

Stochastic Differential Equations

Homework Sheet 8

In this Homework Sheet $\{B_t\}_{t \in \mathbb{R}_+}$ denotes one-dimensional Brownian motion with $B_0 = 0$ and continuous paths. We set, like in class, $B_j := B_{t_j}$, $\Delta B_j := B_{j+1} - B_j$, where

$$t_j := t_j^{(n)} := \begin{cases} j2^{-n} & \text{if } S \leq j2^{-n} \leq T, \\ S & \text{if } j2^{-n} < S, \\ T & \text{if } j2^{-n} > T. \end{cases} \quad (1)$$

The overall goal of this Homework Sheet is to compute $\int_0^T B_t^2 dB_t$ from the definition of the Itô integral.

Problem 1. Prove from the definition of the Itô integral that

$$\int_0^T t dB_t = TB_T - \int_0^T B_t dt. \quad (2)$$

Hint 1. Check that $\sum_j \Delta(t_j B_j) = \sum_j t_j \Delta B_j + \sum_j B_{j+1} \Delta t_j$.

Hint 2. It may be helpful to remember that L^2 -convergence and almost sure convergence are unrelated. However, each of them separately implies convergence in probability.

Problem 2. Show that

$$\lim_{n \rightarrow \infty} \sum_j B_j \Delta t_j \xrightarrow{n \rightarrow \infty} \int_0^T B_t dt \quad (3)$$

in $L^2(\Omega, P)$. Hint: From your solution to Problem 1 you may see that $\lim_{n \rightarrow \infty} \sum_j B_{j+1} \Delta t_j = \int_0^T B_t dt$ in $L^2(\Omega, P)$.

Problem 3. Prove that

$$\lim_{n \rightarrow \infty} \sum_j B_j (\Delta B_j)^2 \xrightarrow{n \rightarrow \infty} \int_0^T B_t dt. \quad (4)$$

in $L^2(\Omega, P)$. Hint 1: Decompose

$$\sum_j B_j (\Delta B_j)^2 = \sum_j B_j [(\Delta B_j)^2 - \Delta t_j] + \sum_j B_j \Delta t_j. \quad (5)$$

Show that the first sum on the r.h.s. of (5) tends to zero in $L^2(\Omega, P)$. Then apply Problem 2 to the second sum.

Hint 2: Recall that by HS3, Problem 1, $E(B_t^4) = 3t^2$.

Problem 4. Prove that

$$\sum_j (\Delta B_j)^3 \xrightarrow{n \rightarrow \infty} 0 \quad (6)$$

in $L^2(\Omega, P)$. Hint: $E[(\Delta B_j)^6] = 15(\Delta t_j)^3$.

Problem 5. Prove from the definition of the Itô integral that

$$\int_0^T B_t^2 dB_t = \frac{1}{3} B_T^3 - \int_0^T B_t dt. \quad (7)$$

Hint: Follow the overall strategy from the computation of $\int_0^T B_t dB_t$ in class and use the information from the problems above as required.

To be discussed in class: 05.12.2025