Algebraic Quantum Field Theory Homework Sheet 3

Problem 1. We define \mathcal{V} as the polynomial *-algebra generated by V(z), $(z \in \mathbb{C}^n)$, satisfying the relations $V(z)^* = V(-z)$ and

$$V(z)V(z') = e^{i\operatorname{Im}\langle z, z'\rangle}V(z')V(z).$$
(1)

Show that given any representation π of \mathcal{W} , we can use the prescription $\pi_1(V(z)) := \pi(W(z))$ to obtain a well-defined representation of \mathcal{V} .

Solution: The map π_1 is prescribed only for the generating elements V(z) of the free algebra \mathcal{V}_0 . Its extension by linearity and multiplicativity to all of \mathcal{V}_0 , satisfies these properties by definition. Similarly *-symmetry follows from the corresponding property of π . It remains to show that π_1 restricts to \mathcal{V} , i.e. where it is well-defined regarding relation (1). This follows from

$$\begin{aligned} \pi_1 \left(V(z) V(z') \right) &= \pi_1 \left(V(z) \right) \pi_1 \left(V(z') \right) = \pi \left(W(z) \right) \pi \left(W(z') \right) = \pi \left(W(z) W(z') \right) \\ &= \pi \left(e^{i/2 \operatorname{Im} \langle z, z' \rangle} W(z + z') \right) = \pi \left(e^{i \operatorname{Im} \langle z, z' \rangle} W(z') W(z) \right) \\ &= e^{i \operatorname{Im} \langle z, z' \rangle} \pi \left(W(z') \right) \pi \left(W(z) \right) = e^{i \operatorname{Im} \langle z, z' \rangle} \pi_1 \left(V(z') \right) \pi_1 \left(V(z) \right) \\ &= \pi_1 \left(e^{i \operatorname{Im} \langle z, z' \rangle} V(z') V(z) \right). \end{aligned}$$

From this it follows that the ideal \mathcal{I} generated by $V(z)V(z')-e^{i\operatorname{Im}\langle z,z'\rangle}V(z')V(z), z, z' \in \mathbb{C}^n$ is mapped to zero, so that $\pi_1(V+\mathcal{I}) := \pi_1(V)$ is well-defined for $V + \mathcal{I} \in \mathcal{V} = \mathcal{V}_0/\mathcal{I}$.

Problem 2. Let $R(\lambda, z)$ be as in the definition of the pre-resolvent algebra. Show that in any *-representation π

$$\|\pi(R(\lambda, z))\| \le \frac{1}{\lambda},\tag{2}$$

and therefore the norm of any element of the pre-resolvent algebra is bounded. Solution: The relevant relations are

$$R(\lambda, z)^* = R(-\lambda, z) \tag{3}$$

$$R(\lambda, z) - R(\mu, z) = i(\mu - \lambda)R(\lambda, z)R(\mu, z).$$
(4)

Using $R(\lambda, z)^* = R(-\lambda, z)$ and the C^{*}-property of the norm, we get

$$2|\lambda| \|\pi(R(\lambda, z))\|^{2} = \|\pi(2\lambda R(\lambda, z)R(\lambda, z)^{*})\| \\ = \|\pi(R(\lambda, z) - R(\lambda, z))^{*})\| \le 2\|\pi(R(\lambda, z))\|.$$
(5)

If $\|\pi(R(\lambda, z))\| \neq 0$ we can cancel and get $\|\pi(R(\lambda, z))\| \leq \frac{1}{\lambda}$. If $\|\pi(R(\lambda, z))\| = 0$ then obviously this is less than $1/\lambda$.

