,x⟩ − ei⟨u,x⟩| ≤ |u| · |x − y|. This
follows, e.g., from

|ei⟨u,x⟩ − ei⟨u,x⟩|= |1− ei⟨u,(x−y)⟩|

= |
∫ 1

0

d

dw
eiw⟨u,(x−y)⟩dw|

= |i⟨u, (x− y)⟩
∫ 1

0

eiw⟨u,(x−y)⟩dw|

≤ |u||x− y|. (8)

Thus, we have

E

[{
exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)

}2
]
≤ |u|2E[|Xk −X|2] (9)

as k → ∞. Therefore∣∣E[exp(i⟨u,Xk⟩)]− E[exp(i⟨u,X⟩)]
∣∣ ≤ ∫

| exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)|dP (10)

≤ (

∫
| exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)|2dP )1/2 → 0,

(11)

where we used the Cauchy-Schwarz inequality. Up to now we have not used that Xk are
Gaussian. Actually, we have verified, quite generally, that the L2-convergence implies the
convergence of the characteristic function, pointwise in u.

We conclude that

E[exp(i⟨u,Xk⟩)] = exp

(
− 1

2
⟨u,Cku⟩+ i⟨u,mk⟩

)
(12)

converge for any fixed u.

Using this, let us now justify that Ck and mk converge to some C and m. In fact, since (12)
converges, also its absolute value does, hence exp(−1

2
⟨u,Cku⟩) must converge, therefore

also ⟨u,Cku⟩ must converge. As this holds for all u, by polarization,

⟨v1, Ckv2⟩ =
1

4
(⟨(v1 + v2), Ck(v1 + v2)⟩ − ⟨(v1 − v2), Ck(v1 − v2)⟩) (13)
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all matrix elements converge. Now it suffices to show that convergence of eiumk for all
u implies convergence of mk. We proceed by contradiction. First, suppose mk → ∞
(perhaps along a subsequence). Set F (u) := limk→∞ eiumk . Then, by the Riemann-
Lebesgue lemma and dominated convergence, for any f ∈ L1(Rd)

0 = lim
k→∞

∫
eiu·mkf(u)du =

∫
F (u)f(u)du. (14)

But F is non-zero since F (0) = 1 and we can choose e.g. f(u) = F (u)e−|u|2 to ensure
that the integral (14) is non-zero and finite, which is a contradiction. Now suppose that
mk has two (or more) finite accumulation points. Choose any g ∈ L1(Rd) s.t, ĝ takes
different values near these accumulation points. Then∫

eiumkg(u)du = ĝ(mk). (15)

By taking the limit of both sides the l.h.s. converges by dominated convergence and the
r.h.s. does not as k 7→ ĝ(mk) jumps between the two accumulation points. Again, a
contradiction.

Since Ck = CT
k for all k, also the limiting matrix is symmetric. Similarly, since for any

u ∈ Rd we have ⟨u,Cku⟩ ≥ 0 and the inequality ≥ survives limits, we conclude that C
has positive eigenvalues.

But we cannot conclude that a sequence of non-degenerate Gaussians converges to a non-
degenerate Gaussian, since the inequality > may become ≥ in the limit. Actually, such
a scenario can easily happen under the assumptions of this problem: Let Z be any non-
degenerate Gaussian, set Xk =

1
k
Z so that it trivially converges in L2(Ω) to X ≡ 0. Note

that X ≡ 0 has the Dirac delta distribution hence it is degenerate Gaussian.

Problem 4. Let {Xn}n≥1 and X be random variables on a common probability space.
We say that Xn converges in probability to X, written Xn

P−→ X, if for every ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

Show that if Xn → X in L2(Ω), i.e.

E[(Xn −X)2] −−−→
n→∞

0,

then Xn
P−→ X. Hint: Use the Chebyshev’s inequality from HS2, Problem 3.

Solution. Will be discussed in class on 07.11.2025 and posted afterwards.

Problem 5. Let {Bt}t∈R+ be d-dimensional Brownian motion, d ≥ 3, starting at x. Let
K ⊂ Rd be a bounded Borel set and T > 0. Then the random variable

Ω ∋ ω 7→
∫ T

0

χ{ω̃∈Ω:Bt(ω̃)∈K}(ω)dt (16)
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denoted in short-hand notation∫ T

0

χ{Bt∈K}dt = lim
|Π|→0

n∑
i=1

χ{Bξi
∈K}∆ti (17)

is the time this stochastic process spends in K up to the ‘time horizon’ T . (This is more
clear from the Riemann sum representation, where the sum counts only the time-intervals
∆ti for which the Brownian motion Bξi , ξi ∈ [ti−1ti], is in K). Show that

lim
T→∞

Ex

[ ∫ T

0

χ{Bt∈K}dt

]
=

∫
K

G(x, y)dy, (18)

where G(x, y) := cd
|x−y|d−2 for some cd > 0.

Solution. Will be discussed in class on 07.11.2025 and posted afterwards.

To be discussed in class: 24.10.2025
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