
Non-relativistic QED

Wojciech Dybalski

July 14, 2016

Contents

0.1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Relativistic Quantum Electrodynamics . . . . . . . . . . . . . . . . 2
0.3 Non-relativistic Quantum Electrodynamics . . . . . . . . . . . . . . 3
0.4 Outline of the course . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Quantization of particles interacting with the electromagnetic
field [1] 4
1.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Electromagnetic potentials . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Transverse and longitudinal field components . . . . . . . . . . . . . 8
1.5 Lagrangian in terms of transverse and longitudinal fields . . . . . . 9
1.6 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Formal quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Formal quantum Hamiltonian . . . . . . . . . . . . . . . . . . . . . 15
1.9 Quantum Maxwell-Newton equations . . . . . . . . . . . . . . . . . 19

1.9.1 Verification of ∇ ·B = 0 and ∇ · E = ρ . . . . . . . . . . . . 19
1.9.2 Verification of ∂tB = −∇× E . . . . . . . . . . . . . . . . . 20
1.9.3 Verification of ∂tE = ∇×B − j . . . . . . . . . . . . . . . . 20
1.9.4 Verification of the Newton equations . . . . . . . . . . . . . 23

2 Self-adjointness of the Pauli-Fierz Hamiltonian 25
2.1 Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Self-adjointness: basic concepts . . . . . . . . . . . . . . . . . . . . 30
2.3 Measure theory: basic concepts and results . . . . . . . . . . . . . . 31
2.4 Self-adjointness: basic results . . . . . . . . . . . . . . . . . . . . . 33
2.5 Self-adjointness of the Pauli-Fierz Hamiltonian . . . . . . . . . . . . 39

3 Elements of scattering theory 44
3.1 Total momentum operators and fiber Hamiltonians . . . . . . . . . 45
3.2 Conventional scattering theory and its limitations . . . . . . . . . . 47

1



Motivation

Before I give the outline of these lectures I would like to explain in non-technical
terms what is non-relativistic QED. In short, it is a theory at the interface between
non-relativistic Quantum Mechanics and relativistic QED.

0.1 Quantum Mechanics

Consider a Hydrogen atom described by H = −∆x − α/|x|. What quantum
mechanics teaches about the spectrum of this operator is that it consists of a
ground state and excited states

En = −1

4

α2

n2
, n = 1, 2, 3... (0.1)

and then a continuous spectrum above zero. This means, that the electron in an
excited state would stay in such an excited state forever. But experiments tell you
that this is simply not true, the lines have a finite width (even at zero temperature)
and thus after some time the electron relaxes to a ground state emitting photons.
In the Schrödinger equation you know from Quantum Mechanics there are no
terms responsible for this effect. The physical reason is coupling of the electron to
the quantized electromagnetic field, which is usually not covered by introductory
Quantum Mechanics courses. Relaxation of excited atoms to the ground
state is one example of a question which cannot be answered within
non-relativistic Quantum Mechanics. Non-relativistic QED offers an
appropriate framework to study this question. (Relativistic QED is difficult
to apply to bound state problems due to its perturbative character - see below).

0.2 Relativistic Quantum Electrodynamics

Full Quantum Electrodynamics (QED) describes interactions between electrons
and positrons, described by the electric current density j, and photons, described
by the electromagnetic potential A. The interaction, formally given by

VRQED = e

∫
d3x j(x)A(x), (0.2)

turns out to be very singular, since j and A are distributions, but we ignore these
ultraviolet problems here for a moment. Given the interaction, the next step is to
write down the scattering matrix. Rules of the game of Quantum Mechanics give

S = Texp

(
− i
∫ ∞
−∞

dt V I
RQED(t)

)
(0.3)

where V I
RQED is the interaction in the interaction picture. To compute the prob-

ability that a system evolves from some initial state |α〉 to a final state |β〉 one
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needs to compute the scattering matrix element 〈α|S|β〉. Let us consider Comp-
ton scattering, i.e. collision of one electron and one photon. The probability of a
transition α→ β (collision cross section1 σ) satisfies

σ ∼ |〈α|S|β〉|2. (0.4)

〈α|S|β〉 can be computed as a power series in the coupling constant e and the
resulting expressions can be depicted as Feynman diagrams which capture the
intuitive meaning of the respective contributions. The leading contribution is given
by a tree diagram (TREE DIAGRAM). Further contributions involve emission
and reabsorption of virtual photons (RADIATIVE CORRECTION DIAGRAM).
These contributions have the so called infrared divergences that is divergences
at small values of the photon energy. These divergences can be traced back to
vanishing mass of the photon and integration over whole space in (0.2). They
have to be regularized by introducing an infrared cut-off λ > 0 (simply eliminating
photons of energy smaller than λ). The resulting S-matrix element 〈α|Sλ|β〉 can
be computed, but limλ→0〈α|Sλ|β〉 = 0 as if there was no scattering. Thus standard
rules of Quantum Mechanics give an experimentally unacceptable result: σ = 0!
This is one manifestation of the infrared problem.

A way out, proposed by Yennie, Frautschi and Suura [3] is a serious deviation
from these rules of the game. We should not consider the process α→ β alone, but
a whole family of processes α → βn, where βn involves emission of n photons of
total energe Et in addition to particles present in β. (SOFT PHOTON EMISSION
DIAGRAM). The resulting inclusive cross-section is given by

σinc(Et) ∼ lim
λ→0

∞∑
n=0

|〈α|Sλ|β〉|2, (0.5)

which is finite and not identically zero. It gives results consistent with exper-
iments if Et is chosen below the sensitivity of the detector. A mathematically
rigorous derivation of this formula from first principles has not been achieved in
the perturbative framework of relativistic QED, in spite of many attempts [2].
In contrast, in the framework of non-relativistic QED, there has been
steady progress in understanding of the infrared problem. Important ad-
vantage: availability of a Hamiltonian as a self-adjoint operator on a Hilbert space
(and not just a formal power series).

The problem of relaxation of Hydrogen atom to the ground state is also difficult
to study in the perturbative setting of relativistic QED, because electron confined
in an atom cannot be considered a small perturbation of a freely moving electron.

0.3 Non-relativistic Quantum Electrodynamics

Start from the relativistic QED interaction:

VRQED = e

∫
d3x j(x)A(x) (0.6)

1σ = − 1
nΦ

dΦ
dz , where dΦ is a loss of the flux due to the event, dz is the thickness of the target

material and n is the number density.
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1. j and A are distributions, problems with pointlike multiplication. We need
to regularize: Replace j with a convolution j ∗ϕ for a nice function ϕ so that
j ∗ ϕ is now also a nice function. ϕ plays a role of charge distribution of the
electron.

2. Integral over whole R3 difficult to control. It helps to remove terms from j
which are responsible for electron-positron pair creation. The result can be
denoted as no-pairs current jnp.

Thus we are left with the interaction which is a controllable expression

VNRQED =

∫
d3x (jnp ∗ ϕ)(x)A(x). (0.7)

After some further steps and simplifications one obtains the standard Hamiltonian
of non-relativistic QED (Pauli-Fierz Hamiltonian):

HNRQED =
N∑
j=1

1

2m
(pj − e(A ∗ ϕ)(qj))

2 + Vc(q) +Hf . (0.8)

where (pj, qj) are positions and momenta of electrons, Vc is the Coulomb inter-
action between the electrons and Hf is the energy of photons. It is a reason-
able approximation to full QED in the low energy regime, in particular below the
electron-positron pair production threshold. In the next section we will obtain this
Hamiltonian along a different route by quantization of classical Maxwell equations
coupled to particles.

0.4 Outline of the course

1. Quantization of charged particles interacting with the electromagnetic field.

2. Pauli-Fierz Hamiltonian and other models of non-relativistic QED.

3. Fock spaces and self-adjointness of the Pauli-Fierz Hamiltonian.

4. Energy-momentum operators and their spectrum. Physical single-particle
states.

5. Asymptotic photon fields and scattering matrix.

6. Infrared problems and the problem of asymptotic completeness.

1 Quantization of particles interacting with the

electromagnetic field [1]

1.1 Equations of motion

Let E,B, ρ, j be the electric field, magnetic field, charge density and current den-
sity, respectively. These are functions on space-time satisfying the Maxwell equa-
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tions (here we set velocity of light c = 1):

∂tB = −∇× E, (1.9)

∂tE = ∇×B − j, (1.10)

∇ · E = ρ, (1.11)

∇ ·B = 0. (1.12)

We want ρ and j to describe a collection of N particles of finite extension. Thus
we introduce a nice function ϕ ∈ S(R3), s.t. ϕ(x) = ϕ(−x), which models the
charge distribution of each particle. Let t→ qj(t) be the trajectories. The charge
and current are given by:

ρ(t, x) = e
N∑
j=1

ϕ(x− qj(t)), (1.13)

j(t, x) = e
N∑
j=1

ϕ(x− qj(t))q̇j(t). (1.14)

They obviously satisfy the charge conservation equation:

∂tρ(t, x) +∇xj(t, x) = 0. (1.15)

The total charge of each particle is

Q := e

∫
d3xϕ(x) = (2π)3/2eϕ̂(0). (1.16)

If Q 6= 0, the particle will be called an electron. If Q = 0 the particle will be called
an atom.