Problem 3. Let $\mathcal{A} \subset B(\mathcal{H})$ be a norm-closed unital *-algebra of operators (i.e. a concrete C^* -algebra) which acts irreducibly on a separable Hilbert space \mathcal{H} (i.e. $\mathcal{A}' = \mathbb{C}I$). Suppose that \mathcal{A} contains one non-zero compact operator C. Show that then it contains all of them. Hints:

- (i) Note that you can assume that $C = C^*$.
- (ii) Recall that the spectrum of a self-adjoint compact operator is discrete and has at most one accumulation point (at zero). Non-zero eigenvalues have finite multiplicity.
- (iii) If A is a self-adjoint element of a C^* -algebra then also f(A) is an element of this C^* -algebra for any continuous function f.
- (iv) Exploiting the above information show that \mathcal{A} contains a finite-dimensional projection. Using the bicommutant theorem and irreducibility conclude that it contains a one-dimensional projection.
- (v) Using irreducibility again show that it contains all compact operators.

Solution: Since \mathcal{A} is a *-algebra, we have that $\frac{1}{2}(C+C^*)$ and $\frac{1}{2i}(C-C^*)$ are in \mathcal{A} , and at least one of them must be non-zero. Thus, replacing C with its real or imaginary part, we can assume that it is s.a.

Let λ be a non-zero eigenvalue of C and f a continuous function s.t. $\operatorname{supp} f \cap \operatorname{Sp} C = \{\lambda\}$ and $f(\lambda) = 1$. Then $f(C) \in \mathcal{A}$ and it is a finite-dimensional projection $P^{\lambda} = \sum_{i=1}^{N} |\Psi_i\rangle \langle \Psi_i|, \Psi_i$ mutually orthogonal and $\|\Psi_i\| = 1$.

The bicommutant theorem and irreducibility give that $\mathcal{A}'' = B(\mathcal{H})$ and \mathcal{A} is strongly dense in $B(\mathcal{H})$. In particular there is a sequence A_n s.t.

$$s-\lim_{n\to\infty}A_n = A := |\Psi_1\rangle\langle\Psi_1| \tag{6}$$

Then, since P^{λ} is a finite-dimensional projection and $P^{\lambda} \in \mathcal{A}$

$$n - \lim_{n \to \infty} A_n P^{\lambda} = A P^{\lambda} = A.$$
⁽⁷⁾

So $A \in \mathcal{A}$. In fact

$$\|(A_n - A)P_{\lambda}\| \le \sum_{i=1}^N \|(A_n - A)\Psi_i\| \to 0.$$
 (8)

Finally, let $|\Phi\rangle\langle\Phi|$ be any other one dimensional projection. By irreducibility Ψ_1 is cyclic so there is a sequence $B_n \in \mathcal{A}$ s.t. $B_n \Psi_1 \to \Phi$. Hence

$$n - \lim_{n \to \infty} B_n |\Psi_1\rangle \langle \Psi_1 | B_n^* = |\Phi\rangle \langle \Phi|$$
(9)

and therefore $|\Phi\rangle\langle\Phi| \in \mathcal{A}$. In fact, this follows from.

$$B_{n}|\Psi_{1}\rangle\langle\Psi_{1}|B_{n}^{*}-|\Phi\rangle\langle\Phi|$$

= $(B_{n}|\Psi_{1}\rangle-|\Phi\rangle)\langle\Psi_{1}|B_{n}^{*}+|\Phi\rangle(\langle\Psi_{1}|B_{n}^{*}-\langle\Phi|)$ (10)

Now the proof is concluded by making use of the fact that any compact operator is a norm limit of finite-dimensional projections.

Introduction to Problem 4 : Consider an unbounded operator A on a dense domain $D(A) \subset \mathcal{H}$.

Define the graph of A (denoted Gr(A)) as the set of pairs $(\varphi, A\varphi), \varphi \in D(A)$. This is a subset of $\mathcal{H} \times \mathcal{H}$ which is a Hilbert space with the product:

$$\langle (\varphi_1, \psi_1), (\varphi_2, \psi_2) \rangle = \langle \varphi_1, \varphi_2 \rangle + \langle \psi_1, \psi_2 \rangle \tag{11}$$

- (i) We say that A, D(A) is a closed operator if Gr(A) is closed.
- (ii) We say that A_1 is an extension of A if $Gr(A_1) \supset Gr(A)$.
- (iii) We say that A is closable if it has a closed extension. The smallest closed extension is called the closure \overline{A} .

