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Problem 1. We define V as the polynomial ∗-algebra generated by V (z), (z ∈ Cn),
satisfying the relations V (z)∗ = V (−z) and

V (z)V (z′) = eiIm〈z,z
′〉V (z′)V (z). (1)

Show that given any representation π of W , we can use the prescription π1(V (z)) :=
π(W (z)) to obtain a well-defined representation of V .

Solution: The map π1 is prescribed only for the generating elements V (z) of the free
algebra V0. Its extension by linearity and multiplicativity to all of V0, satisfies these
properties by definition. Similarly ∗-symmetry follows from the corresponding property
of π. It remains to show that π1 restricts to V , i.e. where it is well-defined regarding
relation (1). This follows from

π1 (V (z)V (z′)) = π1 (V (z))π1 (V (z′)) = π (W (z))π (W (z′)) = π (W (z)W (z′))

= π
(
ei/2Im〈z,z′〉W (z + z′)

)
= π

(
eiIm〈z,z

′〉W (z′)W (z)
)

= eiIm〈z,z
′〉π (W (z′))π (W (z)) = eiIm〈z,z

′〉π1 (V (z′))π1 (V (z))

= π1

(
eiIm〈z,z

′〉V (z′)V (z)
)
.

From this it follows that the ideal I generated by V (z)V (z′)−eiIm〈z,z′〉V (z′)V (z), z, z′ ∈ Cn

is mapped to zero, so that π1(V + I) := π1(V ) is well-defined for V + I ∈ V = V0/I.

Problem 2. Let R(λ, z) be as in the definition of the pre-resolvent algebra. Show that
in any ∗-representation π

‖π(R(λ, z))‖ ≤ 1

λ
, (2)

and therefore the norm of any element of the pre-resolvent algebra is bounded.

Solution: The relevant relations are

R(λ, z)∗ = R(−λ, z) (3)

R(λ, z)−R(µ, z) = i(µ− λ)R(λ, z)R(µ, z). (4)

Using R(λ, z)∗ = R(−λ, z) and the C∗-property of the norm, we get

2|λ|‖π(R(λ, z))‖2 = ‖π
(
2λR(λ, z)R(λ, z)∗

)
‖

= ‖π
(
R(λ, z)−R(λ, z))∗

)
‖ ≤ 2‖π(R(λ, z))‖. (5)
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If ‖π(R(λ, z))‖ 6= 0 we can cancel and get ‖π(R(λ, z))‖ ≤ 1
λ
. If ‖π(R(λ, z))‖ = 0 then

obviously this is less than 1/λ.

Problem 3. LetA ⊂ B(H) be a norm-closed unital ∗-algebra of operators (i.e. a concrete
C∗-algebra) which acts irreducibly on a separable Hilbert spaceH (i.e. A′ = CI). Suppose
that A contains one non-zero compact operator C. Show that then it contains all of them.
Hints:

(i) Note that you can assume that C = C∗.

(ii) Recall that the spectrum of a self-adjoint compact operator is discrete and has at
most one accumulation point (at zero). Non-zero eigenvalues have finite multiplicity.

(iii) If A is a self-adjoint element of a C∗-algebra then also f(A) is an element of this
C∗-algebra for any continuous function f .

(iv) Exploiting the above information show that A contains a finite-dimensional projec-
tion. Using the bicommutant theorem and irreducibility conclude that it contains a
one-dimensional projection.

(v) Using irreducibility again show that it contains all compact operators.

Solution: Since A is a ∗-algebra, we have that 1
2
(C +C∗) and 1

2i
(C−C∗) are in A, and

at least one of them must be non-zero. Thus, replacing C with its real or imaginary part,
we can assume that it is s.a.

Let λ be a non-zero eigenvalue of C and f a continuous function s.t. suppf ∩ SpC =
{λ} and f(λ) = 1. Then f(C) ∈ A and it is a finite-dimensional projection P λ =∑N

i=1 |Ψi〉〈Ψi|, Ψi mutually orthogonal and ‖Ψi‖ = 1.

The bicommutant theorem and irreducibility give that A′′ = B(H) and A is strongly
dense in B(H). In particular there is a sequence An s.t.

s− lim
n→∞

An = A := |Ψ1〉〈Ψ1| (6)

Then, since P λ is a finite-dimensional projection and P λ ∈ A

n− lim
n→∞

AnP
λ = AP λ = A. (7)

So A ∈ A. In fact

‖(An − A)Pλ‖ ≤
N∑
i=1

‖(An − A)Ψi‖ → 0. (8)

Finally, let |Φ〉〈Φ| be any other one dimensional projection. By irreducibility Ψ1 is cyclic
so there is a sequence Bn ∈ A s.t. BnΨ1 → Φ. Hence

n− lim
n→∞

Bn|Ψ1〉〈Ψ1|B∗n = |Φ〉〈Φ| (9)
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and therefore |Φ〉〈Φ| ∈ A. In fact, this follows from.