We couple this system to the Newton equations of motion

mq̈j(t) = e
(
Eϕ(t, qj(t)) + q̇j(t)×Bϕ(t, qj(t))

)
, (1.17)

where

Eϕ(t, x) = (E ∗ ϕ)(t, x) =

∫
d3y E(t, x− y)ϕ(y), (1.18)

and similarly for B. Clearly, for ϕ → δ we have Eϕ(t, x) → E(t, x) and Q = e
but in this limit the system of equations becomes singular. Thus in general the
parameter e should be interpreted as a coupling constant, which determines the
strength of interaction between the fields and the particles, rather than charge.

1.2 Electromagnetic potentials

We introduce the electromagnetic potentials φ,A, which satisfy

E = −∂tA−∇φ, (1.19)

B = ∇× A. (1.20)
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Since ∇(∇× A) ≡ 0 and (∇×∇φ) ≡ 0, this guarantees

∇ ·B = 0 and ∂tB = −∇× E. (1.21)

Note that the potentials (φ,A) are not unique. For example, for any smooth f , the
new potentials Ã(t, x) = A(t, x)+∇f(x) and φ̃(t, x) = φ(t, x) give rise to the same
fields E,B. (Because ∇ × ∇f = 0). This is called a change of gauge of (φ,A).
Exploiting gauge freedom, we can impose additional conditions on the potentials.
For example, by choosing f s.t. 4f = −∇ · A we obtain

∇ · Ã = 0. (1.22)

In this case we say that Ã satisfies the Coulomb gauge condition.

1.3 Lagrangian formulation

The Lagrangian is given by

L =
1

2

N∑
j=1

mq̇2
j +

∫
d3x

(
1

2
(E(t, x)2 −B(t, x)2) + j(t, x) · A(t, x)− ρ(t, x)φ(t, x)

)

=
1

2

N∑
j=1

mq̇2
j +

∫
d3x

(
1

2
(−∂tA−∇φ)2 − 1

2
(∇× A)2

+ e
N∑
j=1

ϕ(x− qj(t))q̇j · A− e
N∑
j=1

ϕ(x− qj(t))φ
)
, (1.23)

where {qj, φ(x), A(x)} are understood as coordinates. The Euler-Lagrange equa-
tions give the remaining equations of motion:

∂t
∂L

∂q̇j
− ∂L

∂qj
= 0 gives mq̈ = e

(
Eϕ(t, q(t)) + q̇ ×Bϕ(t, q(t))

)
, (1.24)

∂t
δL

δφ̇
− δL

δφ
= 0 gives ∇E = ρ, (1.25)

∂t
δL

δȦi
− δL

δAi
= 0 gives ∂tE = ∇×B − j. (1.26)

Remark 1.1. In relativistic field theory one often considers action of the form

S =

∫
d4xL(φ(x), ∂µφ(x)), (1.27)

where x is a four-vector. Then the Euler-Lagrangian equations have the form

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (1.28)

Here L is a Lagrangian density (as opposed to the Lagrangian L) and therefore all
the derivatives can be considered partial derivatives (as opposed to the functional
derivatives δ/δφ computed according to (1.34)).
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Let us show (1.24): We have

∂L

∂q̇ij
= mq̇ij +

∫
d3x eϕ(x− qj(t))Ai(t, x), (1.29)

∂t
∂L

∂q̇ij
= mq̈ij −

∫
d3x e∂kϕ(x− qj(t))q̇kjAi(t, x)

+

∫
d3x eϕ(x− qj(t))∂tAi(t, x), (1.30)

= mq̈ij +

∫
d3x eϕ(x− qj(t))q̇kj ∂kAi(t, x)

+

∫
d3x eϕ(x− qj(t))∂tAi(t, x), (1.31)

∂L

∂qij
= −

∫
d3x e

(
∂iϕ(x− qj(t))q̇kjAk − ∂iϕ(x− qj(t))φ

)
=

∫
d3x e

(
ϕ(x− qj(t))q̇kj ∂iAk − ϕ(x− qj(t))∂iφ

)
(1.32)

(Summation over index k understood). To conclude, we use

[q̇j × (∇× A)]i = [∇(q̇jA)]i − (q̇j · ∇)Ai = q̇kj ∂iA
k − q̇kj ∂kAi (1.33)

and the property ϕ(x) = ϕ(−x).
Let us now show (1.25): The functional derivative δ/δφ is the ’Frechet deriva-

tive in the direction of Dirac δ’. The rule of the game is:

δφ(t, x)

δφ(t, y)
= δ(x− y). (1.34)

Thus we have

δL

δφ̇(t, y)
= 0

δL

δφ(t, y)
=

∫
d3x

(
− (−∂tA(t, x)−∇φ(t, x))∇δ(x− y)

− e
N∑
j=1

ϕ(x− qj(t))δ(x− y)

)
=

∫
d3x

(
∇E(t, x)δ(x− y)− eρ(t, x)δ(x− y)

)
= ∇E(t, y)− e

N∑
j=1

ϕ(y − qj(t)). (1.35)

Finally, we show (1.26). First, we recall that

(∇× A)k = εk`m∂`A
m, (1.36)
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where εk`m is the completely antisymmetric Levi-Civita tensor. And therefore

δ

δAi(t, y)
(∇× A(t, x))k = εk`m∂`δimδ(x− y) = εk`i∂`δ(x− y) (1.37)

δL

δȦi(t, y)
= −

∫
d3x(−∂tA−∇φ)δ(x− y) = −E(t, y), (1.38)

∂t
δL

δȦi(t, y)
= −∂tE(t, y), (1.39)

δL

δAi(t, y)
=

∫
d3x

(
− (∇× A)kεk`i∂`δ(x− y) + e

N∑
j=1

ϕ(x− qj(t))q̇ijδ(x− y)

)

=

∫
d3x

(
− εi`k∂`(∇× A)kδ(x− y) + e

N∑
j=1

ϕ(x− qj(t))q̇ijδ(x− y)

)
= −(∇× (∇× A))i(t, y) + ji(t, y)

= −(∇×B)i(t, y) + ji(t, y). (1.40)

1.4 Transverse and longitudinal field components

Recall that photon has just two polarizations, whereas here we use four functions
(φ,A) to describe the electromagnetic field. To obtain the physical Hamiltonian
(energy-operator) we have to eliminate the superfluous degrees of freedom. There is
a general formalism of quantisation with constraints, that could be applied here [3],
but that would take us too far from the main topic of these lectures. Instead, we
will make some informed guesses and in the end check that the resulting quantum
theory satisfies Maxwell equations.

To start with, it is convenient to pass to the Fourier representation:

Ê(k) :=
1

(2π)3/2

∫
d3x e−ikxE(x), (1.41)

B̂(k) :=
1

(2π)3/2

∫
d3x e−ikxB(x), (1.42)

Â(k) :=
1

(2π)3/2

∫
d3x e−ikxA(x). (1.43)

From now on we suppress the t-dependence in the notation.

Problem: Show that ∇̂ · E(k) = ik · Ê(k).

Now let k̂ := k/|k| and Pk the corresponding projection. That is, for any vector
v ∈ R3 we have

Pkv = k̂(k̂ · v). (1.44)
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(In Dirac notation from quantum mechanics: Pk = |k̂〉〈k̂|). Now we can decompose
the fields as follows

Ê(k) = PkÊ(k) + (1− Pk)Ê(k) = Ê‖(k) + Ê⊥(k), (1.45)

where Ê‖(k), Ê⊥(k) are called the longitudinal and transverse components. (B
and A are decomposed analogously). Now we note

∇ ·B = 0 ⇒ ∇̂ ·B = 0 ⇒ ik · B̂ = 0 ⇒ B̂‖ = 0, (1.46)

∇ · E = ρ ⇒ ∇̂ · E = ρ̂ ⇒ ik · Ê = ρ̂ ⇒ Ê‖ = −iρ̂ k

|k|2
.(1.47)

Given the second relation, we can eliminate φ: Note that

E = −∂tA−∇φ ⇒ Ê = −∂tÂ− ikφ̂ ⇒ Ê‖ = −∂tÂ‖ − ikφ̂. (1.48)

Therefore,

k · Ê‖ = −k · ∂tÂ‖ − i|k|2φ̂ ⇒ −iρ̂ = −k · ∂tÂ‖ − i|k|2φ̂, (1.49)

which gives

φ̂ =
1

|k|2
(
ik · ∂tÂ‖ + ρ̂). (1.50)

Moreover,

Ê = Ê⊥ + Ê‖ = −∂tÂ⊥ − iρ̂
k

|k|2
, (1.51)

B̂ = B̂⊥ = ∇̂ × A⊥ = ik × Â⊥, (1.52)

because k × Â‖ is proportional to k × k = 0.

