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Problem 1. Show that in the sense of quadratic forms on D ×D, where

D = {Ψ ∈ Γfin(h) |Ψ(n) ∈ S(Rnd) for all n }, (1)

we have the following representations for the (free) Hamiltonian H := dΓ(µm):

dΓ(µm(p)) =

∫
ddk µm(k)a∗(k)a(k)

=
1

2

∫
ddx

(
: π2

µm(x) : + : ∇ϕ2
µm(x) : +m2 : ϕ2

µm(x) :
)
. (2)

Here µm(p) =
√
p2 +m2 and

ϕµm(x) :=
1

(2π)d/2

∫
ddk√

2µm(k)

(
e−ikxa∗(k) + eikxa(k)

)
, (3)

πµm(x) :=
i

(2π)d/2

∫
ddk

√
µm(k)

2

(
e−ikxa∗(k)− eikxa(k)

)
. (4)

The Wick ordering : (· · · ) : means shifting creation operators to the left and annihilation
operators to the right, ignoring the commutators. For example

: (a∗(k1)a∗(k2) + a∗(k1)a(k2) + a(k1)a∗(k2) + a(k1)a(k2)) : (5)

= a∗(k1)a∗(k2) + a∗(k1)a(k2) + a∗(k2)a(k1) + a(k1)a(k2). (6)

Solution: Define

φh(x) :=
1

(2π)d/2

∫
ddk(h(k)e−ikxa∗(k) + h(k)eikxa(k)). (7)

For h1(k) := m√
2µm(k)

we get mϕ(x), for h2(k) := i
√

µm(k)
2

we get π(x) for h3(k) :=

−i k√
2µm(k)

we get ∇ϕ(x). We consider matrix elements 〈ψ1, : φh(x)2 : ψ2〉, where ψ1, ψ2 ∈
D. This gives rise to expressions 〈ψ1, : a

∗(k1)a(k2) : ψ2〉 etc. By definition of a(k) and
D these expressions are Schwartz class functions of k1, k2. This observation justifies the
manipulations below. We do not write ψ1, ψ2 explicitly, but they are always understood.
We compute:
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∫
ddx : φh(x)2 :=

1

(2π)d

∫
ddx

∫
ddk1d

dk2 : (h(k1)e−ik1xa∗(k1) + h(k1)eik1xa(k1)) (8)

×(h(k2)e−ik2xa∗(k2) + h(k2)eik2xa(k2)) : (9)

This gives ∫
ddx : φh(x)2 : =

∫
ddk1d

dk2

(
a∗(k1)a∗(k2)h(k1)h(k2)δ(k1 + k2)

+ a∗(k1)a(k2)h(k1)h(k2)δ(k1 − k2)

+ a∗(k2)a(k1)h(k1)h(k2)δ(k1 − k2)

+ a(k1)a(k2)h(k1)h(k2)δ(k1 + k2)

)
. (10)

Consequently:∫
ddx : φh(x)2 :

=

∫
ddk

(
a∗(k)a∗(−k)h(k)h(−k) + 2a∗(k)a(k)|h(k)|2 + a(k)a(−k)h(k)h(−k))

)
=

∫
ddk 2a∗(k)a(k)|h(k)|2 +

∫
ddk

(
a∗(k)a∗(−k)h(k)h(−k) + h.c.

)
(11)

The last expression on the r.h.s. of (2), let’s call it H3, is given by

H3 =
1

2

3∑
i=1

∫
ddx : φhi(x)2 : (12)

But we have

2
3∑
i=1

|hi(k)|2 = 2
( m2

2µm(k)
+
µm(k)

2
+

k2

2µm(k)

)
= µm(k),

3∑
i=1

hi(k)hi(−k) =
m2

2µm(k)
− µm(k)

2
+

k2

2µm(k)
= 0. (13)

Thus we have that

H3 =

∫
ddk µm(k)a∗(k)a(k). (14)

