Prof. UAM dr hab. Wojciech Dybalski AMU Poznan
Winter semester 2025 /26

Stochastic Differential Equations
Homework Sheet 3 - solutions

Problem 1. Show that

W/R de{]o} e = d(d +2), (1)

where |2]? := 2?21(21')2- Conclude that for R-valued random variable Z ~ N(0,0?) we
have E(Z*) = 30*.

Solution. By Problem 5 of HS2

I(a) = / e 2 gy = (2m) 4% a=4/2, a>0.
R4

Differentiating under the integral,
I'(a) = / (—312) e72l dz,
Rd

o) = [ (3P e e

Hence

/Rd (12 e 2 4z = 41"(a).

From the explicit formula for I(a) above

d(d

I'(a) = ()" (5 4 1) )

Therefore .
/ (12P)? - dz = (2m) 2 d(d + 2) 0™ 272,
]Rd

Thus for for a = 1 we obtain the claim.

Now if d = 1 and Z € N(0,0?), then Z/o € N(0,1) (see lecture notes, construction of
Brownian motion via the CLT). Then

E((Z/0)" = d(d+2) = 3, (2)

hence, F(Z*) = 30%.



Problem 2. Let Y ~ N(0, 1) and set for some a > 0

Z =Y X{v|<a} — Y X{V[>a}- (3)

Show that also Z ~ N(0,1). Also, show that Y + Z is not normal, hence X = (Y, 2)
is not a multi-normal random variable. (In this exercise non-degenerate (multi-)normal
distributions are meant).

Notation: x{y|<e} (W) := X{yer:|yj<a} (Y (w)). The function xjy|>q} is defined analogously.
Solution. Step 1: 7 is standard normal.

Let ¢z (u) = E[e™?]. Then, we verify that, for any characteristic function y 4,

eiuYXA =Y 4e + eiUYXA7 (4)

by checking separately for w € A and w € A°. Setting A = {|Y| < a} and A° = {|Y]| > a},
we have
eiuZ — eiuYXAefiuYXAc Y iuYXAC) —_ eiuYXA + efiuYXAc. (5)

= (xac +e" xa)(xa +e

Hence,
¢z(u) = E[e" Xqyiza] + E[e™ Xqvsa}] -
Compute the second term explicitly via the density of Y:
~y?/2

. .o €
E e—wYX Vieat] = / e Uy 2 dy
e Xy >a)] R -

With the change of variables x = —y we get

Ux

/‘ S & ~ Bl ]
e ——dy = e r=FEe" xry|>at| -
ly|>a 24 [ >a V2 e

¢z(u) = E[eiuYX{\Y\ga}} + E[GWYX{\Y\N;}} = E[eiuy} — o /2
Therefore Z ~ N(0,1).

Hence

Step 2: Y + Z is not normal. By definition,
2, Y| <
y4z={ N=e
0, |Y|>a.

If Y| <athenY < aso?2Y < 2a, hence (Y + Z) > 2a cannot occur in this case. If
Y| >athen Y + 2 =0 <2a,so0 (Y + Z) > 2a also cannot occur. Therefore

P(Y+Z >2a)=0.

But any non-degenerate Gaussian random variable has an everywhere strictly positive
density. Consequently, Y + Z cannot be such a Gaussian.

Step 3: (Y, Z) is not jointly normal. If (Y, Z) were jointly normal (non-degenerate),
then every nontrivial linear combination, in particular Y + Z, would be normal (non-
degenerate), contradicting Step 2. Thus X = (Y, Z) is not multi-normal.
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Problem 3. Suppose X : 2 — R? are normal for all k and X}, — X in L*(Q), i.e.
E[|X,— X" -0 as k— oco. (6)
Show that X is normal.

Solution. The most direct solution appear to be to write

(u, Cru) + i(u, mk>) (7)

Elexp(i(u, X,))] = exp ( _ %

and then use the formulas from the lecture expressing Cy and my, in terms of X}, (as done
in class).

Here we give a different argument: First, note that |e!®®) — e/®®)| < |y| - |2 — y|. This
follows, e.g., from

|ei<u,x) . ei(u,x>| _ |1 . ei(u,(x—y))|

1
d .
:|/ _d elw<u7(x_y)>dw|
o dw

1
~li(us(z =) [ e
0

< ullz —yl. (8)
Thus, we have
B |{ explitu, X0)) — explifu, XD | < [uPE[Xi— XP) )
as k — o0o. Therefore
| Elexp(i{u, X))] — Elexp(i{u, X))]| < /|exp(i<u,Xk>) — exp(i(u, X))|dP (10)

< (/ | exp(i(u, Xp)) — exp(i{u, X))[2dP)/? — 0,
(11)

where we used the Cauchy-Schwarz inequality. Up to now we have not used that X} are
Gaussian. Actually, we have verified, quite generally, that the L*-convergence implies the
convergence of the characteristic function, pointwise in u.