1.5 Lagrangian in terms of transverse and longitudinal fields

Now we come back to the Lagrangian:

L =
1

2

N∑
j=1

mq̇2
j +

∫
d3x

(
1

2
(E(x)2 −B(x)2) + j(x) · A(x)− ρ(x)φ(x)

)
. (1.53)

To rewrite in terms of Fourier transformed fields, we use the Plancherel identity:∫
d3xf̄(x)g(x) =

∫
d3kf̂(k)ĝ(k), (1.54)

valid for square-integrable functions. Using (1.50), (1.51) and (1.52) we get

L =
1

2

N∑
j=1

mq̇2
j +

1

2

∫
d3k
(
|∂tÂ⊥|2 − |k × Â⊥|2 + |k|−2|ρ̂|2

)
+

∫
d3k (ĵ · Â− |k|−2|ρ̂|2 − i|k|−2ρ̂k · ∂tÂ‖). (1.55)
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For example,∫
d3x|E(x)|2 =

∫
d3k|Ê(k)|2 =

∫
d3k|∂tÂ⊥ + iρ̂

k

|k|2
|2

=

∫
d3k
(
|∂tÂ⊥|2 + |k|−2|ρ̂|2

)
. (1.56)

Now we make two rearrangements of L:

(a) We use the charge conservation law (1.15):

∂tρ+∇ · j = 0 ⇒ ∂tρ̂+ ik · ĵ = 0, (1.57)

which gives

ĵ · Â− i|k|−2ρ̂(k · ∂tÂ‖) = ĵ · Â⊥ + ĵ · Â‖ − i|k|−2ρ̂(k · ∂tÂ‖)

= ĵ · Â⊥ + ĵ · PkÂ‖ − i|k|−2ρ̂(k · ∂tÂ‖)

= ĵ · Â⊥ + |k|−2(ĵ · k)(k · Â‖)− i|k|−2ρ̂(k · ∂tÂ‖)

= ĵ · Â⊥ − i|k|−2(∂tρ̂)(k · Â‖)− i|k|−2ρ̂(k · ∂tÂ‖)

= ĵ · Â⊥ − i|k|−2∂t(ρ̂(k · Â‖)). (1.58)

The last term gives rise to a total time derivative contribution to L. Such
terms have no effect on the Euler-Lagrange equations, thus can be skipped.
Incidentally, this step eliminates Â‖ from the game. It is thus natural to set

Â‖ = 0 in the following. This amounts to choosing the Coulomb gauge, i.e.

0 = ∇ · A = ∇̂ · A = ik · A = ik · Â‖, (1.59)

which can be done without changing fields (E,B). (Cf. Subsection 1.2).
Thus we are left with two degrees of freedom of the electromagnetic field
described by A⊥.

Remark 1.2. There are two independent justifications for setting A‖ = 0:
gauge freedom and freedom to add a total time derivative to the lagrangian.
This is not a coincidence2: Consider the gauge-dependent part of the La-
grangian:

LI =

∫
d3x(j(t, x) · A(t, x)− ρ(t, x)φ(t, x)) (1.60)

and make a general gauge transformation: A(t, x) = A′(t, x) + ∇f(t, x),

2Thanks to Vincent Beaud for pointing this out.
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φ(t, x) = φ′(t, x)− ∂tf(t, x). Then

LI =

∫
d3x(j(t, x) · A′(t, x)− ρ(t, x)φ′(t, x))

+

∫
d3x(−∇j(t, x)f(t, x) + ρ(t, x)∂tf(t, x))

=

∫
d3x(j(t, x) · A′(t, x)− ρ(t, x)φ′(t, x))

+∂t

∫
d3xρ(t, x)f(t, x). (1.61)

Now we choose f s.t. Â′‖ = 0 and φ̂′(t, k) = 1
|k|2 ρ̂(t, k). But from (1.58) we

can read off that f̂(t, k) = −i|k|−2(k · Â‖(t, k)) does the job.

(b) Now we show that the |k|−2|ρ̂|2 contribution gives rise to the Coulomb inter-

action. Let us set V (y) = (4π|y|)−1. Then V̂ (k) = (2π)−3/2|k|−2. Thus we
have

Vc =
1

2

∫
d3xd3y ρ(x)V (x− y)ρ(y) =

1

2

∫
d3x ρ(x)(V ∗ ρ)(x)

=
1

2

∫
d3k ρ̂(k) ̂(V ∗ ρ)(k) =

1

2
(2π)3/2

∫
d3k ρ̂(k)V̂ (k)ρ̂(k)

=
1

2

∫
d3k |k|−2|ρ̂(k)|2. (1.62)

Since ρ(t, x) = e
∑N

j=1 ϕ(x− qj(t)), we have

Vc =
1

2
e2

N∑
j,j′=1

∫
d3xd3y ϕ(x)

1

4π|x− y + qj(t)− qj′(t)|
ϕ(y). (1.63)

In the limit of point charges, i.e. ϕ → δ we get for j 6= j′ the expected
contribution (4π|qj(t) − qj′(t)|)−1. For j = j′ this limit diverges, however.
(Infinite self-energy of a point charge).

Given (a), (b), the Lagrangian (1.55) has the form (up to total time derivative)

L =
1

2

N∑
j=1

mq̇2
j − Vc +

1

2

∫
d3k
(
|∂tÂ⊥|2 − |k × Â⊥|2

)
+

∫
d3k (ĵ · Â⊥)

=
1

2

N∑
j=1

mq̇2
j − Vc +

1

2

∫
d3x
(
|∂tA⊥|2 − |∇ × A⊥|2

)
+

∫
d3x (j · A⊥).(1.64)
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1.6 Hamiltonian

Given formula (1.64) and recalling that j(t, x) = e
∑N

j=1 ϕ(x− qj(t))q̇j, we obtain
the canonical momenta:

pj =
∂L

∂q̇j
= mq̇j + eA⊥,ϕ(qj), (1.65)

Π(y) =
δL

δȦ⊥(y)
= Ȧ⊥(y) = −E⊥(y). (1.66)

The Hamiltonian has the following form

H =
N∑
j=1

pj q̇j +

∫
d3xΠ(x)Ȧ⊥(x)− L

=
N∑
j=1

1

2m
(pj − eA⊥,ϕ(qj))

2 + Vc

+
1

2

∫
d3x

{
(E⊥)2 + (∇× A⊥)2

}
, (1.67)

with the canonically conjugate pairs {qj, pj} and {A⊥(x),−E⊥(x)}. To obtain this
formula, it suffices to notice that∫

d3x(j · A⊥)(x) = e
N∑
j=1

q̇j

∫
d3xϕ(x− qj(t)) · A⊥(x) = e

N∑
j=1

q̇j · A⊥,ϕ(qj),(1.68)

where we made use of ϕ(x) = ϕ(−x).

1.7 Formal quantization

We now proceed to a quantum theory, which means that {qj, pj} and {A⊥(x),−E⊥(x)}
will be operators on some Hilbert space. We first forget about the fields and quan-
tize the particles. We require that the following commutation relations hold:

[qαi , p
β
j ] = qαi p

β
j − p

β
j q

α
i = iδα,βδi,j, (1.69)

where we set ~ = 1. Let Hp = L2(R3N) and think about distiguishable parti-
cles (otherwise we would have to restrict attention to the subspace of symmet-
ric/antisymmetric functions). Then it is easy to see that

qαi ψ(x1, . . . , xN) := xαi ψ(x1, . . . , xN), (1.70)

pβjψ(x1, . . . , xN) := −i∂j,βψ(x1, . . . , xN), (1.71)

satisfy (1.69).
To quantize the electromagnetic field, we will look for certain quantum fields

A⊥, −E⊥ i.e. functions3 x → A⊥(x), x → −E⊥(x) with values in operators

3More precisely distributions.
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on some Hilbert space F (Fock space). We stress that from now on omitted
time-dependence means that the fields are evaluated at t = 0 i.e. A⊥(x) =
A⊥(t = 0, x). We impose the following commutation relations:

[Aα⊥(x),−Eβ
⊥(x′)] = iδ⊥αβ(x− x′), (1.72)

δ⊥αβ(x) := (2π)−3

∫
d3k eikx(δαβ − k̂αk̂β), (1.73)

which should be understood in analogy to (1.69). We will not try to explain a
priori why the transverse delta function δ⊥αβ(x − x′) (and not e.g. δαβδ(x − y))
should appear on the r.h.s. (It is plausible that this has to do with the Coulomb
gauge condition∇A = 0 which we use4). Our strategy is to first find A⊥(x), E⊥(x′)
which satisfy (1.72). Then, in subsection 1.9, we will check that these quantum
fields satisfy the Maxwell equations, and thus the quantization prescription (1.72)
was ‘correct’.

