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Problem 1. Show that

1

(2π)d/2

∫
Rd

dz
{
|z|2

}2e−
1
2
|z|2 = d(d+ 2), (1)

where |z|2 :=
∑d

i=1(zi)
2. Conclude that for R-valued random variable Z ∼ N(0, σ2) we

have E(Z4) = 3σ4.

Solution. By Problem 5 of HS2

I(a) :=

∫
Rd

e−
a
2
|z|2 dz = (2π)d/2 a−d/2, a > 0.

Differentiating under the integral,

I ′(a) =

∫
Rd

(
−1

2
|z|2

)
e−

a
2
|z|2 dz,

I ′′(a) =

∫
Rd

(
−1

2
|z|2

)2 e−
a
2
|z|2 dz.

Hence ∫
Rd

(
|z|2

)2 e−
a
2
|z|2 dz = 4 I ′′(a).

From the explicit formula for I(a) above

I ′′(a) = (2π)d/2
d

2

(
d

2
+ 1

)
a−

d
2
−2.

Therefore ∫
Rd

(
|z|2

)2 e−
a
2
|z|2 dz = (2π)d/2 d(d+ 2) a−

d
2
−2.

Thus for for a = 1 we obtain the claim.

Now if d = 1 and Z ∈ N(0, σ2), then Z/σ ∈ N(0, 1) (see lecture notes, construction of
Brownian motion via the CLT). Then

E[
(
Z/σ

)4
] = d(d+ 2) = 3, (2)

hence, E(Z4) = 3σ4.
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Problem 2. Let Y ∼ N(0, 1) and set for some a > 0

Z = Y χ{|Y |≤a} − Y χ{|Y |>a}. (3)

Show that also Z ∼ N(0, 1). Also, show that Y + Z is not normal, hence X = (Y, Z)
is not a multi-normal random variable. (In this exercise non-degenerate (multi-)normal
distributions are meant).

Notation: χ{|Y |≤a}(ω) := χ{y∈R : |y|≤a}(Y (ω)). The function χ{|Y |>a} is defined analogously.

Solution. Step 1: Z is standard normal.

Let ϕZ(u) = E[eiuZ ]. Then, we verify that, for any characteristic function χA,

eiuY χA =χAc + eiuY χA, (4)

by checking separately for ω ∈ A and ω ∈ Ac. Setting A = {|Y | ≤ a} and Ac = {|Y | > a},
we have

eiuZ = eiuY χAe−iuY χAc = (χAc + eiuY χA)(χA + e−iuY χAc) = eiuY χA + e−iuY χAc . (5)

Hence,
ϕZ(u) = E

[
eiuY χ{|Y |≤a}

]
+ E

[
e−iuY χ{|Y |>a}

]
.

Compute the second term explicitly via the density of Y :

E
[
e−iuY χ{|Y |>a}

]
=

∫
|y|>a

e−iuy e−y2/2

√
2π

dy.

With the change of variables x = −y we get∫
|y|>a

e−iuy e−y2/2

√
2π

dy =

∫
|x|>a

eiux
e−x2/2

√
2π

dx = E
[
eiuY χ{|Y |>a}

]
.

Hence
ϕZ(u) = E

[
eiuY χ{|Y |≤a}

]
+ E

[
eiuY χ{|Y |>a}

]
= E

[
eiuY

]
= e−u2/2.

Therefore Z ∼ N(0, 1).

Step 2: Y + Z is not normal. By definition,

Y + Z =

{
2Y, |Y | ≤ a,

0, |Y | > a.

If |Y | ≤ a then Y ≤ a so 2Y ≤ 2a, hence (Y + Z) > 2a cannot occur in this case. If
|Y | > a then Y + Z = 0 ≤ 2a, so (Y + Z) > 2a also cannot occur. Therefore

P (Y + Z > 2a) = 0.

But any non-degenerate Gaussian random variable has an everywhere strictly positive
density. Consequently, Y + Z cannot be such a Gaussian.

Step 3: (Y, Z) is not jointly normal. If (Y, Z) were jointly normal (non-degenerate),
then every nontrivial linear combination, in particular Y + Z, would be normal (non-
degenerate), contradicting Step 2. Thus X = (Y, Z) is not multi-normal.
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Problem 3. Suppose Xk : Ω → Rd are normal for all k and Xk → X in L2(Ω), i.e.

E[|Xk −X|2] → 0 as k → ∞. (6)

Show that X is normal.

