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Stochastic Differential Equations
Homework Sheet 9 - solutions

Problem 1. Let (2, F, P) and be a probability space and X : Q2 — R a random variable.
Denote by ux(F) = P(X € F), F € B(R), the law of X. Suppose that px is absolutely
continuous w.r.t. some o-finite reference measure v. Define the density of X w.r.t. v by
the Radon-Nikodym derivative

d
px(e) = (). e
This is consistent with the usual definition of the density, since
dp
ux(F) = [ B @)iv(o) 2)
p dv

Prove the following facts:
(a) Let v be the counting measure, i.e., v(F) = #{x € Z : z € F}. Then,
px(x) = px({z}) = P(X = 2) = Elx(x=n)]- (3)
(b) Let v be the Lebesgue measure. Then,

s NX([x—g,x—l—g])_ ) P(XE[I—&?,:L’+€])_ . i
px(ﬂf) _ll_{% 9 —ll_{% 2 = ll_r}(l)E[z(gX[xfe,que}(X)} (4)

You can add some regularity assumptions on py, if it helps (continuity, differentia-
bility, etc.)

(Side remark: Note that lim. 0 5= X[z—cz+e)(y) = 6(y — ) in D'(R), so in a sloppy
notation px(z) = E[6(X — x)], which allows for a comparison with (3).)

Solution. We check (a) by substituting px(z) = dg—f(x) to formula (2).

| FE@ivta) = [ nxlehave) = 3 px({ed) = px(F), ®)

dv
r€l,x€F

Part (b) in fact amounts to the ‘Lebesgue differentiation theorem’. But, assuming conti-
nuity of py, we can give an elementary proof. By (2):
px(lr —e,x+e]) 1 /E (©)

px(z+ 2)dT = px(x +t.),

—&

2e 2e

where we applied the mean value theorem and introduced t. € [—¢,¢]. By taking lim. g
of both sides, we complete the proof.



Problem 2. Consider the probability space (Q2,F, P) = ([0, L], B([0, L]), 1d
L > 2. Let Z(x) := sin(2rz), Xo(z) 1= Xaat1)(®) and Y, (2) = Xaat1/2)(
0,L — 1].

), L € N,

T
x) for a €

(a) Show that Z is independent of X, for any a € [0, L — 1].

(b) Show that Z is not independent of Y7 5.

Since Y7/, = XX /2 this shows that independence is not preserved under taking products.

Solution. Regarding (a), it suffices to show that o(Z) is independent of o(X,). Let
F C R be an interval and note that o(X,) = {0, [a,a + 1], [a,a + 1]¢,Q}. We compute

P(ZHF) Naa+ 1) = [ xe(Z@) o) ]

0
dr dr

a+1 1
:/ xr(Z(z)) 7 :/o Xr(Z(z)) I (7)

Here in the last step we used that Z has period 1, in which case it does not matter
over which interval of length 1 we integrate it. It follows from the latter statement, that
averaging over multiple periods amounts to averaging over one period, so

P ) = 1 [ ezt = [ ez Q
Noting that

P(la,a+1]) = %, (9)

we get from the above three equations that P(Z ' (F)N[a,a+1]) = P(Z7'(F))P([a, a+1]).
P(Z7YF)Na,a+1]°) = P(Z7Y(F))P([a, a+1]¢) is automatic. (In fact, if A is independent
of B then A is independent of B€).

Regarding (b), it suffices to show that Z and Y;, are correlated. We have

1 /! 1 1 [t 1
E[Z] = E[Y;,] = = dr = —. E[ZY,] = = in(2rx)dr = ——. (1
[Z] =0, [Y7 o] L/1/2 T=5r [ZY1 5] L/1/251n( mx)d — (10)
Thus E[ZY) 5] # E[Z)E[Y)2).

Problem 3. Let {X,,},>1 and X be random variables on a common probability space.
We say that {X,,},en converges in probability to X, written X, i X, if for every € > 0,
lim P(| X, — X| >¢)=0.

n—oo

Show that if X,, — X almost surely, i.e.,
Xp(w) = X(w), for weQ\N, forsome N € Fs.t. P(N)=0,

then X, o ox.



Solution. Fix ¢ > 0. Then:
P(X, = X] > )= [ X () = X (@) P(e). (11)
Now the statement follows from almost sure convergence by the dominated convergence

and the fact that X[ ) (| Xy (w) — X (w)|) = 0 for sufficiently large n.

Side remark: Almost sure convergence does not come from a topology. This follows from
the following facts:

(i) Fact: There exists a sequence {Y,, }nen which converges to zero in probability but
does not converge almost surely.

(i) Then there is a subsequence {Y,)}reny Which is outside some N(0), where N(0)
denote neighbourhoods of 0 in the hypothetical topology of a.s. convergence.

(iii) Theorem: If { X, },en converges in probability it has a subsequence { X, ) } rew which
converges almost surely.

(iv) Thus there is a subsequence {Y}, () }een converging almost surely to zero, which is
a contradiction.

Problem 4. Let (Q, F, P) = ([—1,1], B([-1, 1]),dx/2), where dx denotes Lebesgue mea-
sure on [—1,1]. Let Y (z) = |z|. Compute E[X|o(Y)] for L? random variables X. Deter-
mine E[X|o(Y)] for X (z) = €* as an explicit function of z.

Solution. We proceed in steps:

(i) We first describe o(Y). By the Doob-Dynkin lemma, a random variable Z is o(Y')-
measurable if and only if there exists a measurable function g : [0,1] — R such
that

Z(x) =g(Y(x)) = g(|z|) for almost all z € [—1,1].

For such Z we have

Z(=x) = g(| = z|) = g(|z]) = Z(x),
so Z is an even function.
Conversely, if f € L*([-1,1],dx/2) is even, then f(z) = f(|z|) Therefore,

L*(o(Y)) ={f € L*([-1,1]) : f(~=) = f(x) ae.}.

Thus L?*(o(Y)) is the closed subspace of even functions.
(ii) We compute E[X | o(Y)].

In L?, the conditional expectation E[X | o(Y)] is the orthogonal projection of X

onto the closed subspace L?(o(Y)) of even functions.

For any X € L?([—1,1],dx/2), define
X(z)+ X(—2)

2 Y

Then X = X, + X,, where X, is even and X, is odd.

Xe(x) :=

3



(iii) We show that X, is the orthogonal projection of X onto the even subspace.

Let f be any even function in L?*([—1,1],dz/2). Consider the inner product

() = [ Xl 5

Since X, is odd and f is even, their product X,(x)f(x) is odd. As the measure dz/2
is symmetric, we obtain

/_1 X, (2) () dg 0.

Thus X, is orthogonal to every even function, and hence X, is the orthogonal
projection of X onto L?(a(Y)).

(iv) Therefore,
EX |o(Y)] = X..

Explicitly,

EIX | o(¥)](z) = &) +2X (Z2) for almost all 2 € [~1,1].

In particular, for X (z) = e*, we have E[X | o(Y)](x) = cosh(z).

To be discussed in class: 12.12.2025