We first introduce an orthonormal basis at each k ∈ R3

k̂ =
k

|k|
, e1(k), e2(k), (1.74)

which satisfies k̂ · eλ(k) = 0, λ = 1, 2, and e1(k) · e2(k) = 0. Completeness of the
basis can be expressed by

k̂αk̂β +
∑
λ=1,2

eαλ(k)eβλ(k) = δαβ. (1.75)

We introduce auxiliary distributions (k, λ) → a(k, λ) and (k, λ) → a∗(k, λ) with
values in operators on the Hilbert space F (Fock space). They are called annihi-
lation and creation operators, respectively, and satisfy

[a(k, λ), a∗(k′, λ′)] = δλ,λ′δ(k − k′), (1.76)

[a(k, λ), a(k′, λ′)] = 0, (1.77)

[a∗(k, λ), a∗(k′, λ′)] = 0. (1.78)

Their detailed definition is postponed to the next section, here we will only use
these commutation relations. Now we define the fields A⊥(x), E⊥(x′) via their
Fourier transforms:

Â⊥(k) :=
∑
λ=1,2

√
1

2ω(k)

(
eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
, (1.79)

Ê⊥(k) :=
∑
λ=1,2

√
ω(k)

2

(
ieλ(k)a(k, λ)− ieλ(−k)a∗(−k, λ)

)
, (1.80)

4This form of commutation relations can be derived from a general theory of quantization
with constraints, see [3].
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where ω(k) = |k| is the dispersion relation (i.e. energy-momentum relation) of

photons. We note that by definition k̂ · Â⊥(k) = 0 and k̂ · Ê⊥(k) = 0 i.e. the fields
are indeed transverse. In configuration space they have the form

A⊥(x) =
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
1

2ω(k)
eλ(k)

(
eikxa(k, λ) + e−ikxa∗(k, λ)

)
,(1.81)

E⊥(x) =
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
ω(k)

2
eλ(k)i

(
eikxa(k, λ)− e−ikxa∗(k, λ)

)
.(1.82)

In order to verify the commutation relation, (1.72), we first compute

[Âα⊥(k), Êβ
⊥(k′)] =

∑
λ,λ′

√
1

2ω(k)

√
ω(k′)

2
(−i)eαλ(k)eβλ′(−k

′)[a(k, λ), a∗(−k′, λ′)]

+
∑
λ,λ′

√
1

2ω(k)

√
ω(k′)

2
(i)eαλ(−k)eβλ′(k

′)[a∗(−k, λ), a(k′, λ′)]

=
1

2
(−i)δ(k + k′)

(∑
λ,λ′

eαλ(k)eβλ′(k)δλλ′ + eαλ(−k)eβλ′(−k)δλλ′

)
= −iδ(k + k′)(δαβ − k̂αk̂β), (1.83)

where in the last step we made use of (1.75). Now we take Fourier transforms:

[Aα⊥(x),−Eβ
⊥(x′)] = i(2π)−3

∫
d3kd3k′ eikxeik

′x′δ(k + k′)(δαβ − k̂αk̂β)

= iδ⊥αβ(x− x′), (1.84)

which gives (1.72). By analogous computations we also obtain

[Aα⊥(x), Aβ⊥(x′)] = 0, [Eα
⊥(x), Eβ

⊥(x′)] = 0. (1.85)

For example (EXERCISE IN CLASS):

[Âα⊥(k), Âβ⊥(k′)] :=
∑
λ,λ′

√
1

2ω(k)

√
1

2ω(k′)

(
[eαλ(k)a(k, λ), eβλ′(−k

′)a∗(−k′, λ′)]

+[eαλ(−k)a∗(−k, λ), eβλ′(k
′)a(k′, λ′)]

)
=

∑
λ

1

2ω(k)
δ(k + k′)

(
eαλ(k)eβλ(k)− eαλ(−k)eβλ(−k)

)
=

1

2ω(k)
δ(k + k′)

(
δαβ − k̂αk̂β − (δαβ − (−k̂α)(−k̂β))

)
= 0. (1.86)
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The full electric field also has a longitudinal component. Recall that in the
Coulomb gauge Ê‖ = −ikφ̂ and φ̂ = |k|−2ρ̂. Therefore

E‖(x) =
1

(2π)3/2

∫
d3k eikx(−iρ̂(k))

k

|k|2
, ρ(x) = e

N∑
j=1

ϕ(x− qj). (1.87)

We have

ρ̂(k) = e(2π)−3/2

N∑
j=1

∫
d3x e−ikxϕ(x− qj)

= e

N∑
j=1

e−ikqj(2π)−3/2

∫
d3x e−ikxϕ(x) = e

N∑
j=1

e−ikqj ϕ̂(k). (1.88)

Therefore

E‖(x) = −ie 1

(2π)3/2

N∑
j=1

∫
d3k eik(x−qj)ϕ̂(k)

k

|k|2
, (1.89)

is an operator on Hp = L2(R3N). The full electric field E(x) is a distribution with
values in H := Hp ⊗F :

E(x) = E‖(x)⊗ 1 + 1⊗ E⊥(x). (1.90)

For future reference, we also state the formula for the magnetic field

B(x) = ∇× A⊥(x)

=
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
1

2ω(k)
(ik × eλ(k))

(
eikxa(k, λ)− e−ikxa∗(k, λ)

)
.

1.8 Formal quantum Hamiltonian

Recall the classical expression (1.67) for the Hamiltonian: (For clarity we denote
now classical quantites by ‘check’):

Ȟ =
N∑
j=1

1

2m
(p̌j − eǍ⊥,ϕ(q̌j))

2 + V̌c + Ȟf , (1.91)

Ȟf :=
1

2

∫
d3x

{
(Ě⊥(x))2 +

1

2
(∇× Ǎ⊥(x))2

}
. (1.92)

We want to replace the classical quantities in the expression above by their quan-
tum counterparts and skip ‘checks’. Two problems may appear: First, multi-
plication of quantum quantites (operators) is not commutative - this may lead
to ambiguities. Second, quantum fields are distributions, thus expressions like
(Ě⊥(x))2 may be problematic. Therefore we proceed in small steps:
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(a) q̌j, p̌j → qj, pj, defined in (1.70),(1.71), which act on Hp := L2(R3N).

(b) Ǎ⊥(x), Ě⊥(x) → A⊥(x), E⊥(x), defined in (1.81), (1.82), are distributions
with values in operators on F .

(c) Ǎ⊥,ϕ(x)→ A⊥,ϕ(x) is a function with values in operators on F . Explicitly,
we have

Â⊥,ϕ(k) = Â ∗ ϕ(k) = (2π)3/2ϕ̂(k)Â(k). (1.93)

Thus making use of ϕ(x) = ϕ(−x) and therefore ϕ̂(k) = ϕ̂(−k), we get

A⊥,ϕ(x) =
∑
λ=1,2

∫
d3k

ϕ̂(k)√
2ω(k)

eλ(k)
(
eikxa(k, λ) + e−ikxa∗(k, λ)

)
. (1.94)

(d) Ǎ⊥,ϕ(qj) → A⊥,ϕ(qj) involves both particle and photon degrees of freedom.
It is an operator on H := Hp ⊗ F , which is the full Hilbert space of the
model. It is defined as

A⊥,ϕ(qj) =
∑
λ=1,2

∫
d3k

ϕ̂(k)√
2ω(k)

eλ(k)
(
eikqj ⊗ a(k, λ) + e−ikqj ⊗ a∗(k, λ)

)
. (1.95)

(The symbol ⊗ will be often omitted for brevity).

(e) (p̌j − eǍ⊥,ϕ(q̌j))→ (pj ⊗ 1− eA⊥,ϕ(qj)) is an operator on H = Hp ⊗F .

(f) (p̌j− eǍ⊥,ϕ(q̌j))
2 → (pj⊗1− eA⊥,ϕ(qj))

2 is an operator on H = Hp⊗F , but
we have to be careful about ordering of operators: We have

(pj ⊗ 1− eA⊥,ϕ(qj))
2 = (pj ⊗ 1− eA⊥,ϕ(qj))(pj ⊗ 1− eA⊥,ϕ(qj))

= (pj ⊗ 1)2 − e(pj ⊗ 1)A⊥,ϕ(qj)

− eA⊥,ϕ(qj)(pj ⊗ 1) + (eA⊥,ϕ(qj))
2.

(1.96)

But if we expanded the square on the classical side, quantization could give
a priori different expressions:

(pj ⊗ 1)2 − 2e(pj ⊗ 1)A⊥,ϕ(qj) + (eA⊥,ϕ(qj))
2, (1.97)

(pj ⊗ 1)2 − 2eA⊥,ϕ(qj)(pj ⊗ 1) + (eA⊥,ϕ(qj))
2. (1.98)

One could argue that (1.96) is correct, because it gives a manifestly sym-
metric operator (recall that given two operators A, B s.t. A = A∗ and
B = B∗ then (AB)∗ = BA and therefore (AB + BA)∗ = (AB + BA)). But
fortunately all the expressions above turn out to be equal: Note that by
[qαi , p

β
j ] = iδα,βδi,j

[pαj , e
ikqj ] = kαeikqj , [pαj , e

−ikqj ] = −kαe−ikqj . (1.99)
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Therefore,

[(pαj ⊗ 1), Aα⊥,ϕ(qj)]

=
∑
λ=1,2

∫
d3k

ϕ̂(k)√
2ω(k)

eαλ(k)
(
kαj eikqj ⊗ a(k, λ)− kαj e−ikqj ⊗ a∗(k, λ)

)
= 0 (1.100)

where summation over α is understood and in the last step we made use of
transversality: eαλ(k)kα = 0. For completeness, we still have to show (1.99):
(EXERCISE IN CLASS)

[pαj , e
ikqj ] = (pαj − eikqjpαj e−ikqj)eikqj . (1.101)

Now we consider a function f(η) = eiηkqjpαj e
−iηkqj and compute

∂ηf(η) = ikβeiηkqj [qβj , p
α
j ]e−iηkqj = ikβeiηkqj iδαβe

−iηkqj = −kα. (1.102)

Therefore f(η) = f(0)−kαη = pαj −kαη, in particular f(1) = eikqjpαj e
−ikqj =

pαj −kα. Substituting this to (1.101) we conclude the proof of the first identity
in (1.99). Second identity follows by conjugation.

