Prof. Dr. Wojciech Dybalski Maximilian Duell

Algebraic Quantum Field Theory Homework Sheet 3

Problem 1. We define \mathcal{V} as the polynomial *-algebra generated by V(z), $(z \in \mathbb{C}^n)$, satisfying the relations $V(z)^* = V(-z)$ and

$$V(z)V(z') = e^{i\operatorname{Im}\langle z, z'\rangle}V(z')V(z).$$
(1)

Show that given any representation π of \mathcal{W} , we can use the prescription $\pi_1(V(z)) := \pi(W(z))$ to obtain a well-defined representation of \mathcal{V} .

Problem 2. Let $R(\lambda, z)$ be as in the definition of the pre-resolvent algebra. Show that in any *-representation π

$$\|\pi(R(\lambda, z))\| \le \frac{1}{\lambda},\tag{2}$$

and therefore the norm of any element of the pre-resolvent algebra is bounded.

Problem 3. Let $\mathcal{A} \subset B(\mathcal{H})$ be a norm-closed unital *-algebra of operators (i.e. a concrete C^* -algebra) which acts irreducibly on a separable Hilbert space \mathcal{H} (i.e. $\mathcal{A}' = \mathbb{C}I$). Suppose that \mathcal{A} contains one non-zero compact operator C. Show that then it contains all of them. Hints:

- (i) Note that you can assume that $C = C^*$.
- (ii) Recall that the spectrum of a self-adjoint compact operator is discrete and has at most one accumulation point (at zero). Non-zero eigenvalues have finite multiplicity.
- (iii) If A is a self-adjoint element of a C^* -algebra then also f(A) is an element of this C^* -algebra for any continuous function f.
- (iv) Exploiting the above information show that \mathcal{A} contains a finite-dimensional projection. Using the bicommutant theorem and irreducibility conclude that it contains a one-dimensional projection.
- (v) Using irreducibility again show that it contains all compact operators.

Problem 4. (a) Show that $N := d\Gamma(1)$ is an unbounded operator on $\Gamma(\mathfrak{h})$. (b) Show that for any bounded s.a. operator b on \mathfrak{h} its second quantization $d\Gamma(b)$ is essentially self adjoint on $\Gamma_{\text{fin}}(\mathfrak{h})$. Hints:

- (i) Recall that a symmetric operator T on a domain D(T) is essentially self adjoint if it has a unique self-adjoint extension.
- (ii) Essential self-adjointness is equivalent to $(T \pm i)D(T)$ being dense.

Problem 5. Show that for any bounded s.a. operator b on \mathfrak{h}

$$\Gamma(e^{itb}) = e^{itd\Gamma(b)}.$$
(3)

Problem 6. Show that for $\Psi \in \Gamma_{\text{fin}}(\mathfrak{h})$ and $f, g \in L^2(\mathbb{R}^d)$

$$[a(f), a^*(g)]\Psi = \langle f, g \rangle \Psi.$$
(4)

Problem 7. Let $(\tilde{x}, \Lambda) \in \mathcal{P}^{\uparrow}_{+}$ (proper, ortochronous Poincaré group). Show that the prescription

$$(u_{(\tilde{x},\Lambda)}f)(p) = e^{i\mu(p)t - ipx} \sqrt{\frac{\mu(\Lambda^{-1}p)}{\mu(p)}} f(\Lambda^{-1}p), \quad f \in L^2(\mathbb{R}^d)$$
(5)

defines a representation of $\mathcal{P}^{\uparrow}_{+}$ in unitaries on $L^{2}(\mathbb{R}^{d})$. Here $\tilde{x} = (t, x)$, $\mu(p) = \sqrt{p^{2} + m^{2}}$ and $\Lambda^{-1}p$ (action of a Lorentz transformation on a *d*-vector) is defined by $\Lambda^{-1}(\mu(p), p) = (\mu(\Lambda^{-1}p), \Lambda^{-1}p)$. Hints:

(i) Note that $\frac{d^d p}{\mu(p)}$ is a Lorentz invariant measure i.e.

$$\int \frac{d^d p}{\mu(p)} g(\Lambda^{-1}p) = \int \frac{d^d p}{\mu(p)} g(p).$$
(6)

(ii) The multiplication in $\mathcal{P}^{\uparrow}_{+}$ is defined as follows: $(\tilde{x}_1, \Lambda_1)(\tilde{x}_2, \Lambda_2) = (\tilde{x}_1 + \Lambda_1 \tilde{x}_2, \Lambda_1 \Lambda_2)$

To be discussed in class: 8.6.2017