Stochastic Differential Equations Homework Sheet 5 - solutions

Problem 1. Let $\{B_t\}_{t\in\mathbb{R}_+}$ be a one-dimensional Brownian motion starting at $x\in\mathbb{R}$ and let c>0 be a constant. Prove that the process

$$\tilde{B}_t := \frac{1}{c} B_{c^2 t} \tag{1}$$

is also a Brownian motion. Hint: Show that the finite-dimensional distributions of $\{B_t\}_{t\in\mathbb{R}_+}$ and $\{\tilde{B}_t\}_{t\in\mathbb{R}_+}$ coincide.

Solution. We have

$$P^{x}(\tilde{B}_{t_{1}} \in F_{1}, \dots, \tilde{B}_{t_{k}} \in F_{k})$$

$$= P^{x}(\tilde{B}_{c^{2}t_{1}} \in cF_{1}, \dots, \tilde{B}_{c^{2}t_{k}} \in cF_{k})$$

$$= \int_{cF_{1} \times \dots \times cF_{k}} p(c^{2}t_{1}, x, x_{1}) \cdots p(c^{2}(t_{k-1} - t_{k-2}), x_{k-2}, x_{k-1}) p(c^{2}(t_{k} - t_{k-1}), x_{k-1}, x_{k}) dx_{1} \cdots dx_{k}$$

$$= \int_{F_{1} \times \dots \times F_{k}} cp(c^{2}t_{1}, c\tilde{x}, c\tilde{x}_{1}) \cdots cp(c^{2}(t_{k-1} - t_{k-2}), c\tilde{x}_{k-2}, c\tilde{x}_{k-1}) p(c^{2}(t_{k} - t_{k-1}), c\tilde{x}_{k-1}, c\tilde{x}_{k}) d\tilde{x}_{1} \cdots d\tilde{x}_{k}$$

$$= \int_{F_{1} \times \dots \times F_{k}} p(t_{1}, \tilde{x}, \tilde{x}_{1}) \cdots p((t_{k-1} - t_{k-2}), \tilde{x}_{k-2}, \tilde{x}_{k-1}) p((t_{k} - t_{k-1}), \tilde{x}_{k-1}, \tilde{x}_{k}) d\tilde{x}_{1} \cdots d\tilde{x}_{k}$$

$$= \int_{F_{1} \times \dots \times F_{k}} p(t_{1}, \tilde{x}, \tilde{x}_{1}) \cdots p((t_{k-1} - t_{k-2}), \tilde{x}_{k-2}, \tilde{x}_{k-1}) p((t_{k} - t_{k-1}), \tilde{x}_{k-1}, \tilde{x}_{k}) d\tilde{x}_{1} \cdots d\tilde{x}_{k}$$

$$= P^{x}(B_{t_{1}} \in F_{1}, \dots, B_{t_{k}} \in F_{k}).$$

$$(2)$$

We used in (2) that

$$cp(c^2t, cx, cy) = c(2\pi tc^2)^{-1/2} \exp\left(-\frac{c^2|x-y|^2}{2c^2t}\right) = p(t, x, y).$$
 (3)

Side remark: In other words, $B_t = \frac{1}{c}B_{c^2t}$, where $\frac{d}{dt} = \frac{1}{c}B_{c^2t}$ means equality in distribution. This (statistical) self-similarity property is reminiscent of fractals - objects which retain their essential features under zooming (think of a coastal line). In a future Homework Sheet we will encounter the Cantor set which is the simplest example of a deterministic (i.e. non-statistical) fractal.

Problem 2. Show that the function

$$g(s) = \begin{cases} s \sin(\frac{1}{s}), & s \neq 0, \\ 0, & s = 0. \end{cases}$$
 (4)

has infinite total variation on [0, 1].

Solution. Fix $n \in \mathbb{N}$ and set $I_n = [s_{n+1}, s_n]$ with $s_n := 1/(n\pi)$. Note that

$$u_n := n\pi + \frac{\pi}{2} \in [n\pi, (n+1)\pi],$$

so the point

$$r_n := \frac{1}{u_n} = \frac{1}{n\pi + \frac{\pi}{2}}$$

lies in I_n . Since $\sin(u_n) = \sin(n\pi + \frac{\pi}{2}) = (-1)^n$, we have

$$g(r_n) = r_n \sin\left(\frac{1}{r_n}\right) = r_n \sin(u_n) = (-1)^n r_n.$$

Also $g(s_{n+1}) = g(s_n) = 0$ because $1/s_{n+1} = (n+1)\pi$ and $1/s_n = n\pi$ are zeros of sin.

