## Stochastic Differential Equations Homework Sheet 6

**Problem 1.** Consider  $S_n := \sum_{k=1}^{2^n} \left( B_{kT/2^n} - B_{(k-1)T/2^n} \right)^2$  like in class. Show that  $S_n \underset{n \to \infty}{\to} T \text{ in } L^2(\Omega, P). \tag{1}$ 

Hints: Justify that it suffices to show  $\operatorname{var}(S_n) \to 0$ . Relate the latter variance to  $\operatorname{var}((\Delta B_k)^2)$  using HS2, Problem 2. Compute  $\operatorname{var}((\Delta B_k)^2)$  with the help of HS3, Problem 1.

**Problem 2.** Let  $(\Omega, \mathcal{F}, P)$  be a probability space. Let

$$\mathcal{N} = \{ N \subset \Omega : \exists Z \in \mathcal{F} \text{ with } N \subset Z, P(Z) = 0 \}.$$
 (2)

Define the completion by

$$\mathcal{F}^* = \{ A \cup N : A \in \mathcal{F}, N \in \mathcal{N} \}, \quad P^*(A \cup N) = P(A). \tag{3}$$

Show that  $\mathcal{F}^*$  is a  $\sigma$ -field and  $P^*$  is a well defined measure in  $\mathcal{F}^*$ . (Note that  $\mathcal{F} \subset \mathcal{F}^*$ , since  $A = A \cup \emptyset$ ,  $\emptyset \in \mathcal{N}$ ).

**Problem 3.** Define the *middle-third Cantor set*  $C \subset [0,1]$  as follows:

(i) Start with the closed interval

$$C_0 = [0, 1].$$

(ii) Given  $C_n$ , obtain  $C_{n+1}$  by removing from each closed interval of  $C_n$  its open middle third. For example:

$$C_1 = [0, 1/3] \cup [2/3, 1],$$
 (4)

$$C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1].$$
 (5)

Continuing indefinitely produces a decreasing sequence of closed sets

$$C_0 \supset C_1 \supset C_2 \supset \cdots$$

where  $C_{n+1}$  is obtained from  $C_n$  by removing the open middle third of each interval.

(iii) Define

$$C = \bigcap_{n=0}^{\infty} C_n.$$

This set C is called the Cantor set.

Prove that the Lebesgue measure of C is zero, i.e.  $\mu(C) = 0$ .

**Problem 4.** Let  $C \subset [0,1]$  be the middle-third Cantor set as above. Consider the space of infinite binary sequences

$$2^{\mathbb{N}} = \{(b_k)_{k \ge 1} : b_k \in \{0, 1\}\}.$$

Define

$$\Phi: 2^{\mathbb{N}} \to [0, 1], \qquad \Phi((b_k)_{k \ge 1}) = \sum_{k=1}^{\infty} \frac{2b_k}{3^k}.$$
 (6)

Note that  $\Phi(2^{\mathbb{N}}) \subset C$ . In fact, every number  $x \in [0,1]$  can be written in base 3 (ternary) expansion as  $x = 0.a_1 a_2 a_3 ..._3 = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$  where  $a_k \in \{0, 1, 2\}$ . For example,

$$0 = 0.0000..._3 \tag{7}$$

$$1 = 0.2222..._3 \tag{8}$$

$$\frac{1}{3} = 0.1000\dots_3 \tag{9}$$

$$\frac{1}{3} = 0.1000..._3 \tag{9}$$

$$\frac{2}{3} = 0.2000..._3 \tag{10}$$

Therefore, removing the middle third  $(\frac{1}{3}, \frac{2}{3})$  to build  $C_1$ , as in (4) above, means removing all digits whose first ternary digit is 1:

$$\left(\frac{1}{3}, \frac{2}{3}\right) = \{x \in [0, 1] : a_1 = 1\}.$$
 (11)

Hence,  $C_1 = \{x \in [0,1] : a_1 \in \{0,2\}\}$ . Analogously, one can see that  $C_n$  consists of numbers whose first n ternary digits belong to  $\{0,2\}$ , hence C consists of numbers whose all ternary digits belong to  $\{0, 2\}$ . Such numbers occur on the r.h.s. of (6).

- (a) Show that for every  $x \in C$  there exists  $(b_k)_{k\geq 1} \in 2^{\mathbb{N}}$  with  $x = \Phi((b_k)_{k\geq 1})$ , i.e.  $\Phi$  is surjective.
- (b) Prove that  $\Phi$  is injective.
- (c) Deduce that  $|C| = |2^{\mathbb{N}}| = \mathfrak{c}$ ; i.e., the Cantor set has the cardinality of the continuum.

To be discussed in class: 21.11.2025