Solution. The most direct solution appear to be to write

E[exp(i⟨u,Xk⟩)] = exp

(
− 1

2
⟨u,Cku⟩+ i⟨u,mk⟩

)
(7)

and then use the formulas from the lecture expressing Ck and mk in terms of Xk (as done
in class).

Here we give a different argument: First, note that |ei⟨u,x⟩ − ei⟨u,x⟩| ≤ |u| · |x − y|. This
follows, e.g., from

|ei⟨u,x⟩ − ei⟨u,x⟩|= |1− ei⟨u,(x−y)⟩|

= |
∫ 1

0

d

dw
eiw⟨u,(x−y)⟩dw|

= |i⟨u, (x− y)⟩
∫ 1

0

eiw⟨u,(x−y)⟩dw|

≤ |u||x− y|. (8)

Thus, we have

E

[{
exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)

}2
]
≤ |u|2E[|Xk −X|2] (9)

as k → ∞. Therefore∣∣E[exp(i⟨u,Xk⟩)]− E[exp(i⟨u,X⟩)]
∣∣ ≤ ∫

| exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)|dP (10)

≤ (

∫
| exp(i⟨u,Xk⟩)− exp(i⟨u,X⟩)|2dP )1/2 → 0,

(11)

where we used the Cauchy-Schwarz inequality. Up to now we have not used that Xk are
Gaussian. Actually, we have verified, quite generally, that the L2-convergence implies the
convergence of the characteristic function, pointwise in u.

We conclude that

E[exp(i⟨u,Xk⟩)] = exp

(
− 1

2
⟨u,Cku⟩+ i⟨u,mk⟩

)
(12)

converge for any fixed u.

Using this, let us now justify that Ck and mk converge to some C and m. In fact, since (12)
converges, also its absolute value does, hence exp(−1

2
⟨u,Cku⟩) must converge, therefore

also ⟨u,Cku⟩ must converge. As this holds for all u, by polarization,

⟨v1, Ckv2⟩ =
1

4
(⟨(v1 + v2), Ck(v1 + v2)⟩ − ⟨(v1 − v2), Ck(v1 − v2)⟩) (13)
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all matrix elements converge. Now it suffices to show that convergence of eiumk for all
u implies convergence of mk. We proceed by contradiction. First, suppose mk → ∞
(perhaps along a subsequence). Set F (u) := limk→∞ eiumk . Then, by the Riemann-
Lebesgue lemma and dominated convergence, for any f ∈ L1(Rd)

0 = lim
k→∞

∫
eiu·mkf(u)du =

∫
F (u)f(u)du. (14)

But F is non-zero since F (0) = 1 and we can choose e.g. f(u) = F (u)e−|u|2 to ensure
that the integral (14) is non-zero and finite, which is a contradiction. Now suppose that
mk has two (or more) finite accumulation points. Choose any g ∈ L1(Rd) s.t, ĝ takes
different values near these accumulation points. Then∫

eiumkg(u)du = ĝ(mk). (15)

By taking the limit of both sides the l.h.s. converges by dominated convergence and the
r.h.s. does not as k 7→ ĝ(mk) jumps between the two accumulation points. Again, a
contradiction.

Since Ck = CT
k for all k, also the limiting matrix is symmetric. Similarly, since for any

u ∈ Rd we have ⟨u,Cku⟩ ≥ 0 and the inequality ≥ survives limits, we conclude that C
has positive eigenvalues.

But we cannot conclude that a sequence of non-degenerate Gaussians converges to a non-
degenerate Gaussian, since the inequality > may become ≥ in the limit. Actually, such
a scenario can easily happen under the assumptions of this problem: Let Z be any non-
degenerate Gaussian, set Xk =

1
k
Z so that it trivially converges in L2(Ω) to X ≡ 0. Note

that X ≡ 0 has the Dirac delta distribution hence it is degenerate Gaussian.

Problem 4. Let {Xn}n≥1 and X be random variables on a common probability space.
We say that Xn converges in probability to X, written Xn

P−→ X, if for every ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

Show that if Xn → X in L2(Ω), i.e.

E[(Xn −X)2] −−−→
n→∞

0,

then Xn
P−→ X. Hint: Use the Chebyshev’s inequality from HS2, Problem 3.

Solution. To prove (b), fix ε > 0. By the Chebyshev’s inequality,

P (|Xn −X| > ε) ≤ E[(Xn −X)2]

ε2
.

If E[(Xn −X)2] → 0 as n → ∞, then the right-hand side tends to 0 for each fixed ε > 0,
hence

lim
n→∞

P (|Xn −X| > ε) = 0,
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which is exactly Xn
P−→ X.

