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Problem 1. Let h ∈ L2(R). Show that

lim
s→0

∥h(·+ s)− h( · )∥2L2(R) = lim
s→0

∫
|h(t+ s)− h(t)|2dt = 0. (1)

Hint: One way to solve this problem is to use the Plancherel theorem: For f ∈ L2(R),
the Fourier transform f̂(k) =

∫
eiktf(t)dt 1 is also in L2(R) and satisfies

∥f∥L2(R) =
1√
2π

∥f̂∥L2(R). (2)

Solution. By the Plancherel theorem and dominated convergence

lim
s′→0

∫
dt |h1(t+ s′, ω)− h1(t, ω)|2 = lim

s′→0

1√
2π

∫
|e−iks′ − 1|2|ĥ1(k, ω)|2dk = 0. (3)

Side remark: This is a special case of the Stone theorem: Let D be a self-adjoint operator
on a Hilbert space H. Then s 7→ eisD is a strongly continuous group of unitaries, i.e. for
any h ∈ H,

lim
s→0

∥eisDh− h∥ = 0. (4)

In our case H = L2(R) and D = 1
i
d
dt

is the generator of translations (i.e. the quantum-
mechanical momentum operator). The identity (eisDh)(t) = h(t + s) is plausible by the
Taylor expansion of both sides.

Problem 2. Let h : R → R be a bounded, measurable function. For each n let ψn be a
non-negative, continuous function on R s.t.

(i) ψn(x) = 0 for x ≤ − 1
n

and x ≥ 0,

(ii)
∫∞
−∞ ψn(x)dx = 1,

i.e. a certain Dirac-delta approximating sequence. Consider the functions

gn(t) :=

∫ t

0

ψn(s− t)h(s)ds. (5)

1Strictly speaking for f ∈ L2(R) one should write, f̂(k) = limT→∞
∫
|t|≤T

eiktf(t)dt, where the limit is
in L2(R), but this is not important for solving this exercise.
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Show that, for any fixed 0 ≤ S < T ,∫ T

S

(gn(t)− h(t))2dt →
n→∞

0. (6)

Hints:

• Use support properties of ψn to show that for 1/n < t

gn(t)− h(t) =

∫ ∞

−∞
ψn(s

′)(h(t+ s′)− h(t))ds′. (7)

• Let K := [S, T ]. Note that you can enter with the norm under the integral as follows

∥gn − h∥L2(K) ≤
∫ ∞

−∞
ψn(s

′)∥h(·+ s′)− h(·)∥L2(K)ds
′ (8)

(Minkowski inequality) and ∥gn − h∥2L2(K) = l.h.s. of (6).

• Apply Problem 1 to show that the r.h.s. of (8) tends to zero as n → ∞. Note the
mismatch between bounded h and L2(K)-norm in (8) and h ∈ L2(R) in Problem 1.
Find a suitable reasoning to close this gap.

Solution. We write

gn(t)− h(t)=

∫ ∞

0

ψn(s− t)h(s)ds− h(t)

=

∫ ∞

−t

ψn(s
′)h(t+ s′)ds′ −

∫ ∞

−∞
ψn(s

′)h(t)ds′, (9)

where in the last step we used (ii). We note that for t = 0 we have gn(0) = 0, while h(0)
may be different from zero. But, since {t = 0} has Lebesgue measure zero, this is not an
obstacle to L2-convergence. Suppose that t > 0. Choose n so large that 1/n < t. Then

(9)=

∫ ∞

−∞
ψn(s

′)h(t+ s′)ds′ −
∫ ∞

−∞
ψn(s

′)h(t)ds′

=

∫ ∞

−∞
ψn(s

′)(h(t+ s′)− h(t))ds′. (10)

Consequently, for K := [S, T ], by the Minkowski inequality (entering with a norm under
the integral)

∥gn − h∥L2(K)≤
∫ ∞

−∞
ψn(s

′)∥h(·+ s′)− h( · )∥L2(K)ds
′

≤ sup
|s′|≤1/n

∥h(·+ s′)− h( · )∥L2(K). (11)
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Let us now show that the last norm tends to zero with s′ → 0. Since h is bounded,
h1(t) :=

1
1+t2

h(t) is in L2(R).

∥h( · + s′)− h( · )∥2L2(K)=

∫
dt χK(t)|h(t+ s′)− h(t)|2

=

∫
dt χK(t)|(1 + (t+ s′)2)h1(t+ s′)− (1 + t2)h1(t)|2

=

∫
dt χK(t)(1 + t2)|h1(t+ s′)− h1(t)|2 (12)

+s′
∫
dt χK(t)2t|h1(t+ s′)|2 (13)

+(s′)2
∫
dt χK(t)|h1(t+ s′)|2. (14)

We estimate

(13)≤ s′2T
∫
dt|h1(t)|2, (15)

(14)≤ (s′)2
∫
dt |h1(t)|2. (16)

We have

(12)≤ (1 + T 2)

∫
dt |h1(t+ s′, ω)− h1(t, ω)|2. (17)

This tends to zero as s′ → 0 by Problem 1. This concludes the proof of (6).

Problem 3. Let F be a finite σ-field on a set Ω. Recall that a set A ∈ F is called an
atom if A ̸= ∅ and for every F ∈ F such that F ⊆ A, one has either F = ∅ or F = A.

(a) Show that every F ∈ F is a union of atoms of F .

(b) Show that every function f : Ω → R, measurable w.r.t. F , is constant on atoms.

Solution. To prove (a), define a relation on Ω by

x ∼ y ⇐⇒ (∀F ∈ F) [x ∈ F ⇐⇒ y ∈ F ].

(i) Clearly, for each x ∈ Ω, the equivalence class of x under the above relation is

A(x) =
⋂
F∈F
x∈F

F.

Since F is finite, A(x) is a finite intersection of sets in F , hence A(x) ∈ F . Let
A = {A(x) : x ∈ Ω}.
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(ii) Each A ∈ A is an atom. Indeed, suppose A ∈ A and F ∈ F with ∅ ̸= F ⊆ A. If
x, y ∈ A, then x ∼ y, so membership in F is constant on A. Thus, with x ∈ A, by
moving y inside A we cannot depart from A. Since F is nonempty, it follows that
A ⊆ F , hence F = A.

(iii) The atoms form a partition of Ω. By construction, ∼ is an equivalence relation, and
the sets A(x) are its equivalence classes. Therefore, the atoms are disjoint and

Ω =
⋃
A∈A

A.

(iv) Every F ∈ F is a union of atoms. Membership in F is constant on each atom A, so

F =
⋃
A∈A
A⊆F

A.

Hence every element F of the finite σ-field F is a disjoint union of atoms. Moreover,

F =

{ ⋃
A∈A0

A : A0 ⊆ A

}
.

To prove (b), fix an atom A ∈ F .

(i) Suppose, for contradiction, that f is not constant on A. Then there exist x, y ∈ A
with f(x) ̸= f(y).

(ii) Choose a Borel set B ⊂ R such that f(x) ∈ B and f(y) /∈ B; for example, take
B = (−∞, t] with t strictly between f(x) and f(y).

(iii) Since f is F -measurable, the set

F := {ω ∈ Ω : f(ω) ∈ B } = f−1(B)

belongs to F .

(iv) We have x ∈ A∩ F and y ∈ A \ F , hence A∩ F is a measurable subset of A that is
nonempty and not equal to A. This contradicts the assumption that A is an atom.
Therefore f must be constant on A.

To be discussed in class: 28.11.2025
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