Stochastic Differential Equations Homework Sheet 7

Problem 1. Let $h \in L^2(\mathbb{R})$. Show that

$$\lim_{s \to 0} \|h(\cdot + s) - h(\cdot)\|_{L^2(\mathbb{R})}^2 = \lim_{s \to 0} \int |h(t + s) - h(t)|^2 dt = 0.$$
 (1)

Hint: One way to solve this problem is to use the Plancherel theorem: For $f \in L^2(\mathbb{R})$, the Fourier transform $\hat{f}(k) = \int e^{ikt} f(t) dt^{-1}$ is also in $L^2(\mathbb{R})$ and satisfies

$$||f||_{L^2(\mathbb{R})} = \frac{1}{2\pi} ||\hat{f}||_{L^2(\mathbb{R})}.$$
 (2)

Problem 2. Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded, measurable function. For each n let ψ_n be a non-negative, continuous function on \mathbb{R} s.t.

- (i) $\psi_n(x) = 0$ for $x \le -\frac{1}{n}$ and $x \ge 0$,
- (ii) $\int_{-\infty}^{\infty} \psi_n(x) dx = 1,$

i.e. a certain Dirac-delta approximating sequence. Consider the functions

$$g_n(t) := \int_0^t \psi_n(s-t)h(s)ds. \tag{3}$$

Show that, for any fixed $0 \le S < T$,

$$\int_{S}^{T} (g_n(t) - h(t))^2 dt \underset{n \to \infty}{\longrightarrow} 0.$$
 (4)

Hints:

• Use support properties of ψ_n to show that for 1/n < t

$$g_n(t) - h(t) = \int_{-\infty}^{\infty} \psi_n(s')(h(t+s') - h(t))ds'.$$
 (5)

• Let K := [S, T]. Note that you can enter with the norm under the integral as follows

$$||g_n - h||_{L^2(K)} \le \int_{-\infty}^{\infty} \psi_n(s') ||h(\cdot + s') - h(\cdot)||_{L^2(K)} ds'$$
(6)

(Minkowski inequality) and $||g_n - h||_{L^2(K)}^2 = l.h.s$ of (4).

¹Strictly speaking for $f \in L^2(\mathbb{R})$ one should write, $\hat{f}(k) = \lim_{T \to \infty} \int_{|t| \le T} e^{ikt} f(t) dt$, where the limit is in $L^2(\mathbb{R})$, but this is not important for solving this exercise.

• Apply Problem 1 to show that the r.h.s. of (6) tends to zero as $n \to \infty$. Note the mismatch between bounded h and $L^2(K)$ -norm in (6) and $h \in L^2(\mathbb{R})$ in Problem 1. Find a suitable reasoning to close this gap.

Problem 3. Let \mathcal{F} be a finite σ -field on a set Ω . Recall that a set $A \in \mathcal{F}$ is called an atom if $A \neq \emptyset$ and for every $F \in \mathcal{F}$ such that $F \subseteq A$, one has either $F = \emptyset$ or F = A.

- (a) Show that every $F \in \mathcal{F}$ is a union of atoms of \mathcal{F} .
- (b) Show that every function $f:\Omega\to\mathbb{R}$, measurable w.r.t. \mathcal{F} , is constant on atoms.

To be discussed in class: 28.11.2025