

Stochastic Differential Equations

Homework Sheet 9 - solutions

Problem 1. Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \rightarrow \mathbb{R}$ a random variable. Denote by $\mu_X(F) = P(X \in F)$, $F \in \mathcal{B}(\mathbb{R})$, the law of X . Suppose that μ_X is absolutely continuous w.r.t. some σ -finite reference measure ν . Define the density of X w.r.t. ν by the Radon-Nikodym derivative

$$p_X(x) = \frac{d\mu_X}{d\nu}(x). \quad (1)$$

This is consistent with the usual definition of the density, since

$$\mu_X(F) = \int_F \frac{d\mu_X}{d\nu}(x) d\nu(x). \quad (2)$$

Prove the following facts:

(a) Let ν be the counting measure, i.e., $\nu(F) = \#\{x \in \mathbb{Z} : x \in F\}$. Then,

$$p_X(x) = \mu_X(\{x\}) = P(X = x) = E[\chi_{\{X=x\}}]. \quad (3)$$

(b) Let ν be the Lebesgue measure. Then,

$$p_X(x) = \lim_{\varepsilon \rightarrow 0} \frac{\mu_X([x - \varepsilon, x + \varepsilon])}{2\varepsilon} = \lim_{\varepsilon \rightarrow 0} \frac{P(X \in [x - \varepsilon, x + \varepsilon])}{2\varepsilon} = \lim_{\varepsilon \rightarrow 0} E\left[\frac{1}{2\varepsilon} \chi_{[x-\varepsilon, x+\varepsilon]}(X)\right] \quad (4)$$

You can add some regularity assumptions on p_X , if it helps (continuity, differentiability, etc.)

(Side remark: Note that $\lim_{\varepsilon \rightarrow 0} \frac{1}{2\varepsilon} \chi_{[x-\varepsilon, x+\varepsilon]}(y) = \delta(y - x)$ in $D'(\mathbb{R})$, so in a sloppy notation $p_X(x) = E[\delta(X - x)]$, which allows for a comparison with (3).)

Solution. We check (a) by substituting $p_X(x) = \frac{d\mu_X}{d\nu}(x)$ to formula (2).

$$\int_F \frac{d\mu_X}{d\nu}(x) d\nu(x) = \int_F \mu_X(\{x\}) d\nu(x) = \sum_{x \in \mathbb{Z}, x \in F} \mu_X(\{x\}) = \mu_X(F). \quad (5)$$

Part (b) in fact amounts to the ‘Lebesgue differentiation theorem’. But, assuming continuity of p_X , we can give an elementary proof. By (2):

$$\frac{\mu_X([x - \varepsilon, x + \varepsilon])}{2\varepsilon} = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} p_X(x + \tilde{x}) d\tilde{x} = p_X(x + t_\varepsilon), \quad (6)$$

where we applied the mean value theorem and introduced $t_\varepsilon \in [-\varepsilon, \varepsilon]$. By taking $\lim_{\varepsilon \rightarrow 0}$ of both sides, we complete the proof.

Problem 2. Consider the probability space $(\Omega, \mathcal{F}, P) = ([0, L], \mathcal{B}([0, L]), \frac{1}{L}dx)$, $L \in \mathbb{N}$, $L \geq 2$. Let $Z(x) := \sin(2\pi x)$, $X_a(x) := \chi_{[a, a+1]}(x)$ and $Y_a(x) = \chi_{[a, a+1/2]}(x)$ for $a \in [0, L-1]$.

- (a) Show that Z is independent of X_a for any $a \in [0, L-1]$.
- (b) Show that Z is not independent of $Y_{1/2}$.

Since $Y_{1/2} = X_0 X_{1/2}$ this shows that independence is not preserved under taking products.

Solution. Regarding (a), it suffices to show that $\sigma(Z)$ is independent of $\sigma(X_a)$. Let $F \subset \mathbb{R}$ be an interval and note that $\sigma(X_a) = \{\emptyset, [a, a+1], [a, a+1]^c, \Omega\}$. We compute

$$\begin{aligned} P(Z^{-1}(F) \cap [a, a+1]) &= \int_0^L \chi_F(Z(x)) \chi_{[a, a+1]}(x) \frac{dx}{L} \\ &= \int_a^{a+1} \chi_F(Z(x)) \frac{dx}{L} = \int_0^1 \chi_F(Z(x)) \frac{dx}{L}. \end{aligned} \quad (7)$$

Here in the last step we used that Z has period 1, in which case it does not matter over which interval of length 1 we integrate it. It follows from the latter statement, that averaging over multiple periods amounts to averaging over one period, so

$$P(Z^{-1}(F)) = \frac{1}{L} \int_0^L \chi_F(Z(x)) dx = \int_0^1 \chi_F(Z(x)) dx. \quad (8)$$

Noting that

$$P([a, a+1]) = \frac{1}{L}, \quad (9)$$

we get from the above three equations that $P(Z^{-1}(F) \cap [a, a+1]) = P(Z^{-1}(F))P([a, a+1])$. $P(Z^{-1}(F) \cap [a, a+1]^c) = P(Z^{-1}(F))P([a, a+1]^c)$ is automatic. (In fact, if A is independent of B then A is independent of B^c).

