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Problem 1. We define V as the polynomial *-algebra generated by V(z), (z € C"),
satisfying the relations V(z)* = V(—z) and

V(2)V() = e™EDV (Y (2). (1)
Show that given any representation m of W, we can use the prescription m(V(2)) :=

7(W(z)) to obtain a well-defined representation of V.

Solution: The map 7 is prescribed only for the generating elements V(z) of the free
algebra V. Its extension by linearity and multiplicativity to all of V,, satisfies these
properties by definition. Similarly x-symmetry follows from the corresponding property
of m. It remains to show that 7, restricts to V, i.e. where it is well-defined regarding
relation (1). This follows from

7
=7 <ei/21m<z’z/>W(z + z')) =7 (eilm(z’z/>W(z')W(z))
(

From this it follows that the ideal Z generated by V (2)V (2) —e™ &2V (2 V (2), 2,2’ € C"
is mapped to zero, so that m(V 4+ Z) := (V) is well-defined for V+Z € V =V, /7.

Problem 2. Let R(\, z) be as in the definition of the pre-resolvent algebra. Show that
in any *-representation m

1
(RO 2] < 5 )
and therefore the norm of any element of the pre-resolvent algebra is bounded.

Solution: The relevant relations are

RO\ 2)* = R(=A,2) (3)
R(A,z) = R(p, 2) = i(p— NR(A, 2)R(p, 2). (4)

Using R(A, z)* = R(—A\, z) and the C*-property of the norm, we get
2\ [[m (RN, 2))[1* = [Im(2AR(N, 2)R(A, 2)") |
= |[7(R(A 2) = R\, 2))") | < 2[l7(R(X, 2))]. (5)
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If ||[7(R(X, 2))|| # 0 we can cancel and get [|[T(R(\, 2))|| < 5. If [[7(R(X, 2))|| = 0 then
obviously this is less than 1/\.

Problem 3. Let A C B(H) be a norm-closed unital x-algebra of operators (i.e. a concrete
C*-algebra) which acts irreducibly on a separable Hilbert space H (i.e. A" = CI). Suppose
that A contains one non-zero compact operator C'. Show that then it contains all of them.
Hints:

(i) Note that you can assume that C' = C*.

(ii) Recall that the spectrum of a self-adjoint compact operator is discrete and has at
most one accumulation point (at zero). Non-zero eigenvalues have finite multiplicity.

(iii) If A is a self-adjoint element of a C*-algebra then also f(A) is an element of this
C*-algebra for any continuous function f.

(iv) Exploiting the above information show that A contains a finite-dimensional projec-
tion. Using the bicommutant theorem and irreducibility conclude that it contains a
one-dimensional projection.

(v) Using irreducibility again show that it contains all compact operators.
i

at least one of them must be non-zero. Thus, replacing C' with its real or imaginary part,
we can assume that it is s.a.

Solution: Since A is a *-algebra, we have that £(C +C*) and & (C — C*) are in A, and

Let A be a non-zero eigenvalue of C' and f a continuous function s.t. suppf NSpC =
{A\} and f(\) = 1. Then f(C) € A and it is a finite-dimensional projection P* =
SV W) (W], W; mutually orthogonal and ||| = 1.

The bicommutant theorem and irreducibility give that A” = B(H) and A is strongly
dense in B(H). In particular there is a sequence A, s.t.

n—o0

Then, since P? is a finite-dimensional projection and P* € A

n— lim A,P* = AP = A, (7)
n—oo
So A € A. In fact
N
1(An = AR < (A — AT — 0. (8)

=1

Finally, let |®)(®| be any other one dimensional projection. By irreducibility ¥, is cyclic
so there is a sequence B,, € A s.t. B,¥; — ®. Hence

n- lim B, W) (W B = [2)(@) (9)
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and therefore |®)(®| € A. In fact, this follows from.

B |W1)(01| B, — |)(2]
= (Bn|¥1) = [@)) (W] B, + |®)({(¥1] B, — (®]) (10)
Now the proof is concluded by making use of the fact that any compact operator is a

norm limit of finite-dimensional projections.

Introduction to Problem 4 : Consider an unbounded operator A on a dense domain
D(A) C H.

Define the graph of A (denoted Gr(A)) as the set of pairs (¢, Ap), ¢ € D(A). This is a
subset of H x H which is a Hilbert space with the product:

(01, 91), (02, 02)) = (1, p2) + (Y1, ¢2) (11)

(i) We say that A, D(A) is a closed operator if Gr(A) is closed.
(ii) We say that A; is an extension of A if Gr(A;) D Gr(A).

(iii) We say that A is closable if it has a closed extension. The smallest closed extension
is called the closure A.

Define D(A*) as the set of all ¢ € H, for which there exists n € H s.t.

(A, ) = (,m), ¢ € D(A). (12)
For such ¢ € D(A*) we define A*p = 1.

(i) We say that A is self-adjoint if A = A* and D(A) = D(A*).
(ii) We say that A is symmetric if D(A) C D(A*) and Ay = A%y for ¢ € D(A).

Fact: Any symmetric operator is closable.

(iii) We say that symmetric A is essentially self adjoint if A is self-adjoint.
Fact: If A is essentially self-adjoint then it has exactly one self-adjoint extension.