Bn|Ψ1〉〈Ψ1|B∗n − |Φ〉〈Φ|
= (Bn|Ψ1〉 − |Φ〉)〈Ψ1|B∗n + |Φ〉(〈Ψ1|B∗n − 〈Φ|) (10)

Now the proof is concluded by making use of the fact that any compact operator is a
norm limit of finite-dimensional projections.

Introduction to Problem 4 : Consider an unbounded operator A on a dense domain
D(A) ⊂ H.

Define the graph of A (denoted Gr(A)) as the set of pairs (ϕ,Aϕ), ϕ ∈ D(A). This is a
subset of H×H which is a Hilbert space with the product:

〈(ϕ1, ψ1), (ϕ2, ψ2)〉 = 〈ϕ1, ϕ2〉+ 〈ψ1, ψ2〉 (11)

(i) We say that A,D(A) is a closed operator if Gr(A) is closed.

(ii) We say that A1 is an extension of A if Gr(A1) ⊃ Gr(A).

(iii) We say that A is closable if it has a closed extension. The smallest closed extension
is called the closure A.

Define D(A∗) as the set of all ϕ ∈ H, for which there exists η ∈ H s.t.

〈Aψ,ϕ〉 = 〈ψ, η〉, ψ ∈ D(A). (12)

For such ϕ ∈ D(A∗) we define A∗ϕ = η.

(i) We say that A is self-adjoint if A = A∗ and D(A) = D(A∗).

(ii) We say that A is symmetric if D(A) ⊂ D(A∗) and Aψ = A∗ψ for ψ ∈ D(A).
Fact: Any symmetric operator is closable.

(iii) We say that symmetric A is essentially self adjoint if A is self-adjoint.
Fact: If A is essentially self-adjoint then it has exactly one self-adjoint extension.

Problem 4. (a) Show that N := dΓ(1) is an unbounded operator on Γ(h).
(b) Show that for any bounded s.a. operator b on h its second quantization dΓ(b) is
essentially self adjoint on Γfin(h). Hints:

(i) Recall that a symmetric operator T on a domain D(T ) is essentially self adjoint if
it has a unique self-adjoint extension.

(ii) Essential self-adjointness is equivalent to (T ± i)D(T ) being dense.
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Solution: (a) note that NΨ(n) = nΨ(n) for any Ψn ∈ Γ(n)(h), ‖Ψn‖ = 1. So clearly
‖dΓ(1)‖ =∞.

(b) Let dΓ(n)(b) be the restriction of dΓ(b) to Γ(n)(h). Since b is bounded, dΓ(n)(b) is also
bounded, in particular (essentially) self-adjoint. Hence

(dΓ(n)(b)± i)Γ(n)(h) (13)

is dense in Γ(n)(h) (actually equals Γ(n)(h)). Now we want to show from (13) that

(dΓ(b)± i)Γfin(h) (14)

is dense: Let Ψfin =
∑

n∈Nfin
Ψ(n) be an arbitrary element of Γfin(h) i.e. Ψ(n) are arbitrary

elements of Γ(n)(h) and Nfin is an arbitrary finite subset of N. We have

(dΓ(b)± i)Ψfin =
∑
n∈Nfin

(dΓ(b)± i)Ψ(n). (15)

By (13) we can approximate any element of Γfin(h) with such vectors, which concludes
the proof.

Problem 5. Show that for any bounded s.a. operator b on h

Γ(eitb) = eitdΓ(b). (16)

Solution: The r.h.s. is manifestly a group of unitaries with a generator dΓ(b). We
check that the l.h.s. is a group of unitaries:

Γ(eit1b)Γ(eit2b) = Γ(eit1beit2b) = Γ(ei(t1+t2)b). (17)

We compute the generator: For Ψ ∈ Γ(n)(h) we have

Γ(eitb)Ψ = (eitb ⊗ · · · ⊗ eitb)Ψ. (18)

(Using this formula one can also verify strong continuity of t 7→ Γ(eitb)). Hence

∂t|t=0Γ(eitb)Ψ =
n∑
i=1

(1⊗ · · · b · · · ⊗ 1)Ψ = dΓ(b)Ψ. (19)

Hence the two generators coincide on Γfin(h) which is the domain of essential self-adjointness
of dΓ(b). So their s.a. extensions coincide.

