
Prof. UAM dr hab. Wojciech Dybalski AMU Poznań
Winter semester 2025/26
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Homework Sheet 6 - solutions

Problem 1. Consider Sn :=
∑2n

k=1

(
BkT/2n −B(k−1)T/2n

)2 like in class. Show that

Sn →
n→∞

T in L2(Ω, P ). (1)

Hints: Justify that it suffices to show var(Sn) →
n→∞

0. Relate the latter variance to
var((∆Bk)

2) using HS2, Problem 2. Compute var((∆Bk)
2) with the help of HS3, Prob-

lem 1.

Solution. We have Sn :=
∑2n

k=1

(
BkT/2n −B(k−1)T/2n

)2
=:

∑
k(∆Bk)

2. We note that

E[(∆Bk)
2]=2−nT, (2)

var((∆Bk)
2)=E[(∆Bk)

4]− E[(∆Bk)
2]2 = 3

(
2−nT

)2 − (2−nT )2 = 2(2−nT
)2
, (3)

where we used that for Z ∼ N(0, σ2) there holds E(Z4) = 3σ4 (HS3, Problem 1). We
have

E[Sn] =
2n∑
k=1

E[(∆Bk)
2] = T. (4)

Since the increments are independent, we have, (HS2, Problem 2),

E[(Sn − E[Sn])
2] = var(Sn) =

2n∑
k=1

var((∆Bk)
2) =

2n∑
k=1

2(2−nT
)2

= 2n2(2−nT
)2 → 0. (5)

Considering (4) we conclude the proof.

Problem 2. Let (Ω,F , P ) be a probability space. Let

N = {N ⊂ Ω : ∃Z ∈ F with N ⊂ Z, P (Z) = 0 }. (6)

Define the completion by

F∗ = {A ∪N : A ∈ F , N ∈ N }, P ∗(A ∪N) = P (A). (7)

Show that F∗ is a σ-field and P ∗ is a well defined measure in F∗. (Note that F ⊂ F∗,
since A = A ∪ ∅, ∅ ∈ N ).
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Solution. Let us show that F∗ is a σ-field:

(i) Clearly ∅ ∈ F since it is a set of measure zero.

(ii) Suppose A ∪N ∈ F∗ and N ⊂ Z, Z ∈ F , P (Z) = 0. Then (by picture)

(A ∪N)c = Ac ∩N c = Ac ∩ (Zc ∪ Z\N) = (Ac ∩ Zc) ∪ (Ac ∩ (Z\N)). (8)

We have Ac ∩ Zc ∈ F and Ac ∩ (Z\N) ⊂ Z, where P (Z) = 0.

(iii) Suppose Ai ∪Ni ∈ F∗. Then
∞⋃
i=1

(Ai ∪Ni) =
( ∞⋃
i=1

Ai

)
∪
( ∞⋃
i=1

Ni

)
(9)

We have
⋃∞

i=1 Ai ∈ F and
⋃∞

i=1 Ni ⊂
⋃∞

i=1 Zi, where the latter set is of P -measure
zero.

Let us now check that the map P ∗ is well defined. Suppose A1 ∪ N1 = A2 ∪ N2. Then
A1 ⊂ A2 ∪N2 ⊂ A2 ∪ Z2 and A2 ⊂ A1 ∪N1 ⊂ A1 ∪ Z1, hence

P (A1) ≤ P (A2 ∪ Z2) ≤ P (A2) + P (Z2) = P (A2), (10)
P (A2) ≤ P (A1 ∪ Z1) ≤ P (A1) + P (Z1) = P (A1), (11)

hence P (A1) = P (A2), thus

P ∗(A1 ∪N1) = P (A1) = P (A2) = P ∗(A2 ∪N2). (12)

Now we check the properties of the measure:

(a) P ∗(∅) = P (∅) = 0, P ∗(Ω) = P (Ω) = 1

(b) If {Ai∪Ni}i∈N are disjoint, then {Ai}i∈N are disjoint and {Ni}i∈N are disjoint. Hence

P ∗(
⊔
i∈N

(Ai ∪Ni)) = P ∗((
⊔
i∈N

Ai) ∪ (
⊔
i∈N

Ni)) = P (
⊔
i∈N

Ai) =
∑
i∈N

P (Ai) =
∑
i∈N

P ∗(Ai ∪Ni)

Problem 3. Define the middle–third Cantor set C ⊂ [0, 1] as follows:

(i) Start with the closed interval
C0 = [0, 1].