Now we want to show that dΓ(µm(p)) =
∫
ddk µm(k)a∗(k)a(k). Let ψi ∈ D, ψi =

{ψ(n)
i }n∈N. We have

〈ψ2, dΓ(µm(p))ψ1〉 =
∞∑
n=1

∫
dndk ψ2

(n)
(k1, . . . , kn)(µm(k1) + · · ·+ µm(kn))ψ

(n)
1 (k1, . . . , kn).(15)
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On the other hand

(a(k)ψi)
(n)(k1, . . . , kn) =

√
n+ 1ψ

(n+1)
i (k, k1, . . . , kn). (16)

Hence∫
ddk µm(k)〈a(k)ψ1, a(k)ψ2〉

=
∞∑
n=0

(n+ 1)

∫
ddk µm(k)

∫
dndk ψ1

(n+1)
(k, k1, . . . , kn)ψ

(n+1)
2 (k, k1, . . . , kn)

=
∞∑
n=0

∫
d(n+1)dk (µm(k1) + · · ·+ µm(kn+1))ψ1

(n+1)
(k1, . . . , kn+1)ψ

(n+1)
2 (k1, . . . , kn+1)

(17)

Problem 2. The interaction Hamiltonian

HI(g) := λ

∫
ddx g(x) : ϕ(x)4 :, g ∈ C∞0 (Rd), λ > 0, (18)

is well defined as a quadratic form on D ×D (this can be taken for granted). Show that
this quadratic form cannot arise from an operator containing Ω in its domain for d > 1.
Hint: Consider the formal expression for HI(g)Ω which is of the form (0, 0, 0, 0, ψ(4), 0, . . .)
and show that ψ(4) is not square integrable.

Solution: We compute

HI(g)Ω

= λ

∫
ddx g(x)(2π)−2d

∫
ddk1√

2µm(k1)
. . .

ddk4√
2µm(k4)

e−i(k1+···+k4)xa∗(k1) . . . a∗(k4)Ω

= λ(2π)−2d+d/2

∫
ddk1√

2µm(k1)
. . .

ddk4√
2µm(k4)

ĝ(k1 + · · ·+ k4)a∗(k1) . . . a∗(k4)Ω (19)

From this we read off that

ψ(4)(k1, . . . , k4) = λ(2π)−2d+d/2
√

4!
1√

2µm(k1)
. . .

1√
2µm(k4)

ĝ(k1 + · · ·+ k4) (20)

We want to show that the following integral diverges:

I :=

∫
ddk1

µm(k1)
. . .

ddk4

µm(k4)
|ĝ(k1 + · · ·+ k4)|2 (21)

We set k := k1 + · · ·+ k4. Then

I =

∫
ddkddk2d

dk3
|ĝ(k)|2

µm(k2)µm(k3)

∫
ddk4

1

µm(k − k2 − k3 − k4)

1

µm(k4)
(22)
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Let us denote K = k− k2− k3. It suffices to show that the following integral diverges for
any K:

IK :=

∫
ddk4

1

µm(K − k4)

1

µm(k4)
≥
∫
|k4|≥1

ddk4
1

µm(K − k4)

1

µm(k4)

≥ CK

∫
|k4|≥1

ddk4

|k4|2
, (23)

where CK > 0. Since d > 1 this integral diverges.

Problem 3. Let D = S(Rd), d = 3, be the symplectic space with the standard symplectic
form. Consider the representations of W on Fock space given by

ρµm(W (f)) = ei(ϕµm (Re f)+πµm (Im f)). (24)

These representations are irreducible (this can be taken for granted). Show that ρµm1
is

not unitarily equivalent to ρµm2
if m1 6= m2, m1,m2 > 0. Hints:

(i) Suppose, by contradiction, that there is a unitary T on Fock space which intertwines
the two representations. Let E 3 (a,R)→ U(a,R) be the unitary representation of
the group of Euclidean motions in the t = 0 plane (space translations and rotations)
which implements the corresponding automorphisms in the two representations.
Show that C(a,R) := T−1U(a,R)∗TU(a,R) must be a multiple of the identity.

(ii) Use that E has no non-trivial one-dimensional representations.

(iii) Use that multiples of Ω are the only vectors in Fock space invariant under (a,R)→
U(a,R).