Define $D(A^*)$ as the set of all $\varphi \in \mathcal{H}$, for which there exists $\eta \in \mathcal{H}$ s.t.

$$\langle A\psi,\varphi\rangle = \langle\psi,\eta\rangle, \quad \psi \in D(A).$$
 (12)

For such $\varphi \in D(A^*)$ we define $A^*\varphi = \eta$.

- (i) We say that A is self-adjoint if $A = A^*$ and $D(A) = D(A^*)$.
- (ii) We say that A is symmetric if $D(A) \subset D(A^*)$ and $A\psi = A^*\psi$ for $\psi \in D(A)$. Fact: Any symmetric operator is closable.
- (iii) We say that symmetric A is essentially self adjoint if A is self-adjoint.Fact: If A is essentially self-adjoint then it has exactly one self-adjoint extension.

Problem 4. (a) Show that $N := d\Gamma(1)$ is an unbounded operator on $\Gamma(\mathfrak{h})$. (b) Show that for any bounded s.a. operator b on \mathfrak{h} its second quantization $d\Gamma(b)$ is essentially self adjoint on $\Gamma_{\text{fin}}(\mathfrak{h})$. Hints:

- (i) Recall that a symmetric operator T on a domain D(T) is essentially self adjoint if it has a unique self-adjoint extension.
- (ii) Essential self-adjointness is equivalent to $(T \pm i)D(T)$ being dense.

Solution: (a) note that $N\Psi^{(n)} = n\Psi^{(n)}$ for any $\Psi^n \in \Gamma^{(n)}(\mathfrak{h})$, $\|\Psi^n\| = 1$. So clearly $\|\mathrm{d}\Gamma(1)\| = \infty$.

(b) Let $d\Gamma^{(n)}(b)$ be the restriction of $d\Gamma(b)$ to $\Gamma^{(n)}(\mathfrak{h})$. Since b is bounded, $d\Gamma^{(n)}(b)$ is also bounded, in particular (essentially) self-adjoint. Hence

$$(\mathrm{d}\Gamma^{(n)}(b) \pm i)\Gamma^{(n)}(\mathfrak{h}) \tag{13}$$

is dense in $\Gamma^{(n)}(\mathfrak{h})$ (actually equals $\Gamma^{(n)}(\mathfrak{h})$). Now we want to show from (13) that

$$(\mathrm{d}\Gamma(b)\pm i)\Gamma_{\mathrm{fin}}(\mathfrak{h})\tag{14}$$

is dense: Let $\Psi_{\text{fin}} = \sum_{n \in \mathbb{N}_{\text{fin}}} \Psi^{(n)}$ be an arbitrary element of $\Gamma_{\text{fin}}(\mathfrak{h})$ i.e. $\Psi^{(n)}$ are arbitrary elements of $\Gamma^{(n)}(\mathfrak{h})$ and \mathbb{N}_{fin} is an arbitrary finite subset of \mathbb{N} . We have

$$(\mathrm{d}\Gamma(b)\pm i)\Psi_{\mathrm{fin}} = \sum_{n\in\mathbb{N}_{\mathrm{fin}}} (\mathrm{d}\Gamma(b)\pm i)\Psi^{(n)}.$$
(15)

By (13) we can approximate any element of $\Gamma_{\text{fin}}(\mathfrak{h})$ with such vectors, which concludes the proof.