(ii) Given Cn, obtain Cn+1 by removing from each closed interval of Cn its open middle
third. For example:

C1 = [0, 1/3] ∪ [2/3, 1], (13)
C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]. (14)

Continuing indefinitely produces a decreasing sequence of closed sets

C0 ⊃ C1 ⊃ C2 ⊃ · · ·

where Cn+1 is obtained from Cn by removing the open middle third of each interval.
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(iii) Define

C =
∞⋂
n=0

Cn.

This set C is called the Cantor set.

Prove that the Lebesgue measure of C is zero, i.e. µ(C) = 0.

Solution. At the first step, the total length of C0 = [0, 1] is 1. We remove the open
interval (1/3, 2/3) of length 1/3, so the total length of C1 is

µ(C1) = 1− 1

3
=

2

3
.

At the second step, each of the two intervals in C1 has length 1/3. Removing the middle
third from each means removing two open intervals, each of length 1/9, so the remaining
total length is

µ(C2) =
2

3
− 2

9
=

4

9
=

(
2

3

)2

.

In general, after n steps, Cn consists of 2n closed intervals, each of length 3−n. Hence

µ(Cn) = 2n · 3−n =

(
2

3

)n

.

Since the sequence (Cn)n∈N is decreasing and C =
⋂∞

n=0Cn, continuity of the measure
from above (HS1, Problem 6) gives

µ(C) = lim
n→∞

µ(Cn) = lim
n→∞

(
2

3

)n

= 0.

Therefore, the Cantor set C has Lebesgue measure zero.

Problem 4. Let C ⊂ [0, 1] be the middle-third Cantor set as above. Consider the space
of infinite binary sequences

2N = {(bk)k≥1 : bk ∈ {0, 1}}.

Define

Φ : 2N → [0, 1], Φ
(
(bk)k≥1

)
=

∞∑
k=1

2bk
3k

. (15)

Note that Φ(2N) ⊂ C. In fact, every number x ∈ [0, 1] can be written in base 3 (ternary)
expansion as x = 0.a1a2a3 . . .3 =

∑∞
k=1

ak
3k

where ak ∈ {0, 1, 2}. For example,

0=0.0000 . . .3 (16)
1=0.2222 . . .3 (17)
1

3
=0.1000 . . .3 (18)

2

3
=0.2000 . . .3 (19)
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Therefore, removing the middle third (1
3
, 2
3
) to build C1, as in (13) above, means removing

all digits whose first ternary digit is 1:

(
1

3
,
2

3
) = {x ∈ [0, 1] : a1 = 1 }. (20)

Hence, C1 = { x ∈ [0, 1] : a1 ∈ {0, 2} }. Analogously, one can see that Cn consists of
numbers whose first n ternary digits belong to {0, 2}, hence C consists of numbers whose
all ternary digits belong to {0, 2}. Such numbers occur on the r.h.s. of (15).

(a) Show that for every x ∈ C there exists (bk)k≥1 ∈ 2N with x = Φ((bk)k≥1), i.e. Φ is
surjective.

(b) Prove that Φ is injective.

(c) Deduce that |C| = |2N| = c; i.e., the Cantor set has the cardinality of the continuum.

Solution. (a) Every x ∈ C has a ternary expansion x =
∑

k≥1
ak
3k

with ak ∈ {0, 2}.
Setting bk = ak/2 ∈ {0, 1} gives x = Φ((bk)k≥1).

(b) Suppose, by contradiction, that two different binary sequences (bk)k∈N and (ck)k≥1

gave the same real number: Φ((bk)k≥1) = Φ((ck)k≥1). Then the corresponding
ternary digit sequences

ak = 2bk, dk = 2ck (21)

would give two different ternary expansions using only digits 0 and 2 for the same
real number. But in base-3 the only way a number can have two expansions is:

. . . xn000 . . .3 = . . . (xn − 1)222 . . .3 , xn ∈ {1, 2}. (22)

Thus, only one of the two numbers can have all digits in {0, 1}.

(c) From (a)–(b), Φ is a bijection 2N → C. Hence, |C| = |2N| = 2ℵ0 = c.

To be discussed in class: 21.11.2025
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