Consider the partition $\{[s_{n+1}, r_n] \cup [r_n, s_n]\}$ of $I_n = [s_{n+1}, s_n]$. By the definition of variation as the supremum over partitions,

$$V_{I_n}(g) \ge |g(r_n) - g(s_{n+1})| + |g(s_n) - g(r_n)|$$

$$= |(-1)^n r_n - 0| + |0 - (-1)^n r_n| = r_n + r_n = 2 r_n$$

$$= 2 \left(\frac{1}{n\pi + \frac{\pi}{2}}\right).$$

We observe that $V_0^1(g) \geq \sum_{n=1}^{\infty} V_{I_n}(g)$ (in fact, if we restrict the supremum in $V_0^1(g)$ to partitions containing the end-points of intervals I_n , the quantity will get smaller. But this restriction does not affect the sets of partitions inside each I_n).

Summing over n yields

$$V_0^1(g) \ge \sum_{n=1}^{\infty} 2\left(\frac{1}{n\pi + \frac{\pi}{2}}\right),$$

which diverges by comparison with the harmonic series (since $n\pi + \frac{\pi}{2} \leq (n+1)\pi$ gives $\frac{1}{n\pi + \frac{\pi}{2}} \geq \frac{1}{(n+1)\pi}$). Thus the total variation of g on [0,1] is infinite.

It is a classical fact that the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges. This can be seen as follows: Clearly

$$\int_{n+1}^{n+2} \frac{1}{x} dx \le \frac{1}{n+1}.$$
 (5)

Therefore

$$\sum_{n=1}^{N} \int_{n+1}^{n+2} \frac{1}{x} dx = \sum_{n=1}^{N} [\log(n+2) - \log(n+1)] = \log(N+2) - \log(2) \le \sum_{n=1}^{N} \frac{1}{n+1}.$$
 (6)

But $\lim_{N\to\infty} \log(N+2) = \infty$.

Problem 3. Suppose that $g \in C^1(\mathbb{R})$. Show that $V_a^b(g) = \int_a^b |g'(s)| ds$.

Hint: Consider separately the inequalities $V_a^b(g) \leq \int_a^b |g'(s)| ds$ and $V_a^b(g) \geq \int_a^b |g'(s)| ds$.

Solution. Step 1. Upper bound. For any partition $\Pi = \{a = s_0 < s_1 < \dots < s_n = b\},\$

$$f(s_i) - f(s_{i-1}) = \int_{s_{i-1}}^{s_i} f'(s) \, ds. \tag{7}$$

Hence

$$\sum_{i=1}^{n} |f(s_i) - f(s_{i-1})| = \sum_{i=1}^{n} \left| \int_{s_{i-1}}^{s_i} f'(s) \, ds \right|$$

$$\leq \sum_{i=1}^{n} \int_{s_{i-1}}^{s_i} |f'(s)| \, ds = \int_a^b |f'(s)| \, ds. \tag{8}$$

Taking the supremum over all partitions gives

$$V_a^b(f) \le \int_a^b |f'(s)| \, ds. \tag{9}$$

Step 2. Lower bound. Because f' is continuous, so is |f'|, hence Riemann integrable. Given $\varepsilon > 0$, there exists a tagged partition (Π, ξ) with mesh $|\Pi|$ small enough such that

$$\int_{a}^{b} |f'(s)| \, ds \le \sum_{i=1}^{n} |f'(\xi_i)| (s_i - s_{i-1}) + \varepsilon. \tag{10}$$

By the mean value theorem, for each i there exists $\eta_i \in (s_{i-1}, s_i)$ such that

$$f(s_i) - f(s_{i-1}) = f'(\eta_i) (s_i - s_{i-1}).$$
(11)

Therefore,

$$\sum_{i=1}^{n} |f(s_i) - f(s_{i-1})| = \sum_{i=1}^{n} |f'(\eta_i)| (s_i - s_{i-1}).$$
 (12)

Since the Riemann integral does not depend on the tags of the partition, we can set $\eta_i = \xi_i$. Combining (10), (12) we get

$$\sum_{i=1}^{n} |f(s_i) - f(s_{i-1})| \ge \int_a^b |f'(s)| \, ds - \varepsilon. \tag{13}$$

Since $\varepsilon > 0$ is arbitrary and $V_a^b(f)$ is the supremum over all partitions,

$$V_a^b(f) \ge \int_a^b |f'(s)| \, ds. \tag{14}$$

To be discussed in class: 13.11.2025