(g)
∫
d3x (Ě⊥(x))2 →

∫
d3x : (E⊥(x))2 : is an operator on F . The ’Wick or-

dering’ : ... : of a quadratic expression in a∗(k, λ) and a(k, λ) means that all
creation operators should be shifted to the left of all the annihilation opera-
tors. This operation is needed to make sense of squaring distributions. We
have by the Plancherel theorem:∫

d3x : (E⊥(x))2 :=

∫
d3k : Ê⊥(k)∗ · Ê⊥(k) :

=
∑
λ,λ′

∫
d3k
|k|
2

:
(
eλ(k)a∗(k, λ)− eλ(−k)a(−k, λ)

)
·
(
eλ′(k)a(k, λ′)− eλ′(−k)a∗(−k, λ′)

)
:

=
∑
λ,λ′

∫
d3k
|k|
2

(
eλ(k) · eλ′(k)a∗(k, λ)a(k, λ′) + eλ(−k) · eλ′(−k)a∗(−k, λ)a(−k, λ′)

− eλ(k) · eλ′(−k)a∗(k, λ)a∗(−k, λ′)− eλ(−k) · eλ′(k)a(−k, λ)a(k, λ′)

)
=
∑
λ

∫
d3k |k|a∗(k, λ)a(k, λ)

− 1

2

∑
λ,λ′

∫
d3k |k|

(
eλ(k) · eλ′(−k)a∗(k, λ)a∗(−k, λ′) + h.c.

)
. (1.103)

Without Wick ordering we would have in addition infinite ‘vacuum energy’:∑
λ,λ′

∫
d3k
|k|
2
eλ(−k) · eλ′(−k)[a(−k, λ), a∗(−k, λ′)]

=
∑
λ,λ′

∫
d3k
|k|
2
eλ(−k) · eλ′(−k)δ(−k + k) =∞ (1.104)
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Using Wick ordering one can ‘prove’ many things. For example

δ(k − k′) =: δ(k − k′) :=: [a(k), a∗(k′)] :=: (a(k)a∗(k′)− a∗(k′)a(k)) := 0

(1.105)

By integrating we even get 1 = 0. Therefore it is sometimes useful to have a
more precise definition: Let Ω be the vacuum vector which satisfies a(k)Ω = 0
and ηn → δ be a smooth delta-approximating sequence. We have

: E⊥(x)2 := lim
n→∞

(
(E ∗ ηn)(x)E(x)− 〈Ω, (E ∗ ηn)(x)E(x)Ω〉

)
. (1.106)

With this representation the problems above would not appear. It is also
clear that one can apply the Plancherel theorem.

(h)
∫
d3x (∇ × Ǎ⊥(x))2 →

∫
d3x : (∇ × A⊥(x))2 :. Again, by the Plancherel

theorem∫
d3x : (∇× A⊥(x))2 :=

∫
d3k : (k × Â⊥(k))∗ · (k × Â⊥(k)) : (1.107)

Now we recall that a(b × c) = b(c × a) and a × (b × c) = b(a · c) − c(a · b).
Therefore, since Â⊥(k), Â⊥(k′) commute,

: (k × Â⊥(k)∗) · (k × Â⊥(k)) : = k : ·(Â⊥(k)× (k × Â⊥(k)∗)) :

= k ·
(
k : (Â⊥(k)∗ · Â⊥(k)) :

− : Â⊥(k)∗(k · Â⊥(k)) :
)

= |k|2 : (Â⊥(k)∗ · Â⊥(k)) :, (1.108)

where we made use of the transversality condition. Thus we have∫
d3k |k|2 : (Â⊥(k)∗ · Â⊥(k)) :

=
1

2

∫
d3k |k|

∑
λ,λ′

:
(
eλ(k)a∗(k, λ) + eλ(−k)a(−k, λ)

)
·
(
eλ′(k)a(k, λ′) + eλ′(−k)a∗(−k, λ′)

)
:

=
∑
λ

∫
d3k |k|a∗(k, λ)a(k, λ)

+
1

2

∑
λ,λ′

∫
d3k |k|

(
eλ(k) · eλ′(−k)a∗(k, λ)a∗(−k, λ′) + h.c.

)
.(1.109)

(i) Ȟf → Hf :=
∑

λ

∫
d3k |k|a∗(k, λ)a(k, λ) which is an operator on F . (Follows

from (g) (h) above). The corresponding contribution to the Hamiltonian is
1⊗Hf as an operator on H = Hp ⊗F .
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Altogether, the quantum Hamiltonian has the form:

H =
N∑
j=1

1

2m
(pj ⊗ 1− eA⊥,ϕ(qj))

2 + Vc(q)⊗ 1 + 1⊗Hf , (1.110)

Usually we will just skip ⊗ and write like in the classical case

H =
N∑
j=1

1

2m
(pj − eA⊥,ϕ(qj))

2 + Vc(q) +Hf . (1.111)

1.9 Quantum Maxwell-Newton equations

Given the Hamiltonian, we can define the time-evolution of the quantum fields in
the Heisenberg picture

E(t, x) := eitH
(
(1⊗ E⊥(x)) + (E‖(x)⊗ 1)

)
e−itH , (1.112)

A(t, x) := eitH(1⊗ A⊥(x))e−itH , (1.113)

B(t, x) := eitH
(
1⊗ (∇× A⊥(x))

)
e−itH , (1.114)

ρ(t, x) := eitH(ρ(x)⊗ 1)e−itH . (1.115)

There is still one quantity missing, namely the current: Recall the classical current:

ǰ(t, x) = e
N∑
j=1

ϕ(x− qj(t))q̇j(t). (1.116)

(EXERCISE IN CLASS: QUANTIZE). We first define the velocity operator

vαj :=
1

m
(pj ⊗ 1− eA⊥,ϕ(qj))

α. (1.117)

and then set

j(x) :=
1

2

∑
j

(
evj(ϕ(qj − x)⊗ 1) + h.c.

)
, (1.118)

j(t, x) = eitHj(x)e−itH . (1.119)

This is a symmetric quantization of the classical current (1.116).

1.9.1 Verification of ∇ ·B = 0 and ∇ · E = ρ

We have

∇B(t, x) = eitH
(
1⊗∇ · (∇× A⊥(x))

)
e−itH = 0, (1.120)

∇E(t, x) = eitH(∇E‖(x)⊗ 1)e−itH = eitH(ρ(x)⊗ 1)e−itH = ρ(t, x),(1.121)

where we made use of the relation:

E‖(x) =
1

(2π)3/2

∫
d3k eikx(−iρ̂(k))

k

|k|2
. (1.122)
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1.9.2 Verification of ∂tB = −∇× E

Now we verify the dynamical equations. We have

∂tB(t, x) = eitHi[H,
(
1⊗ (∇× A⊥(x))

)
]e−itH . (1.123)

Thus we have to verify commutators with the Hamiltonian. We have

[pj ⊗ 1, 1⊗ (∇× A⊥(x))] = 0, (1.124)

[A⊥,ϕ(qj), 1⊗ (∇× A⊥(x))]

= (∇x×)

∫
d3y (ϕ(qj − y)⊗ 1)(1⊗ [A⊥(y), A⊥(x)]) = 0, (1.125)

where we made use of (1.85). Therefore

[(pj ⊗ 1− eA⊥,ϕ(qj))
2, (∇× A⊥(x))] = 0. (1.126)

Now we note (POSSIBLE EXERCISE IN CLASS):

[Hf , Â⊥(k)]

=
∑
λ,λ′

∫
d3k′|k′| [a∗(k′, λ′)a(k′, λ′),

1√
2|k|

(
eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
]

=
∑
λ,λ′

∫
d3k′

√
|k′|
2

(
− eλ(k′)a(k′, λ)δ(k − k′)δλλ′ + eλ(−k)a∗(k′, λ′)δ(k + k′)δλλ′

)
=
∑
λ

√
|k|
2

(
− eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
= iÊ⊥(k). (1.127)

Hence

i[Hf , A⊥(x)] = −E⊥(x), (1.128)

i[Hf ,∇× A⊥(x)] = −∇× E⊥(x) = −∇× E(x), (1.129)

and we get

∂tB(t, x) = −∇× E(t, x). (1.130)

1.9.3 Verification of ∂tE = ∇×B − j

We write

∂tE(t, x) = eitHi[H, (1⊗ E⊥(x))]e−itH + eitHi[H, (E‖(x)⊗ 1)]e−itH (1.131)

We consider first the commutator involving E⊥. We have (SECOND COMMU-
TATOR - POSSIBLE EXERCISE IN CLASS)

[pj ⊗ 1, 1⊗ E⊥(x)] = 0, (1.132)

[Aα⊥,ϕ(qj), 1⊗ Eβ
⊥(x)] =

∫
d3y (ϕ(qj − y)⊗ 1)(1⊗ [Aα⊥(y), Eβ

⊥(x)])

= −i
∫
d3y ϕ(qj − y)δ⊥αβ(y − x)⊗ 1. (1.133)
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Consequently,

[(pj ⊗ 1− eA⊥,ϕ(qj))
2, 1⊗ Eβ

⊥(x)]

= −e(pj ⊗ 1− eA⊥,ϕ(qj))
α[Aα⊥,ϕ(qj), 1⊗ Eβ

⊥(x)]

− e[Aα⊥,ϕ(qj), 1⊗ Eβ
⊥(x)](pj ⊗ 1− eA⊥,ϕ(qj))

α

= iemvαj
( ∫

d3y ϕ(qj − y)δ⊥αβ(y − x)⊗ 1
)