Regarding (b), it suffices to show that Z and $Y_{1/2}$ are correlated. We have

$$E[Z] = 0, \quad E[Y_{1/2}] = \frac{1}{L} \int_{1/2}^1 dx = \frac{1}{2L}, \quad E[ZY_{1/2}] = \frac{1}{L} \int_{1/2}^1 \sin(2\pi x) dx = -\frac{1}{L\pi}. \quad (10)$$

Thus $E[ZY_{1/2}] \neq E[Z]E[Y_{1/2}]$.

Problem 3. Let $\{X_n\}_{n \geq 1}$ and X be random variables on a common probability space. We say that $\{X_n\}_{n \in \mathbb{N}}$ converges in probability to X , written $X_n \xrightarrow{P} X$, if for every $\varepsilon > 0$,

$$\lim_{n \rightarrow \infty} P(|X_n - X| > \varepsilon) = 0.$$

Show that if $X_n \rightarrow X$ almost surely, i.e.,

$$X_n(\omega) \rightarrow X(\omega), \quad \text{for } \omega \in \Omega \setminus N, \quad \text{for some } N \in \mathcal{F} \text{ s.t. } P(N) = 0,$$

then $X_n \xrightarrow{P} X$.

Solution. Fix $\varepsilon > 0$. Then:

$$P(|X_n - X| > \varepsilon) = \int \chi_{[\varepsilon, \infty)}(|X_n(\omega) - X(\omega)|) dP(\omega). \quad (11)$$

Now the statement follows from almost sure convergence by the dominated convergence and the fact that $\chi_{[\varepsilon, \infty)}(|X_n(\omega) - X(\omega)|) = 0$ for sufficiently large n .

Side remark: Almost sure convergence does not come from a topology. This follows from the following facts:

- (i) Fact: There exists a sequence $\{Y_n\}_{n \in \mathbb{N}}$ which converges to zero in probability but does not converge almost surely.
- (ii) Then there is a subsequence $\{Y_{n(k)}\}_{k \in \mathbb{N}}$ which is outside some $N(0)$, where $N(0)$ denote neighbourhoods of 0 in the hypothetical topology of a.s. convergence.
- (iii) Theorem: If $\{X_n\}_{n \in \mathbb{N}}$ converges in probability it has a subsequence $\{X_{n(k)}\}_{k \in \mathbb{N}}$ which converges almost surely.
- (iv) Thus there is a subsequence $\{Y_{n(k(\ell))}\}_{\ell \in \mathbb{N}}$ converging almost surely to zero, which is a contradiction.

Problem 4. Let $(\Omega, \mathcal{F}, P) = ([-1, 1], \mathcal{B}([-1, 1]), dx/2)$, where dx denotes Lebesgue measure on $[-1, 1]$. Let $Y(x) = |x|$. Compute $E[X|\sigma(Y)]$ for L^2 random variables X . Determine $E[X|\sigma(Y)]$ for $X(x) = e^x$ as an explicit function of x .

Solution. We proceed in steps:

- (i) We first describe $\sigma(Y)$. By the Doob–Dynkin lemma, a random variable Z is $\sigma(Y)$ -measurable if and only if there exists a measurable function $g : [0, 1] \rightarrow \mathbb{R}$ such that

$$Z(x) = g(Y(x)) = g(|x|) \quad \text{for almost all } x \in [-1, 1].$$

For such Z we have

$$Z(-x) = g(|-x|) = g(|x|) = Z(x),$$

so Z is an even function.

Conversely, if $f \in L^2([-1, 1], dx/2)$ is even, then $f(x) = f(|x|)$. Therefore,

$$L^2(\sigma(Y)) = \{f \in L^2([-1, 1]) : f(-x) = f(x) \text{ a.e.}\}.$$

Thus $L^2(\sigma(Y))$ is the closed subspace of even functions.

- (ii) We compute $E[X | \sigma(Y)]$.

In L^2 , the conditional expectation $E[X | \sigma(Y)]$ is the orthogonal projection of X onto the closed subspace $L^2(\sigma(Y))$ of even functions.

For any $X \in L^2([-1, 1], dx/2)$, define

$$X_e(x) := \frac{X(x) + X(-x)}{2}, \quad X_o(x) := \frac{X(x) - X(-x)}{2}.$$

Then $X = X_e + X_o$, where X_e is even and X_o is odd.

(iii) We show that X_e is the orthogonal projection of X onto the even subspace.

Let f be any even function in $L^2([-1, 1], dx/2)$. Consider the inner product

$$\langle X_o, f \rangle = \int_{-1}^1 X_o(x) f(x) \frac{dx}{2}.$$

Since X_o is odd and f is even, their product $X_o(x)f(x)$ is odd. As the measure $dx/2$ is symmetric, we obtain

$$\int_{-1}^1 X_o(x) f(x) \frac{dx}{2} = 0.$$

Thus X_o is orthogonal to every even function, and hence X_e is the orthogonal projection of X onto $L^2(\sigma(Y))$.

(iv) Therefore,

$$E[X \mid \sigma(Y)] = X_e.$$

Explicitly,

$$E[X \mid \sigma(Y)](x) = \frac{X(x) + X(-x)}{2} \quad \text{for almost all } x \in [-1, 1].$$

In particular, for $X(x) = e^x$, we have $E[X \mid \sigma(Y)](x) = \cosh(x)$.

To be discussed in class: 12.12.2025