Problem 4. (a) Show that N := dI'(1) is an unbounded operator on I'(h).
(b) Show that for any bounded s.a. operator b on f its second quantization dI'(b) is
essentially self adjoint on I'g,(h). Hints:

(i) Recall that a symmetric operator 7' on a domain D(T') is essentially self adjoint if
it has a unique self-adjoint extension.

(ii) Essential self-adjointness is equivalent to (7'+ ) D(7T) being dense.



Solution: ( ) note that NW(™ = n¥™ for any ¥" € T™(p), |[¥"|| = 1. So clearly
[T ()] =

(b) Let dT'™(b) be the restriction of dT'(b) to I'™ (). Since b is bounded, dI'™ (b) is also
bounded, in particular (essentially) self—adpmt. Hence

(dr™(b) £ )T (h) (13)

(o
is dense in T™(h) (actually equals I'™(h)). Now we want to show from (13) that
(dI'(b) & i)I'sn(b) (14)

is dense: Let Ug, = ZneNﬁn U™ be an arbitrary element of I'g,(h) i.e. W™ are arbitrary

elements of '™ (h) and Ng, is an arbitrary finite subset of N. We have
(AL(b) £ i) Ugy = > (AL(b) £ i) T, (15)
n€Ngn

By (13) we can approximate any element of I's,(h) with such vectors, which concludes
the proof.

Problem 5. Show that for any bounded s.a. operator b on §
F(eitb) _ eitdl—‘(b)' (16)

Solution: The r.h.s. is manifestly a group of unitaries with a generator dI'(b). We
check that the Lh.s. is a group of unitaries:

P(eitlb)l—x(eitgb) _ F(eitlbeitzb) — F(ei(t1+t2)b). (17>
We compute the generator: For ¥ € '™ () we have
D)W = (e ® ... @ ™). (18)
(Using this formula one can also verify strong continuity of ¢ — T'(e®)). Hence
Otli=ol (™) U = (1®--b--- @ 1)¥ = d['(b)T. (19)
i=1

Hence the two generators coincide on gy, () which is the domain of essential self-adjointness
of dI'(b). So their s.a. extensions coincide.

Problem 6. Show that for ¥ € T'g,(h) and f, g € L?(R?)
[a(f), a(9)]¥ = (f, 9) V. (20)

Solution: We recall the formulas for creation and annihilation operators:

(a(f)T) M (ky, ... k) = \/n—i—l/ddp?(p)\lf(nﬂ)(p, ki, ... k), (21)

(a*(g) W) (ky,. .. kn) = gE)U D (ko ey ke - k). (22)
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Thus we have

(@(F)a (@00 ks, ) = VAT T [ dp Fp)(a (00" Dk, )
— [ @ F eV ... +Z/ddpf I T A PR

The sum on the r.h.s. above is cancelled by

(@"(9)al)0) (k) = % Z 9ke) (@(F)D)" Dk, okt Ry )
— Zg kl p,l{fl,...7kg_1,k€+17"'7kn>‘

Problem 7. Let (7,A) € 731 (proper, ortochronous Poincaré group). Show that the
prescription

p(A~1p)
u(p)

defines a representation of P! in unitaries on L?(R%). Here & = (t,z), u(p) = /p? + m?
and A~'p (action of a Lorentz transformation on a d-vector) is defined by A= (u(p),p) =
(,u(A_lp) A~'p). Hints:

(u@n) f)(p) = eMPrire f(A™'p),  f e L*RY) (23)

: a . o :
(i) Note that 42 is a Lorentz invariant measure i.e.

w(p)
d’p ; d’p
—gA‘pz/—gp. 24
/M(P) (A7) 1(p) ®) 24
(ii) The multiplication in 731 is defined as follows: (&1, A1)(Z2, o) = (T1 + A1T2, A1Ay)

Solution: First, we check that u; o) defines an isometry: We have

(e ) (ueny)) = / DD (AT - ) (A ) = / j(p) )T 9)(p) = (f,9)(25)

Next, we check multiplicativity

e | AT'D) _
(u(fﬁl,lh)u(i"ml\z)h)(p) = e? /L(lp) (u(fiz,/b)h)(Al 1]7)

— -1 “1A-1
_ eiﬁ'i1+i(/\_1p)-%2\/M(A1 p) \/M(Az £\11 p)h(AglAflp)
w(p) p(ATp)
(A AT D)
u(p)

ipd1+i(A] 'p)-E h(A5 AT p)

= €

)
— ezpml—l—zp-/\lmg lu( 2 1 h A—lA—lp
upy e Are)

= (u(9~61+/\1€f2,/\1/\2)h) (p)a (26)
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where in the next to the last step we made use of (u(A~'p),A~'p) = A~ (u(p),p) and
A'p- & =p-Ai. (Here we use that (Ap) - (AZ) = p- 7 for all p, T, which is equivalent
to g = ATgA, which is equivalent to ¢ = AgAT.) From this we get, in particular that
U(z,p) 18 invertible because w ) = id and 771 is a group. Hence it is unitary. (Note that

(2, A)(=A"2, AY) = (—A~ 1z, A"V (2, A) = (0, 1)).

To be discussed in class: &.6.2017