Side remark: The topology of convergence in probability comes from the metric

dP (X, Y ) = P (min(|X − Y |, 1)) (16)

(Ky Fan metric) The space of measurable functions equipped with this metric is denoted
(L0, dP ). It is a complete topological vector space. However, there are no non-zero linear
functionals on this space, which would be continuous in this topology (trivial topological
dual), unless Ω finite. Hence, there is also no norm generating the topology.

Problem 5. Let {Bt}t∈R+ be d-dimensional Brownian motion, d ≥ 3, starting at x. Let
K ⊂ Rd be a bounded Borel set and T > 0. Then the random variable

Ω ∋ ω 7→
∫ T

0

χ{ω̃∈Ω:Bt(ω̃)∈K}(ω)dt =

∫ T

0

χK(Bt(ω))dt (17)

denoted in short-hand notation∫ T

0

χ{Bt∈K}dt = lim
|Π|→0

n∑
i=1

χ{Bξi
∈K}∆ti (18)

is the time this stochastic process spends in K up to the ‘time horizon’ T . (This is more
clear from the Riemann sum representation, where the sum counts only the time-intervals
∆ti for which the Brownian motion Bξi , ξi ∈ [ti−1ti], is in K). Show that

lim
T→∞

Ex

[ ∫ T

0

χ{Bt∈K}dt

]
=

∫
K

G(x, y)dy, (19)

where G(x, y) := cd
|x−y|d−2 for some cd > 0.

Solution. Let {Bt}t≥0 be the d-dimensional Brownian motion, d ≥ 3, starting at x ∈ Rd.
Recall

p(t, x, y) := (2πt)−d/2 e−
|x−y|2

2t , t > 0, x, y ∈ Rd.

The expected time the process spends in K up to time T is

Ex

[∫ T

0

χ{Bt∈K} dt

]
=

∫ T

0

P x(Bt ∈ K) dt =

∫ T

0

∫
K

p(t, x, y) dy dt,

where the Fubini theorem justifies the exchange of integrals.

Letting T → ∞ and applying the Fubini and monotone convergence theorem (for an
increasing sequence of positive integrands we can exchange the limit with integral) gives

lim
T→∞

Ex

[∫ T

0

χ{Bt∈K} dt

]
=

∫
K

(∫ ∞

0

p(t, x, y) dt

)
dy =

∫
K

G(x, y) dy,

where we defined the Green function:

G(x, y) =

∫ ∞

0

p(t, x, y) dt.
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• Computation of G(x, y). Let r = |x− y|. Then

G(x, y) = (2π)−d/2

∫ ∞

0

t−d/2 e−
r2

2t dt.

Using the substitution u = r2

2t
, i.e. t = r2

2u
and dt = − r2

2u2du, we obtain

G(x, y) = (2π)−d/2 r2−d

∫ ∞

0

2
d
2
−1u

d
2
−2 e−u du =

Γ(d
2
− 1)

2πd/2
r2−d,

where Γ(x) =
∫∞
0

tx−1e−tdt. Equivalently,

G(x, y) =
2

(d− 2) |Sd−1|
|x− y|2−d,

since |Sd−1| = 2πd/2

Γ(d/2)
.

• Conclusion. For d ≥ 3,

lim
T→∞

Ex

[∫ T

0

χ{Bt∈K} dt

]
=

∫
K

G(x, y) dy =

∫
K

cd
|x− y|d−2

dy,

with cd =
Γ( d

2
−1)

2πd/2 > 0.

• Side remark: G is an example of a Green function (also called a fundamental
solution in the PDE theory). Schematically, they satisfy:

[Differential operator][Green function] = [Dirac delta]. (20)

In our case, it holds

−1
2
∆yG(x, y) = δx(y) in S ′(Rd). (21)

In fact, since G(x, y) =
∫∞
0

p(t, x, y) dt and ∂tp(t, x, y) =
1
2
∆yp(t, x, y), we have

−1

2
∆yG(x, y) =

∫ ∞

0

(−∂t)p(t, x, y) dt = p(0, x, y)− p(∞, x, y) = δx(y). (22)

Actually, one can also show (21) by using Fourier transforms: Fix d ≥ 3 and define

G(x, y) =
cd

|x− y|d−2
, x, y ∈ Rd.

Fourier transform convention.

We use

f̂(u) =

∫
Rd

e iy·u f(y) dy, f(y) =
1

(2π)d

∫
Rd

e−iy·u f̂(u) du.

