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Stochastic Differential Equations
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Problem 1. Let (Ω,F , P ) and be a probability space and X : Ω → R a random variable.
Denote by µX(F ) = P (X ∈ F ), F ∈ B(R), the law of X. Suppose that µX is absolutely
continuous w.r.t. some σ-finite reference measure ν. Define the density of X w.r.t. ν by
the Radon-Nikodym derivative

pX(x) =
dµX

dν
(x). (1)

This is consistent with the usual definition of the density, since

µX(F ) =

∫
F

dµX

dν
(x)dν(x). (2)

Prove the following facts:

(a) Let ν be the counting measure, i.e., ν(F ) = #{x ∈ Z : x ∈ F}. Then,

pX(x) = µX({x}) = P (X = x) = E[χ{X=x}]. (3)

(b) Let ν be the Lebesgue measure. Then,

pX(x) = lim
ε→0

µX([x− ε, x+ ε])

2ε
= lim

ε→0

P (X ∈ [x− ε, x+ ε])

2ε
= lim

ε→0
E
[ 1
2ε

χ[x−ε,x+ε](X)
]
.(4)

You can add some regularity assumptions on pX , if it helps (continuity, differentia-
bility, etc.)

(Side remark: Note that limε→0
1
2ε
χ[x−ε,x+ε](y) = δ(y − x) in D′(R), so in a sloppy

notation pX(x) = E[δ(X − x)], which allows for a comparison with (3).)

Solution. We check (a) by substituting pX(x) =
dµX

dν
(x) to formula (2).∫

F

dµX

dν
(x)dν(x) =

∫
F

µX({x})dν(x) =
∑

x∈Z,x∈F

µX({x}) = µX(F ). (5)

Part (b) in fact amounts to the ‘Lebesgue differentiation theorem’. But, assuming conti-
nuity of pX , we can give an elementary proof. By (2):

µX([x− ε, x+ ε])

2ε
=

1

2ε

∫ ε

−ε

pX(x+ x̃)dx̃ = pX(x+ tε), (6)

where we applied the mean value theorem and introduced tε ∈ [−ε, ε]. By taking limε→0

of both sides, we complete the proof.
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Problem 2. Consider the probability space (Ω,F , P ) = ([0, L],B([0, L]), 1
L
dx), L ∈ N,

L ≥ 2. Let Z(x) := sin(2πx), Xa(x) := χ[a,a+1](x) and Ya(x) = χ[a,a+1/2](x) for a ∈
[0, L− 1].

(a) Show that Z is independent of Xa for any a ∈ [0, L− 1].

(b) Show that Z is not independent of Y1/2.

Since Y1/2 = X0X1/2 this shows that independence is not preserved under taking products.

Solution. Regarding (a), it suffices to show that σ(Z) is independent of σ(Xa). Let
F ⊂ R be an interval and note that σ(Xa) = {∅, [a, a+ 1], [a, a+ 1]c,Ω}. We compute

P (Z−1(F ) ∩ [a, a+ 1])=

∫ L

0

χF (Z(x))χ[a,a+1](x)
dx

L

=

∫ a+1

a

χF (Z(x))
dx

L
=

∫ 1

0

χF (Z(x))
dx

L
. (7)

Here in the last step we used that Z has period 1, in which case it does not matter
over which interval of length 1 we integrate it. It follows from the latter statement, that
averaging over multiple periods amounts to averaging over one period, so

P (Z−1(F )) =
1

L

∫ L

0

χF (Z(x))dx =

∫ 1

0

χF (Z(x))dx. (8)

Noting that

P ([a, a+ 1]) =
1

L
, (9)

we get from the above three equations that P (Z−1(F )∩[a, a+1]) = P (Z−1(F ))P ([a, a+1]).
P (Z−1(F )∩[a, a+1]c) = P (Z−1(F ))P ([a, a+1]c) is automatic. (In fact, if A is independent
of B then A is independent of Bc).