+ h.c., (1.134)

with summation over α and definition of the velocity operator

vαj :=
1

m
(pj ⊗ 1− eA⊥,ϕ(qj))

α. (1.135)

Now we look at the commutator with the photon energy:

[Hf , Ê⊥(k)]

=
∑
λ,λ′

∫
d3k′|k′| [a∗(k′, λ′)a(k′, λ′),

√
|k|
2

(
ieλ(k)a(k, λ)− ieλ(−k)a∗(−k, λ)

)
]

=
∑
λ,λ′

∫
d3k′
|k′|3/2√

2

(
− ieλ(k)δ(k − k′)a(k′, λ′)δλλ′ − ieλ(−k)δ(k + k′)a∗(k′, λ′)δλλ′

)

= (−i)
∑
λ

|k|3/2√
2

(
eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
. (1.136)

We show that the r.h.s. equals (−i)∇̂ ×B. We have

∇̂ ×B(k) = ̂∇×∇A⊥(k) = −(k × (k × Â⊥(k)))

= −k(k · Â⊥(k)) + k2Â⊥(k) = k2Â⊥(k)

=
∑
λ

|k|3/2√
2

(
eλ(k)a(k, λ) + eλ(−k)a∗(−k, λ)

)
. (1.137)

Thus indeed we get

i[Hf , E⊥(x)] = ∇×B(x). (1.138)

Altogether, the result for the transversal part is

i[H, 1⊗ Eβ
⊥(x)] = (∇×B)β(x)

− 1

2

∑
j

(
evαj
( ∫

d3y ϕ(qj − y)δ⊥αβ(y − x)⊗ 1
)

+ h.c.
)
. (1.139)

Now we look at the longitudinal part: We recall

E‖(x) = −ie 1

(2π)3/2

N∑
j′=1

∫
d3k eik(x−qj′ )ϕ̂(k)

k

|k|2
. (1.140)
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Since we know that [pαj , e
−ikqj ] = −kαe−ikqj we have

[pαj , E
β
‖ (x)] = ie

1

(2π)3/2

∫
d3k eik(x−qj)ϕ̂(k)

kαkβ

|k|2
. (1.141)

To compute the last expression, we use f̌ g = (2π)−3/2f̌ ∗ ǧ with f(k) = e−ikqj ϕ̂(k)
and g(k) = kαkβ/|k|2 and

f̌(x) = ϕ(x− qj), (1.142)

ǧ(x) =
1

(2π)3/2

∫
d3k eikxkαkβ/|k|2 = (2π)3/2(δαβδ(x)− δ⊥αβ(x)).(1.143)

Therefore,

[pαj , E
β
‖ (x)] = (ie)

∫
d3y ϕ(qj − y)(δαβδ(y − x)− δ⊥αβ(y − x)), (1.144)

where we made use of symmetry of all the integrated functions. Since Eβ
‖ (x)

depends only on q, we have

[A⊥,ϕ(qj), E‖(x)⊗ 1] = 0. (1.145)

Consequently,

i[(pj ⊗ 1− eA⊥,ϕ(qj))
2, Eβ

‖ (x)⊗ 1] =
(
mvαj (i[pαj , E

β
‖ (x)]⊗ 1) + h.c.

)
= (−e)

(
mvαj (

∫
d3y ϕ(qj − y)(δαβδ(y − x)− δ⊥αβ(y − x))⊗ 1) + h.c.

)
(1.146)

Since [1⊗Hf , E
β
‖ (x)⊗ 1] = 0, we get

i[H,Eβ
‖ (x)⊗ 1]

= −1

2

∑
j

(
evαj (

∫
d3y ϕ(qj − y)(δαβδ(y − x)− δ⊥αβ(y − x))⊗ 1) + h.c.

)
.

(1.147)

Thus, together with (1.139), we obtain

i[H,Eβ(x)] = (∇×B)β(x)− 1

2

∑
j

(
evαj (

∫
d3y ϕ(qj − y)δαβδ(y − x)⊗ 1) + h.c.

)
= (∇×B)β(x)− 1

2

∑
j

(
evβj (ϕ(qj − x)⊗ 1) + h.c.

)
(1.148)

Thus writing

j(x) :=
1

2

∑
j

(
evj(ϕ(qj − x)⊗ 1) + h.c.

)
(1.149)
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and j(t, x) := eitHj(x)e−itH we obtain

∂tE(t, x) = (∇×B)(t, x)− j(t, x). (1.150)

We recall that (1.149) is a ‘symmetric’ quantization of the classical current

ǰ(t, x) = e
N∑
j=1

ϕ(x− qj(t))q̇j(t). (1.151)

1.9.4 Verification of the Newton equations

Recall that the velocity operator of the j-th particle at t = 0 is

vβj :=
1

m
(pj ⊗ 1− eA⊥,ϕ(qj))

β. (1.152)

We have vβj (t) = eiHtvβj e
−iHt, and therefore

mv̇βj (t) = meiHti[H, vβj ]e−iHt. (1.153)

Let us compute the relevant commutators. We note that H = 1
2

∑
`,αmv

α
` v

α
` +

Vc + 1⊗Hf . (Up to now all the commutators involving Vc(q) were vanishing. Now

they will be important). It is convenient to first evaluate [vα` , v
β
j ]. We have

[A⊥,ϕ(q`)
α, A⊥,ϕ(qj)

β] = 0 (1.154)

because [q`, qj] = 0 and [A⊥(x), A⊥(y)] = 0. Moreover,

[pα` ⊗ 1, A⊥,ϕ(qj)
β] =

∫
d3y [pα` ⊗ 1, ϕ(qj − y)⊗ Aβ⊥(y)]

=

∫
d3y [pα` , ϕ(qj − y)]⊗ Aβ⊥(y)

= δ`,j

∫
d3y (+i)(∂yαϕ)(qj − y)⊗ Aβ⊥(y)

= δ`,j

∫
d3y (−i)ϕ(qj − y)⊗ ∂αAβ⊥(y)

= (−i)δ`,j∂αAβ⊥,ϕ(qj). (1.155)

Thus

[vα` , v
β
j ] = − e

m2
[pα` ⊗ 1, A⊥,ϕ(qj)

β]− e

m2
[A⊥,ϕ(q`)

α, pβj ⊗ 1]

= i
e

m2
δ`,j

(
∂αA

β
⊥,ϕ(qj)− ∂βAα⊥,ϕ(qj)

)
= i

e

m2
δ`,jε

αβγBγ
ϕ(qj). (1.156)
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(Comment, non-commutative geometry). In the last step we used

εαβγBγ
ϕ(qj) = εαβγεγα′β′∂α′Aβ

′

⊥,ϕ(qj)

= (δαα′δββ′ − δαβ′δβα′)∂α′Aβ
′

⊥,ϕ(qj)

= (∂αA
β
⊥,ϕ − ∂βA

α
⊥,ϕ)(qj). (1.157)

Now we compute

1

2

∑
`,α

mi[vα` v
α
` , v

β
j ] =

1

2

∑
`,α

m(vα` i[v
α
` , v

β
j ] + i[vα` , v

β
j ]vα` )

=
1

2

e

m

(
− vαj εαβγBγ

ϕ(qj) + h.c.
)

=
1

2

e

m

(
εβαγvαj B

γ
ϕ(qj)− εβγαBγ

ϕ(qj)v
α
j

)
=

1

2

e

m

(
(vj ×Bϕ(qj))

β − (Bϕ(qj)× vj)β
)
. (1.158)

Now we focus on the term 1⊗Hf from the Hamiltonian. We know that

i[Hf , A⊥(x)] = −E⊥(x). (1.159)

Therefore,

i[1⊗Hf , A⊥,ϕ(qj)] =

∫
d3x i[1⊗Hf , ϕ(qj − x)⊗ A⊥(x)]

=

∫
d3xϕ(qj − x)(1⊗ i[Hf , A⊥(x)])

= −
∫
d3xϕ(qj − x)(1⊗ E⊥(x)) = −E⊥,ϕ(qj).(1.160)

Hence

i[1⊗Hf , v
β
j ] = i[1⊗Hf ,

1

m
(pj ⊗ 1− eA⊥,ϕ(qj))

β] =
e

m
E⊥,ϕ(qj). (1.161)

Finally, we compute the commutator with the Coulomb interaction:

i[Vc(q)⊗ 1, vβj ] = i
1

m
[Vc(q), p

β
j ]⊗ 1 = −(∂qβj

Vc)(q). (1.162)

We have, since ρ̂(t, k) = e
∑N

j=1 e
−ikqj ϕ̂(k),

Vc(q) =
1

2

∫
d3k |k|−2|ρ̂(k)|2 =

1

2

N∑
`,`′=1

e2

∫
d3k |k|−2e−ik(q`−q`′ )|ϕ̂(k)|2 (1.163)
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and therefore

(∂qβj
Vc)(q) =

1

2

N∑
`,`′=1

e2

∫
d3k |k|−2e−ik(q`−q`′ )(−ikβδj,` + ikβδj,`′)|ϕ̂(k)|2

= −1

2
e
∑
`

∫
d3k |k|−2ρ̂(k)e−ikq`ikβδj,`ϕ̂(k) +

1

2
e
∑
`′

∫
d3k |k|−2ρ̂(k)eikq`′ ikβδj,`′ϕ̂(k)