We conclude that
Elexp(i{u, X))] = exp ( — %(u, Cru) + i(u,mk>) (12)

converge for any fixed u.

Using this, let us now justify that C, and my, converge to some C' and m. In fact, since (12)
converges, also its absolute value does, hence exp(—3(u, Cyu)) must converge, therefore
also (u, Cyu) must converge. As this holds for all u, by polarization,

(00, Ch) = (01 +02), Culwr + ) — {(0r = ), Culer — ) (13)



all matrix elements converge. Now it suffices to show that convergence of e®™* for all
u implies convergence of my. We proceed by contradiction. First, suppose myp — oo
(perhaps along a subsequence). Set F(u) := limy_ o €™ . Then, by the Riemann-
Lebesgue lemma and dominated convergence, for any f € L'(R%)

0= klim "Mk f (u)du = /F(u)f(u)du (14)
—00

But F is non-zero since F(0) = 1 and we can choose e.g. f(u) = F(u)e " to ensure
that the integral (14) is non-zero and finite, which is a contradiction. Now suppose that
my has two (or more) finite accumulation points. Choose any g € L'(R?) s.t, § takes
different values near these accumulation points. Then

/ e g (1) du = (). (15)

By taking the limit of both sides the 1.h.s. converges by dominated convergence and the
r.h.s. does not as k — §(my) jumps between the two accumulation points. Again, a
contradiction.

Since Cj, = CF for all k, also the limiting matrix is symmetric. Similarly, since for any
u € R? we have (u, Cyu) > 0 and the inequality > survives limits, we conclude that C
has positive eigenvalues.

But we cannot conclude that a sequence of non-degenerate Gaussians converges to a non-
degenerate Gaussian, since the inequality > may become > in the limit. Actually, such
a scenario can easily happen under the assumptions of this problem: Let Z be any non-
degenerate Gaussian, set X = %Z so that it trivially converges in L*(2) to X = 0. Note
that X = 0 has the Dirac delta distribution hence it is degenerate Gaussian.

Problem 4. Let {X,,},>1 and X be random variables on a common probability space.

We say that X,, converges in probability to X, written X, i X, if for every € > 0,

lim P(|X, — X|>¢) =0.

n—oo

Show that if X,, — X in L*(Q), i.e.

B[(Xn = X)’] —0,

n—o0

then X, %y X. Hint: Use the Chebyshev’s inequality from HS2, Problem 3.
Solution. To prove (b), fix £ > 0. By the Chebyshev’s inequality,
E[(X, — X)?]

c2

P(X,—X|>¢) <

If E[(X, — X)? — 0 as n — oo, then the right-hand side tends to 0 for each fixed ¢ > 0,
hence
lim P(|X, — X| > ¢) =0,

n—oo
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which is exactly X, = X.

Side remark: The topology of convergence in probability comes from the metric

(Ky Fan metric) The space of measurable functions equipped with this metric is denoted
(L%, dp). Tt is a complete topological vector space. However, there are no non-zero linear
functionals on this space, which would be continuous in this topology (trivial topological
dual), unless (2 finite. Hence, there is also no norm generating the topology.

Problem 5. Let {B,};,cr, be d-dimensional Brownian motion, d > 3, starting at z. Let
K C R? be a bounded Borel set and 7' > 0. Then the random variable

T T
Aswr / X{oe0: B, (@)ck}(W)dt = / X (Be(w))dt (17)
0 0

denoted in short-hand notation
T n
/ X{BtEK}dt = lim Z X{BgEK}AtZ (18)

is the time this stochastic process spends in K up to the ‘time horizon’ T'. (This is more
clear from the Riemann sum representation, where the sum counts only the time-intervals
At; for which the Brownian motion By,, §; € [t;—1t;], is in K). Show that

T
0 K

T—o0
where G(z,y) := == for some ¢4 > 0.

Solution. Let {B;};>o be the d-dimensional Brownian motion, d > 3, starting at € R<.
Recall

[z—y]

2
p(t,z,y) = (2nt) Y2 e” el t>0, z,y € R%

The expected time the process spends in K up to time 7T is

T T T
E* { / X{BteK}dt} _ / P(B, € K) di — / / p(t, 2, y) dy dt,
0 0 0 K

where the Fubini theorem justifies the exchange of integrals.