Regarding (b), it suffices to show that Z and Y1/2 are correlated. We have

E[Z] = 0, E[Y1/2] =
1

L

∫ 1

1/2

dx =
1

2L
, E[ZY1/2] =

1

L

∫ 1

1/2

sin(2πx)dx = − 1

Lπ
. (10)

Thus E[ZY1/2] ̸= E[Z]E[Y1/2].

Problem 3. Let {Xn}n≥1 and X be random variables on a common probability space.
We say that {Xn}n∈N converges in probability to X, written Xn

P−→ X, if for every ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

Show that if Xn → X almost surely, i.e.,

Xn(ω) → X(ω), for ω ∈ Ω\N, for some N ∈ F s.t. P (N) = 0,

then Xn
P−→ X.
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Solution. Fix ε > 0. Then:

P (|Xn −X| > ε)=

∫
χ[ε,∞)(|Xn(ω)−X(ω)|)dP (ω). (11)

Now the statement follows from almost sure convergence by the dominated convergence
and the fact that χ[ε,∞)(|Xn(ω)−X(ω)|) = 0 for sufficiently large n.

Side remark: Almost sure convergence does not come from a topology. This follows from
the following facts:

(i) Fact: There exists a sequence {Yn}n∈N which converges to zero in probability but
does not converge almost surely.

(ii) Then there is a subsequence {Yn(k)}k∈N which is outside some N(0), where N(0)
denote neighbourhoods of 0 in the hypothetical topology of a.s. convergence.

(iii) Theorem: If {Xn}n∈N converges in probability it has a subsequence {Xn(k)}k∈N which
converges almost surely.

(iv) Thus there is a subsequence {Yn(k(ℓ))}ℓ∈N converging almost surely to zero, which is
a contradiction.

Problem 4. Let (Ω,F , P ) = ([−1, 1],B([−1, 1]), dx/2), where dx denotes Lebesgue mea-
sure on [−1, 1]. Let Y (x) = |x|. Compute E[X|σ(Y )] for L2 random variables X. Deter-
mine E[X|σ(Y )] for X(x) = ex as an explicit function of x.

Solution. We proceed in steps:

(i) We first describe σ(Y ). By the Doob–Dynkin lemma, a random variable Z is σ(Y )-
measurable if and only if there exists a measurable function g : [0, 1] → R such
that

Z(x) = g(Y (x)) = g(|x|) for almost all x ∈ [−1, 1].

For such Z we have

Z(−x) = g(| − x|) = g(|x|) = Z(x),

so Z is an even function.
Conversely, if f ∈ L2([−1, 1], dx/2) is even, then f(x) = f(|x|) Therefore,

L2(σ(Y )) = {f ∈ L2([−1, 1]) : f(−x) = f(x) a.e.}.

Thus L2(σ(Y )) is the closed subspace of even functions.

(ii) We compute E[X | σ(Y )].
In L2, the conditional expectation E[X | σ(Y )] is the orthogonal projection of X
onto the closed subspace L2(σ(Y )) of even functions.
For any X ∈ L2([−1, 1], dx/2), define

Xe(x) :=
X(x) +X(−x)

2
, Xo(x) :=

X(x)−X(−x)

2
.

Then X = Xe +Xo, where Xe is even and Xo is odd.
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(iii) We show that Xe is the orthogonal projection of X onto the even subspace.

Let f be any even function in L2([−1, 1], dx/2). Consider the inner product

⟨Xo, f⟩ =
∫ 1

−1

Xo(x)f(x)
dx

2
.

Since Xo is odd and f is even, their product Xo(x)f(x) is odd. As the measure dx/2
is symmetric, we obtain ∫ 1

−1

Xo(x)f(x)
dx

2
= 0.

Thus Xo is orthogonal to every even function, and hence Xe is the orthogonal
projection of X onto L2(σ(Y )).

(iv) Therefore,
E[X | σ(Y )] = Xe.

Explicitly,

E[X | σ(Y )](x) =
X(x) +X(−x)

2
for almost all x ∈ [−1, 1].

In particular, for X(x) = ex, we have E[X | σ(Y )](x) = cosh(x).

To be discussed in class: 12.12.2025
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