= −1

2
e

∫
d3k |k|−2ρ̂(k)e−ikqj ikβϕ̂(k) +

1

2

∫
d3k |k|−2ρ̂(k)eikqj ikβϕ̂(k)

= e

∫
d3k |k|−2ρ̂(k)eikqj ikβϕ̂(k), (1.164)

where we made use of the fact that ρ̂(k) = ρ̂(−k) and ϕ̂(k) = ϕ̂(−k) = ϕ(k). We
recall that

Eβ
‖ (x) = − 1

(2π)3/2

∫
d3k eikxiρ̂(k)

k

|k|2
. (1.165)

Therefore

eEβ
‖,ϕ(qj) = e

∫
d3y ϕ(qj − y)Eβ

‖ (y)

= −e
∫
d3k eikqj ϕ̂(k)iρ̂(k)

kβ

|k|2
= −(∂qβj

Vc)(q). (1.166)

(Making use of

ρ̂(k) = e
N∑
j=1

e−ikqj ϕ̂(k) (1.167)

it is easy to see that Eβ
‖,ϕ(qj) = 0 for one particle. Thus particles do not interact

with their own Coulomb field). We have established

i[Vc(q)⊗ 1, vβj ] = eEβ
‖,ϕ(qj). (1.168)

Summing up all the contributions we get the Newton equations with the
Lorentz force

mv̇j = eEϕ(qj) +
1

2
e
(
(vj ×Bϕ(qj))− (Bϕ(qj)× vj)

)
. (1.169)

2 Self-adjointness of the Pauli-Fierz Hamiltonian

2.1 Fock space

The single-particle space has the form h := L2(R3) ⊗ C2 = L2(R3 × {1, 2}) =:
L2(R3) with the scalar product

〈f1, f2〉 =
∑
λ=1,2

∫
d3kf̄1(k, λ)f2(k, λ) =:

∫
d3kf̄1(k)f2(k). (2.1)
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We have for n ∈ N

⊗nh = h⊗ · · · ⊗ h = L2(R3n), (2.2)

⊗nsh = Sn(h⊗ · · · ⊗ h) = L2
s(R

3n), (2.3)

⊗0
sh := CΩ, where Ω is called the vacuum vector. (2.4)

Here R3n should be read (R3)n = R3 × · · · × R3 and Sn is the symmetrization
operator defined by

Sn =
1

n!

∑
σ∈Pn

σ, where σ(f1 ⊗ · · · ⊗ fn) = fσ(1) ⊗ · · · ⊗ fσ(n), (2.5)

Pn is the set of all permutations and L2
s(R

3n) is the subspace of symmetric (w.r.t.
permutations of variables ki = (ki, λi)) square integrable functions. The (symmet-
ric) Fock space is given by

Γ(h) := ⊕n≥0 ⊗ns h = ⊕n≥0L
2
s(R

3n). (2.6)

For brevity we will sometimes write F := Γ(h) and F (n) := Γ(n)(h) := L2
s(R

3n).
We can write Ψ,Φ ∈ Γ(h) in terms of its Fock space components Ψ = {Ψ(n)}n≥0,
Φ = {Φ(n)}n≥0 and the scalar product in Γ(h) is given by

〈Ψ,Φ〉 =
∞∑
n=0

〈Ψ(n),Φ(n)〉 =
∞∑
n=0

∫
d3nk Ψ̄(n)(k1, . . . , kn)Φ(n)(k1, . . . , kn). (2.7)

We define a dense subspace Γfin(h) ⊂ Γ(h) consisting of such Ψ that Ψ(n) = 0
except for finitely many n. Next, we define a domain

D := {Ψ ∈ Γfin(h) |Ψ(n) ∈ S(R3n) for all n }. (2.8)

Now, for each q ∈ R3 we define an operator a(q) : D → Γ(h) by

(a(q)Ψ)(n)(k1, . . . , kn) =
√
n+ 1Ψ(n+1)(q, k1, . . . , kn),

In particular a(q)Ω = 0. (2.9)

We will also use the notation a(q, λ) for a(q), if convenient. Note that the adjoint
of a(q) is not densely defined, since formally

(a∗(q)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

δ(q − k`)Ψ(n−1)(k1, . . . , k`−1, k`+1, . . . , kn)

(2.10)

where δ(q − k`) = δ(q − k)δλ,λ′ for q = (q, λ) and k = (k, λ′). So, becuase of the
presence of deltas (which are not square integrable) the r.h.s. is not in the Hilbert
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space Γ(h) if it is non-zero. Let us now justify (2.10): For Φ,Ψ ∈ D we have:

〈Φ, a∗(q)Ψ〉 = 〈a(q)Φ,Ψ〉 =
∞∑
n=0

〈(a(q)Φ)(n),Ψ(n)〉

=
∞∑
n=0

∫
d3nk (a(q)Φ)

(n)
(k1, . . . , kn)Ψ(n)(k1, . . . , kn)

=
∞∑
n=0

√
n+ 1

∫
d3nkΦ

(n+1)
(q, k1, . . . , kn)Ψ(n)(k1, . . . , kn)

=
∞∑
n=0

√
n+ 1

∫
d3nkd3k0 Φ

(n+1)
(k0, k1, . . . , kn)δ(q − k0)Ψ(n)(k1, . . . , kn)

=
∞∑
n′=1

√
n′
∫
d3(n′−1)kd3k0 Φ

(n′)
(k0, k1, . . . , kn′−1)δ(q − k0)Ψ(n′−1)(k1, . . . , kn′−1)

=
∞∑
n′=1

√
n′
∫
d3n′

k′Φ
(n′)

(k′1, k
′
2, . . . , k

′
n′)δ(q − k′1)Ψ(n′−1)(k′2, . . . , k

′
n′)

=
∞∑
n′=1

√
n′

1

n′

n′∑
`=1

∫
d3n′

k′Φ
(n′)

(k′1, k
′
2, . . . , k

′
n′)δ(q − k′`)Ψ(n′−1)(k′1, . . . , k

′
`−1, k

′
`+1, . . . , k

′
n′).

(2.11)

Clearly, a∗(q) is well defined as a quadratic form on D×D. Moreover, expressions

a(g) =

∫
d3q a(q)g(q), a∗(g) =

∫
d3q a∗(q)g(q), g ∈ S(R3), (2.12)

defined first as weak integrals, give rise to well-defined operators on D which can
be extended to Γfin(h). On this domain they act consistently with (2.9):

(a(g)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
d3q g(q)Ψ(n+1)(q, k1, . . . , kn), (2.13)

(a∗(g)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)Ψ
(n−1)(k1, . . . , k`−1, k`+1, . . . , kn). (2.14)

(In this sense a(q), a∗(q) are operator valued distributions). These expressions

can be used to define a(g), a∗(g) for g ∈ L2(R3) and note that by (2.12) we have
a(g)∗ = a∗(g) on Γfin(h). Since these operators leave Γfin(h) invariant, one can
compute on this domain:

[a(f), a∗(g)] = 〈f, g〉1 (2.15)

for f, g ∈ L2(R3). Formally, this follows from [a(p, λ), a∗(q, λ′)] = δ(p− q)δλλ′ , but
this computational rule does not make much sense without smearing (not even as
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quadratic forms). Thus let us give a formal proof of (2.15):

(a(f)a∗(g)Ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
d3q f(q)(a∗(g)Ψ)(n+1)(q, k1, . . . , kn)

=

∫
d3q f(q)g(q)Ψ(n)(k1, . . . , kn) +

n∑
`=1

∫
d3q f(q)g(k`)Ψ

(n)(q, k1, . . . , k`−1, k`+1, . . . , kn).

The sum on the r.h.s. above is cancelled by

(a∗(g)a(f)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
`=1

g(k`)(a(f)Ψ)(n−1)(k1, . . . , k`−1, k`+1, . . . , kn)

=
n∑
`=1

g(k`)

∫
d3q f(q)Ψ(n)(q, k1, . . . , k`−1, k`+1, . . . , kn),

which concludes the proof of (2.15).
With the above definitions, the transverse electromagnetic potential and elec-

tric field, given by:

A⊥(x) =
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
1

2ω(k)
eλ(k)

(
eikxa(k, λ) + e−ikxa∗(k, λ)

)
,(2.16)

E⊥(x) =
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
ω(k)

2
eλ(k)i

(
eikxa(k, λ)− e−ikxa∗(k, λ)

)
.(2.17)

can be understood as operator-valued distributions. Indeed, for f, g ∈ S(R3) we
have as weak integrals

A⊥(f) =

∫
d3xA⊥(x)f(x)

=
∑
λ=1,2

∫
d3k

√
1

2ω(k)
eλ(k)

(
f̂(−k)(a(k, λ) + f̂(k)a∗(k, λ)

)
, (2.18)

E⊥(g) =

∫
d3xE⊥(x)g(x)

=
∑
λ=1,2

∫
d3k

√
ω(k)

2
eλ(k)i

(
ĝ(−k)a(k, λ)− ĝ(k)a∗(k, λ)

)
. (2.19)

By our earlier considerations we know that A⊥(f) and E⊥(g) extend to operators
on Γfin(h).