Problem 6. Show that for Ψ ∈ Γfin(h) and f, g ∈ L2(Rd)

[a(f), a∗(g)]Ψ = 〈f, g〉Ψ. (20)

Solution: We recall the formulas for creation and annihilation operators:

(a(f)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
ddp f(p)Ψ(n+1)(p, k1, . . . , kn), (21)

(a∗(g)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)Ψ
(n−1)(k1, . . . , k`−1, k`+1, . . . , kn). (22)
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Thus we have

(a(f)a∗(g)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
ddp f(p)(a∗(g)Ψ)(n+1)(p, k1, . . . , kn)

=

∫
ddp f(p)g(p)Ψ(n)(k1, . . . , kn) +

n∑
`=1

∫
ddp f(p)g(k`)Ψ

(n)(p, k1, . . . , k`−1, k`+1, . . . , kn).

The sum on the r.h.s. above is cancelled by

(a∗(g)a(f)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)(a(f)Ψ)(n−1)(k1, . . . , k`−1, k`+1, . . . , kn)

=
n∑
`=1

g(k`)f(p)Ψ(n)(p, k1, . . . , k`−1, k`+1, . . . , kn).

Problem 7. Let (x̃,Λ) ∈ P↑+ (proper, ortochronous Poincaré group). Show that the
prescription

(u(x̃,Λ)f)(p) = eiµ(p)t−ipx

√
µ(Λ−1p)

µ(p)
f(Λ−1p), f ∈ L2(Rd) (23)

defines a representation of P↑+ in unitaries on L2(Rd). Here x̃ = (t, x), µ(p) =
√
p2 +m2

and Λ−1p (action of a Lorentz transformation on a d-vector) is defined by Λ−1(µ(p), p) =
(µ(Λ−1p),Λ−1p). Hints:

(i) Note that ddp
µ(p)

is a Lorentz invariant measure i.e.∫
ddp

µ(p)
g(Λ−1p) =

∫
ddp

µ(p)
g(p). (24)

(ii) The multiplication in P↑+ is defined as follows: (x̃1,Λ1)(x̃2,Λ2) = (x̃1 + Λ1x̃2,Λ1Λ2)

Solution: First, we check that u(x̃,Λ) defines an isometry: We have

〈(u(x̃,Λ)f), (u(x̃,Λ)g)〉 =

∫
ddp

µ(p)
µ(Λ−1p)(f · g)(Λ−1p) =

∫
ddp

µ(p)
µ(p)(f · g)(p) = 〈f, g〉.(25)

Next, we check multiplicativity

(u(x̃1,Λ1)u(x̃2,Λ2)h)(p) = eip̃·x̃1

√
µ(Λ−1

1 p)

µ(p)
(u(x̃2,Λ2)h)(Λ−1

1 p)

= eip̃·x̃1+i ˜(Λ−1p)·x̃2

√
µ(Λ−1

1 p)

µ(p)

√
µ(Λ−1

2 Λ−1
1 p)

µ(Λ−1
1 p)

h(Λ−1
2 Λ−1

1 p)

= eip̃·x̃1+i ˜(Λ−1
1 p)·x̃2

√
µ(Λ−1

2 Λ−1
1 p)

µ(p)
h(Λ−1

2 Λ−1
1 p)

= eip̃·x̃1+ip̃·Λ1x̃2

√
µ(Λ−1

2 Λ−1
1 p)

µ(p)
h(Λ−1

2 Λ−1
1 p)

= (u(x̃1+Λ1x̃2,Λ1Λ2)h)(p), (26)
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where in the next to the last step we made use of (µ(Λ−1p),Λ−1p) = Λ−1(µ(p), p) and
Λ−1p̃ · x̃ = p̃ · Λx̃. (Here we use that (Λp̃) · (Λx̃) = p̃ · x̃ for all p̃, x̃, which is equivalent
to g = ΛTgΛ, which is equivalent to g = ΛgΛT .) From this we get, in particular that
u(x,Λ) is invertible because u(0,I) = id and P↑+ is a group. Hence it is unitary. (Note that
(x,Λ)(−Λ−1x,Λ−1) = (−Λ−1x,Λ−1)(x,Λ) = (0, I)).

To be discussed in class: 8.6.2017
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