Stochastic Differential Equations Homework Sheet 5

Problem 1. Let $\{B_t\}_{t\in\mathbb{R}_+}$ be a one-dimensional Brownian motion starting at $x\in\mathbb{R}$ and let c>0 be a constant. Prove that the process

$$\tilde{B}_t := \frac{1}{c} B_{c^2 t} \tag{1}$$

is also a Brownian motion. Hint: Show that the finite-dimensional distributions of $\{B_t\}_{t\in\mathbb{R}_+}$ and $\{\tilde{B}_t\}_{t\in\mathbb{R}_+}$ coincide.

Problem 2. Show that the function

$$g(s) = \begin{cases} s \sin(\frac{1}{s}), & s \neq 0, \\ 0, & s = 0. \end{cases}$$
 (2)

has infinite total variation on [0, 1].

Problem 3. Suppose that $g \in C^1(\mathbb{R})$. Show that $V_a^b(g) = \int_a^b |g'(s)| ds$. Hint: Consider separately the inequalities $V_a^b(g) \leq \int_a^b |g'(s)| ds$ and $V_a^b(g) \geq \int_a^b |g'(s)| ds$.

To be discussed in class: 13.11.2025