Then
∂̂yjf(u) = iuj f̂(u), ∆̂yf(u) = −|u|2f̂(u), δ̂x(u) = e ix·u.
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– Step 1: Fourier transform of G(x, ·). By translation invariance of the
Fourier transform,

Ĝ(x, ·)(u) = cd e
ix·u ̂| · |−(d−2)(u).

A standard Riesz–potential identity gives

̂|y|−(d−2)(u) = Cd |u|−2, Cd =
4πd/2

Γ
(
d−2
2

) .
Therefore,

Ĝ(x, ·)(u) = cd Cd e
ix·u |u|−2.

– Step 2: Apply −1
2
∆y. Using ∆̂yf = −|u|2f̂ ,

̂−1
2
∆yG(x, ·)(u) = 1

2
|u|2Ĝ(x, ·)(u) = 1

2
cdCd e

ix·u.

We want this to equal δ̂x(u) = e ix·u, hence we require

1
2
cdCd = 1 ⇐⇒ cd =

2

Cd

.

– Step 3: Simplify the constant. Since the surface area of the unit sphere in
Rd is

|Sd−1| = 2πd/2

Γ(d/2)
and Γ

(
d
2

)
= d−2

2
Γ
(
d−2
2

)
,

we obtain
2

Cd

=
2

4πd/2

Γ((d−2)/2)

=
Γ((d− 2)/2)

2πd/2
=

2

(d− 2) |Sd−1|
.

Thus,

cd =
2

(d− 2) |Sd−1|
.

– Conclusion. With this choice of cd, we have

̂−1
2
∆yG(x, ·)(u) = e ix·u = δ̂x(u),

and by injectivity of the Fourier transform on S ′(Rd),

−1
2
∆yG(x, y) = δx(y)

in the sense of distributions.

There is a random walk version of Problem 5, known as Polya theorem, which we discuss
here briefly as additional material:
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Theorem 0.1. The simple symmetric random walk {Xn}n≥0 on Zd (one step to each of
the 2d nearest neighbors with prob. 1/(2d)) starting at 0:

(a) Is recurrent if d = 1, 2. That is P (the walk returns to the origin infinitely often) =
1.

(b) Is transient if d ≥ 3. That is P (the walk returns to the origin infinitely often) = 0.

Remark 0.2. In low dimensions the space is so tight that there is nowhere to escape. In
higher dimensions there are so many different directions that the walk escapes eventually.

Proof for d = 1: Let xn be the position of random walker after n steps on Z, like in
the first lecture. Denote by N =

∑∞
n=0 χ(xn = 0) the random variable which counts the

number of visits to zero. Then

G(0, 0) :=
∞∑
n=0

P (xn = 0) = E
[
N
]
. (23)

We define

u := P (the walk returns to 0 at some time n ≥ 1) (24)

and we want to show u = 1. Then the walk is recurrent, because after it comes back to
zero and restarts, it will again return to zero with probability one and so on.

Let R := N − 1 be the number of returns to zero after time 0. The process of "returns to
zero" behaves like a sequence of independent trials:

• with probability u failure to escape.

• with probability 1− u escapes.

Thus R follows a geometric distribution (Geom(1 − u) - number of Bernoulli trials until
the first "success" - in our case first escape)

P (R = k) = uk(1− u), k = 0, 1, 2, . . . (25)

and

E[R] =
∞∑
k=0

kuk(1− u) =
u

1− u
. (26)

Hence

E[N ] = 1 + E[R] =
1

1− u
. (27)

Consequently, the walk is recurrent iff G(0, 0) diverges. We note that

G(0, 0) ≥
∞∑
n=0

P (x2n = 0) =
∞∑
n=0

P [0, 2n] =
∞∑
n=0

(
2n

n

)
1

22n
=

∞∑
n=0

(2n)!

(n!)2
1

22n
, (28)
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where we used P [k, n] := P (Rn = (n+ k)/2) =
(

n
1
2
(n+k)

)
1
2n

. The last series is divergent as
one can check using the Stirling formula

√
2πn

(
n

e

)n

e
1

12n+1 < n! <
√
2πn

(
n

e

)n

e
1

12n . (29)

In fact

(2n)!

(n!)2
1

22n
≥ 1

22n

√
4πn

(
2n
e

)2ne 1
24n+1

(
√
2πn)2

(
n
e

)2ne 2
12n

=
1√
πn

e
1

24n+1
− 2

12n ≥ 1

2

1√
πn

(30)

for sufficiently large n so (28) diverges. □

To be discussed in class: 24.10.2025
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