Letting 7" — oo and applying the Fubini and monotone convergence theorem (for an
increasing sequence of positive integrands we can exchange the limit with integral) gives

T [e's)
Iim E* |:/ X{BtEK} dt:| = / (/ p(t, xZ, y) dt) dy = / G(l’, y) dy7
T—o00 0 K 0 K

where we defined the Green function:

G(r,y) = /Ooop(t,w,y) di.



e Computation of G(z,y). Let r = |x — y|. Then

(o) 7‘2
Gla,y) = (2m)2 / 112 =5 gy,
0

Using the substitution u = 5, i.e. t = 2z and dt = —%du, we obtain
e a_ ot L(g—1) 5
G(I,y) — (27T) d/2,r2 d/ 22 1 —2 d WTQ d7
0

where I'(z) = [ t*~le~tdt. Equivalently,
0

2

= _2—d
@ zyjee I

G(*T?y) =

27’I’d/2

since |Sd_1‘ = W

e Conclusion. For d > 3,

T
. P Cd
oo [/0 ek dt} /K (z.9) dy /K |z —y|?=2 ’

d
with ¢; = FQ( d/;) > 0.

e Side remark: G is an example of a Green function (also called a fundamental
solution in the PDE theory). Schematically, they satisfy:

[Differential operator|[Green function| = [Dirac deltal. (20)
In our case, it holds
LIAG(y) = b(y) i S(RY) e1)

In fact, since G(z,y) = [ p(t,z,y) dt and Op(t,z,y) = 3A,p(t, z,y), we have

1 oo
—§AyG(w,y) :/ (=0)p(t, z,y) dt = p(0,2,y) — p(oco, z,y) = d.(y).  (22)
0
Actually, one can also show (21) by using Fourier transforms: Fix d > 3 and define

G(z,y) =

Cdq d
— 0, x,y € R
|z —y|
Fourier transform convention.

We use
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— Step 1: Fourier transform of G(z,-). By translation invariance of the
Fourier transform,

o — L —

Gz, )(u) = cae™" | - |72 (u).

A standard Riesz—potential identity gives

yl=@=D(u) = Calul?,  Ca=

Therefore,

—

Gz, )(u) = cgCqe™™" |u| ™2

— Step 2: Apply —3A,. Using A/y\f = —\u]QJ/C\,

— —

A,G(z, ) (u) = ul’G(z, ) (u) = 3ciCqe™™.

2

1
2
We want this to equal cSAx(u) = ¢ hence we require

2
1
cgCi=1 <= c4=—.
P d Cy

— Step 3: Simplify the constant. Since the surface area of the unit sphere in

R? is i
27
Sd-1| — d T(%) = 4=21(4=2
| | F(d/Q) an (2) 2 ( 2 )’
we obtain
2 2 T((d-2)/2) 2
o, a2 d/2 7 _ a—1|"
! Fdom 2 (d=2) 5
Thus,
2
Cqg = ——VF/"————"— .
T (d—2)[5

— Conclusion. With this choice of ¢4, we have

—

—58,G (@, ) (u) = ™" = dy(u),
and by injectivity of the Fourier transform on S’(R9),

in the sense of distributions.

There is a random walk version of Problem 5, known as Polya theorem, which we discuss
here briefly as additional material:



Theorem 0.1. The simple symmetric random walk {X,,},>0 on Z¢ (one step to each of
the 2d nearest neighbors with prob. 1/(2d)) starting at 0:

(a) Is recurrent if d = 1,2. That is P(the walk returns to the origin infinitely often) =
1.

(b) Is transient if d > 3. That is P(the walk returns to the origin infinitely often) = 0.

Remark 0.2. In low dimensions the space is so tight that there is nowhere to escape. In
higher dimensions there are so many different directions that the walk escapes eventually.

Proof for d = 1: Let z, be the position of random walker after n steps on Z, like in
the first lecture. Denote by N = >">° / x(z, = 0) the random variable which counts the
number of visits to zero. Then

G(0,0) := Y P(z, =0) = E[N]. (23)
n=0
We define
u := P(the walk returns to 0 at some time n > 1) (24)

and we want to show v = 1. Then the walk is recurrent, because after it comes back to
zero and restarts, it will again return to zero with probability one and so on.

Let R := N — 1 be the number of returns to zero after time 0. The process of "returns to
zero" behaves like a sequence of independent trials:

e with probability u failure to escape.

e with probability 1 — u escapes.

Thus R follows a geometric distribution (Geom(1 — u) - number of Bernoulli trials until
the first "success" - in our case first escape)

P(R=k)=u"(1-u), k=0,1,2,... (25)
and
E[R] :ikuk(l—u) - 13@ (26)
Hence -
E[N] =1+ E[R] = 1iu. (27)

Consequently, the walk is recurrent iff G(0,0) diverges. We note that

G(0,0) > Plas, =0) =Y Pl0,20) = > (2:) 2% = Efﬁ)); 2% (28)

n=0 n=0 n=0
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where we used Plk,n]:= P(R, = (n+k)/2) =

one can check using the Stirling formula

1 . . .
( 1 (7?+k)) 5. The last series is divergent as

27m(ﬁ) e <l < v 27m(ﬁ) et (29)
e e
In fact
(Qn)Q% > % 71-n( e ) Sn — = ! ez4ﬁ+1_% > EL (30)
(nt)? 22" " (V2mn)?(2) Ve VR 2y

for sufficiently large n so (28) diverges. [J

To be discussed in class: 24.10.2025