Problem 5. Show that for any bounded s.a. operator b on \mathfrak{h}

$$\Gamma(e^{itb}) = e^{itd\Gamma(b)}.$$
(16)

Solution: The r.h.s. is manifestly a group of unitaries with a generator $d\Gamma(b)$. We check that the l.h.s. is a group of unitaries:

$$\Gamma(e^{it_1b})\Gamma(e^{it_2b}) = \Gamma(e^{it_1b}e^{it_2b}) = \Gamma(e^{i(t_1+t_2)b}).$$
(17)

We compute the generator: For $\Psi \in \Gamma^{(n)}(\mathfrak{h})$ we have

$$\Gamma(e^{itb})\Psi = (e^{itb} \otimes \dots \otimes e^{itb})\Psi.$$
(18)

(Using this formula one can also verify strong continuity of $t \mapsto \Gamma(e^{itb})$). Hence

$$\partial_t|_{t=0}\Gamma(e^{itb})\Psi = \sum_{i=1}^n (1\otimes\cdots b\cdots\otimes 1)\Psi = \mathrm{d}\Gamma(b)\Psi.$$
 (19)

Hence the two generators coincide on $\Gamma_{\text{fin}}(\mathfrak{h})$ which is the domain of essential self-adjointness of $d\Gamma(b)$. So their s.a. extensions coincide.

Problem 6. Show that for $\Psi \in \Gamma_{\text{fin}}(\mathfrak{h})$ and $f, g \in L^2(\mathbb{R}^d)$

$$[a(f), a^*(g)]\Psi = \langle f, g \rangle \Psi.$$
(20)

Solution: We recall the formulas for creation and annihilation operators:

$$(a(f)\Psi)^{(n)}(k_1,\ldots,k_n) = \sqrt{n+1} \int d^d p \,\overline{f}(p)\Psi^{(n+1)}(p,k_1,\ldots,k_n), \tag{21}$$

$$(a^*(g)\Psi)^{(n)}(k_1,\ldots,k_n) = \frac{1}{\sqrt{n}} \sum_{\ell=1}^n g(k_\ell)\Psi^{(n-1)}(k_1,\ldots,k_{\ell-1},k_{\ell+1},\ldots,k_n).$$
(22)

Thus we have

$$(a(f)a^{*}(g)\Psi)^{(n)}(k_{1},\ldots,k_{n}) = \sqrt{n+1} \int d^{d}p \,\overline{f}(p)(a^{*}(g)\Psi)^{(n+1)}(p,k_{1},\ldots,k_{n})$$
$$= \int d^{d}p \,\overline{f}(p)g(p)\Psi^{(n)}(k_{1},\ldots,k_{n}) + \sum_{\ell=1}^{n} \int d^{d}p \,\overline{f}(p)g(k_{\ell})\Psi^{(n)}(p,k_{1},\ldots,k_{\ell-1},k_{\ell+1},\ldots,k_{n}).$$

The sum on the r.h.s. above is cancelled by

$$(a^*(g)a(f)\Psi)^{(n)}(k_1,\ldots,k_n) = \frac{1}{\sqrt{n}} \sum_{\ell=1}^n g(k_\ell)(a(f)\Psi)^{(n-1)}(k_1,\ldots,k_{\ell-1},k_{\ell+1},\ldots,k_n)$$
$$= \sum_{\ell=1}^n g(k_\ell)\overline{f}(p)\Psi^{(n)}(p,k_1,\ldots,k_{\ell-1},k_{\ell+1},\ldots,k_n).$$

Problem 7. Let $(\tilde{x}, \Lambda) \in \mathcal{P}^{\uparrow}_{+}$ (proper, ortochronous Poincaré group). Show that the prescription

$$(u_{(\tilde{x},\Lambda)}f)(p) = e^{i\mu(p)t - ipx} \sqrt{\frac{\mu(\Lambda^{-1}p)}{\mu(p)}} f(\Lambda^{-1}p), \quad f \in L^2(\mathbb{R}^d)$$
(23)

defines a representation of $\mathcal{P}^{\uparrow}_{+}$ in unitaries on $L^{2}(\mathbb{R}^{d})$. Here $\tilde{x} = (t, x)$, $\mu(p) = \sqrt{p^{2} + m^{2}}$ and $\Lambda^{-1}p$ (action of a Lorentz transformation on a *d*-vector) is defined by $\Lambda^{-1}(\mu(p), p) = (\mu(\Lambda^{-1}p), \Lambda^{-1}p)$. Hints:

(i) Note that $\frac{d^d p}{\mu(p)}$ is a Lorentz invariant measure i.e.

$$\int \frac{d^d p}{\mu(p)} g(\Lambda^{-1}p) = \int \frac{d^d p}{\mu(p)} g(p).$$
(24)

(ii) The multiplication in $\mathcal{P}^{\uparrow}_{+}$ is defined as follows: $(\tilde{x}_1, \Lambda_1)(\tilde{x}_2, \Lambda_2) = (\tilde{x}_1 + \Lambda_1 \tilde{x}_2, \Lambda_1 \Lambda_2)$

Solution: First, we check that $u_{(\tilde{x},\Lambda)}$ defines an isometry: We have

$$\langle (u_{(\tilde{x},\Lambda)}f), (u_{(\tilde{x},\Lambda)}g) \rangle = \int \frac{d^d p}{\mu(p)} \mu(\Lambda^{-1}p)(\overline{f} \cdot g)(\Lambda^{-1}p) = \int \frac{d^d p}{\mu(p)} \mu(p)(\overline{f} \cdot g)(p) = \langle f, g \rangle(25)$$

Next, we check multiplicativity

$$(u_{(\tilde{x}_{1},\Lambda_{1})}u_{(\tilde{x}_{2},\Lambda_{2})}h)(p) = e^{i\tilde{p}\cdot\tilde{x}_{1}}\sqrt{\frac{\mu(\Lambda_{1}^{-1}p)}{\mu(p)}}(u_{(\tilde{x}_{2},\Lambda_{2})}h)(\Lambda_{1}^{-1}p)$$

$$= e^{i\tilde{p}\cdot\tilde{x}_{1}+i(\Lambda_{1}^{-1}p)\cdot\tilde{x}_{2}}\sqrt{\frac{\mu(\Lambda_{1}^{-1}p)}{\mu(p)}}\sqrt{\frac{\mu(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)}{\mu(\Lambda_{1}^{-1}p)}}h(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)$$

$$= e^{i\tilde{p}\cdot\tilde{x}_{1}+i(\Lambda_{1}^{-1}p)\cdot\tilde{x}_{2}}\sqrt{\frac{\mu(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)}{\mu(p)}}h(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)$$

$$= e^{i\tilde{p}\cdot\tilde{x}_{1}+i\tilde{p}\cdot\Lambda_{1}\tilde{x}_{2}}\sqrt{\frac{\mu(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)}{\mu(p)}}h(\Lambda_{2}^{-1}\Lambda_{1}^{-1}p)$$

$$= (u_{(\tilde{x}_{1}+\Lambda_{1}\tilde{x}_{2},\Lambda_{1}\Lambda_{2})}h)(p), \qquad (26)$$

where in the next to the last step we made use of $(\mu(\Lambda^{-1}p), \Lambda^{-1}p) = \Lambda^{-1}(\mu(p), p)$ and $\Lambda^{-1}\tilde{p} \cdot \tilde{x} = \tilde{p} \cdot \Lambda \tilde{x}$. (Here we use that $(\Lambda \tilde{p}) \cdot (\Lambda \tilde{x}) = \tilde{p} \cdot \tilde{x}$ for all \tilde{p}, \tilde{x} , which is equivalent to $g = \Lambda^T g \Lambda$, which is equivalent to $g = \Lambda g \Lambda^T$.) From this we get, in particular that $u_{(x,\Lambda)}$ is invertible because $u_{(0,I)} = \text{id}$ and $\mathcal{P}^{\uparrow}_{+}$ is a group. Hence it is unitary. (Note that $(x,\Lambda)(-\Lambda^{-1}x,\Lambda^{-1}) = (-\Lambda^{-1}x,\Lambda^{-1})(x,\Lambda) = (0,I)$).

To be discussed in class: 8.6.2017