Solution: Suppose there is a unitary T on Fock space s.t. for all f ∈ S(Rd)

Tρ1(W (f))T−1 = ρ2(W (f)), (25)

where we set ρi := ρµmi .

Recall that for any mass m we have a unitary representation of the Poincare group P ↑+ 3
(x̃,Λ) 7→ Um(x̃,Λ) acting on the Fock space. Consider a subgroup E ⊂ P ↑+ of Euclidean
motions on the t = 0 plane (i.e. space-translations and rotations). For (a,R) ∈ E the
representation

Um(a,R) = Γ(u(a,R)), û(a,R)g(p) = e−ipaĝ(R−1p), or (u(a,R)g)(x) = g(R−1(x− a)),(26)

(where g ∈ L2(Rd)), is in fact independent of m so we can drop the subscript. We have

U(a,R)ρ1(W (f))U(a,R)∗ = ρ1(W (S(a,R)f)), (27)

U(a,R)ρ2(W (f))U(a,R)∗ = ρ2(W (S(a,R)f)), (28)
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where (S(a,R)f)(x) = f(R−1(x− a)). Thus we get

U(a,R)ρ1(W (f))U(a,R)∗ = ρ1(W (S(a,R)f)) = T−1ρ2(W (S(a,R)f))T

= T−1U(a,R)ρ2(W (S(a,R)f))U(a,R)∗T = T−1U(a,R)Tρ1(W (f))T−1U(a,R)∗T.(29)

Hence C(a,R) := T−1U(a,R)∗TU(a,R) commutes with all ρ1(W (f)) and thus, by irre-
ducibility, is a multiple of identity s.t. |C(a,R)| = 1. Thus we have

TU(a,R)T−1 = U(a,R)C(a,R). (30)

It easily follows from this relation that C(a,R) is a one-dimensional representation of E
and thus identity representation: C(a,R) = 1. Consequently,

TU(a,R) = U(a,R)T, and hence TΩ = U(a,R)TΩ. (31)

Since Ω is the only (up to a multiple) vector in Fock space invariant under U(a,R), we
have that TΩ = cΩ, |c| = 1. Therefore

〈Ω, ρ1(W (f))Ω〉 = 〈Ω, ρ2(W (f))Ω〉, hence e−
1
2
‖fµm1

‖2 = e−
1
2
‖fµm2

‖2 , (32)

and consequently ‖fµm1
‖2 = ‖fµm2

‖2. This is a contradiction, because e.g. for f s.t.
Im f = 0,

(m2
1 −m2

2)

∫
ddk

µm1(k)µm2(k)(µm1(k) + µm2(k))
|f̂(k)|2 = 0. (33)

Additional Problem: Let E 3 (a,R) 7→ U(a,R) be a unitary representation of the
group of Euclidean motions in R3 in a one-dimensional Hilbert space. Show that this
representation is trivial.

Solution: By the Stone’s theorem, we have

U(a, 1) = e−ipa (34)

for some p ∈ R3. The multiplication law gives

U(0, R)U(a, 1)U(0, R−1) = U(Ra,R)U(0, R−1) = U(Ra, 1) = e−ip(Ra) = e−i(R
−1p)a (35)

On the other hand, since the representation is one-dimensional:

U(0, R)U(a, 1)U(0, R−1) = U(a, 1) = e−ipa. (36)

By differentiating w.r.t. a at zero, we have

R−1p = p (37)

for all rotations R so, p = 0. Thus U is at best a non-trivial representation of SO(3). But
we know all irreducible finite-dimensional representations of SO(3) (recall from Quantum
Mechanics, angular momentum) and it has no non-trivial irreducible representations.
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Additional Problem: Show that Ω is the only vector in the Fock space invariant under
space translations.

Solution: Let ψ = {ψ(n)}n∈N be a unit vector orthogonal to Ω which is invariant undar
space translations. Then

1 = 〈ψ, ψ〉 = 〈ψ,U(a, 1)ψ〉 =
∑
n≥1

∫
dndk |ψ|2(k1, . . . , kn)e−ia(k1+···+kn) → 0 (38)

as a→∞ by the Riemann-Lebesgue lemma. This is a contradiction.

To be discussed in class: 29.06.2017
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