Consider a unitary operator u on h. Then, its ’second quantization’ is the
following operator on the Fock space:

Γ(u)|Γ(n)(h) = u⊗ · · · ⊗ u, (2.20)

Γ(u)Ω = Ω. (2.21)
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where Γ(n)(h) is the n-particle subspace. We have the useful relations:

Γ(u)a∗(h)Γ(u)∗ = a∗(uh), Γ(u)a(h)Γ(u)∗ = a(uh). (2.22)

Let us show the latter formula in the special case where u = u(k) is a multiplication
operator. We set Un(k1, . . . , kn) := u(k1) . . . u(kn) and compute

(Γ(u)a(h)Γ(u)∗Ψ)(n)(k1, . . . , kn) = Un(k1, . . . , kn)(a(h)Γ(u)∗Ψ)(n)(k1, . . . , kn)

= Un(k1, . . . , kn)
√
n+ 1

∫
d3k h(k)(Γ(u)∗Ψ)(n+1)(k, k1, . . . , kn)

= Un(k1, . . . , kn)
√
n+ 1

∫
d3k h(k)Un+1(k, k1, . . . , kn)(Ψ)(n+1)(k, k1, . . . , kn)

=
√
n+ 1

∫
d3k h(k)u(k)Ψ(n+1)(k, k1, . . . , kn) = (a(uh)Ψ)(n)(k1, . . . , kn).

(2.23)

Consider a self-adjoint operator b on h with domain Db. Then, its ’second
quantization’ is the following operator on the Fock space:

dΓ(b)|Γ(n)(h) =
n∑
i=1

1⊗ · · · b · · · ⊗ 1, (2.24)

dΓ(b)Ω = 0, (2.25)

whose domain of essential self-adjointness5 is Γfin(Db). (In the definition above b
is on the i-th tensor factor in each term in the sum). Suppose that b = b(k) is a
multiplication operator in momentum space on h = L2(R3). Then as an equality
of quadratic forms on D ×D we have

dΓ(b) =

∫
d3q b(q)a∗(q)a(q) =

∑
λ∈1,2

∫
d3q b(q, λ)a∗(q, λ)a(q, λ). (2.26)

Indeed, let us compute for Ψ,Φ ∈ D: (POSSIBLE EXERCISE IN CLASS)∫
d3q b(q)〈Ψ, a∗(q)a(q)Φ〉 =

∫
d3q b(q)〈a(q)Ψ, a(q)Φ〉

=

∫
d3q b(q)

∞∑
n=0

∫
d3nk (a(q)Ψ)

(n)
(k1, . . . , kn)(a(q)Φ)(n)(k1, . . . , kn)

=

∫
d3q b(q)

∞∑
n=0

(n+ 1)

∫
d3nkΨ

(n+1)
(q, k1, . . . , kn)Φ(n+1)(q, k1, . . . , kn)

=
∞∑
n=0

∫
d3(n+1)k

n+1∑
`=1

Ψ
(n+1)

(k1, . . . , k`, . . . , kn+1)b(k`)Φ
(n+1)(k1, . . . , k`, . . . , kn+1),

(2.27)

5See Subsection 2.2.
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and it is easy to see that the last expression is 〈Ψ, dΓ(b)Φ〉.
Finally, suppose that u(t) = eitb. Then

Γ(u(t)) = eitdΓ(b), (2.28)

where dΓ(b) is the unique self-adjoint extension of dΓ(b). (See e.g. Homework
Sheet 3 of my AQFT lectures).

Example: Time evolution of the free electric field. The Hamiltonian which gov-
erns the time evolution of the free electromagnetic field is given by

Hf =

∫
d3qω(q)a∗(q)a(q) = dΓ(ω), ω(q) := |q|. (2.29)

Moreover, we have for g ∈ S(R3) real-valued

E⊥(g) =

∫
d3xE⊥(x)g(x)

=
∑
λ=1,2

∫
d3k

√
ω(k)

2
eλ(k)i

(
ĝ(−k)a(k, λ)− ĝ(k)a∗(k, λ)

)
= a(g̃) + a∗(g̃), where g̃(k, λ) := −

√
ω(k)

2
eλ(k)iĝ(k). (2.30)

The time-evolved, smeared electric field is given by

E⊥(t, g) = eitHfE⊥(g)e−itHf = eitdΓ(ω)E⊥(g)e−itdΓ(ω)

= Γ(eitω)(a(g̃) + a∗(g̃))Γ(e−itω) = a(eitωg̃) + a∗(eitωg̃), (2.31)

where we made use of (2.28) and (2.22).
We define the non-smeared time evolved free electric field as the operator valued

distribution:

E⊥(t, x) =
1

(2π)3/2

∑
λ=1,2

∫
d3k

√
ω(k)

2
eλ(k)i

(
e−iω(k)t+ikxa(k, λ)− eiω(k)t−ikxa∗(k, λ)

)
.

(2.32)

With E⊥(t, g) given by (2.31), we have

E⊥(t, g) =

∫
d3xE⊥(t, x)g(x). (2.33)

Of course analogous facts hold for A⊥ and B = ∇× A⊥.

2.2 Self-adjointness: basic concepts

A reference for this subsection is Chapter VIII of [4].
Consider an unbounded operator A on a dense domain D(A) ⊂ H. Define the

graph of A (denoted Gr(A)) as the set of pairs (ϕ,Aϕ), ϕ ∈ D(A). This is a subset
of H×H which is a Hilbert space with the product:

〈(ϕ1, ψ1), (ϕ2, ψ2)〉 = 〈ϕ1, ϕ2〉+ 〈ψ1, ψ2〉. (2.34)
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1. We say that (A,D(A)) is a closed operator if Gr(A) is closed.

2. We say that A1 is an extension of A if Gr(A1) ⊃ Gr(A).

3. We say that A is closable if it has a closed extension. The smallest closed
extension is called the closure A.

4. If A is closable, then Gr(A) = Gr(A).

Define D(A∗) as the set of all ϕ ∈ H, for which there exists η ∈ H s.t.

〈Aψ,ϕ〉 = 〈ψ, η〉 for all ψ ∈ D(A). (2.35)

For such ϕ ∈ D(A∗) we define A∗ϕ = η. Fact: (A,D(A)) is closable if and only if
D(A∗) is dense in which case A = A∗∗.

1. We say that (A,D(A)) is self-adjoint if A = A∗ and D(A) = D(A∗).
Fact: Self-adjointness is equivalent to (A± i)D(A) = H.

2. Let (A,D(A)) be a self-adjoint operator. We define its spectrum σ(A) as
the set of all λ ∈ C s.t. (λ− A) does not have a bounded inverse. We have
σ(A) ⊂ R. If σ(A) ⊂ [0,∞), we say that A is positive. This is equivalent to
〈ψ,Aψ〉 ≥ 0 for all ψ ∈ D(A).

3. We say that (A,D(A)) is symmetric if D(A) ⊂ D(A∗) and Aψ = A∗ψ for
ψ ∈ D(A).
Fact : Any symmetric operator is closable.

4. We say that symmetric A is essentially self adjoint if A is self-adjoint. In this
case D(A) is called the core of A. (We stress that D(A) is usually smaller
than D(A)).
Fact 1: If A is essentially self-adjoint then it has exactly one self-adjoint
extension.
Fact 2: Essential self-adjointness is equivalent to (A± i)D(A) being dense.

2.3 Measure theory: basic concepts and results

The theory of self-adjoint operators relies heavily on measure theory. Here we
recall several basic concepts and facts which will be useful in the remaining part
of this section. Proofs can be found in the first two chapters of [6].

1. Let X be a topological space (a set with topology). A family M of subsets
of X is a σ-algebra in X if it has the following properties:

• X ∈M,

• A ∈M⇒ Ac ∈M,

• An ∈M, n ∈ N, ⇒ A :=
⋃∞
n=1 An ∈M.
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If M is a σ-algebra in X then X is called a measurable space and elements
of M are called measurable sets.

2. Let X be a measure space and Y a topological space. Then a map f : X → Y
is called measurable if for any open V ⊂ Y the inverse image f−1(V ) is a
measurable set.

3. A (positive) measure is a function µ : M → [0,∞] s.t. for any countable
family of disjoint sets Ai ∈M we have

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai). (2.36)

Also, we assume that µ(A) <∞ for at least one A ∈ M. Moreover, we say
that a measure space is a measurable space whose σ-algebra of measurable
sets carries a positive measure.

4. We denote by Lp(X,µ), 1 ≤ p < ∞ the space of measurable functions
f : X → C s.t.

‖f‖p :=

(∫
X

|f(x)|pdµ(x)

)1/p

<∞. (2.37)

We denote by Lp(X,µ) the space of equivalence classes of functions from
Lp(X,µ) which are equal almost everywhere w.r.t. µ. Space Lp(X,µ) is a
Banach space with the norm (2.37) (Riesz-Fisher theorem).

Theorem 2.1. (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff
space6 and Cc(X) the space of continuous compactly supported functions on X.
Let Λ : Cc(X)→ C be a positive linear functional7. Then there exists a σ-algebra
M in X and a positive measure on M s.t.

Λ(f) =

∫
X

f(x)dµ(x) for any f ∈ Cc(X). (2.38)

Theorem 2.2. (Dominated convergence). Let fn be a sequence of complex, mea-
surable functions on X s.t.

f(x) = lim
n→∞

fn(x) (2.39)

exists for any x. If there exists a function g ∈ L1(X,µ) s.t.

|fn(x)| ≤ g(x) for all n ∈ N, x ∈ X, (2.40)

then f ∈ L1(X,µ). Moreover,

lim
n→∞

∫
X

fn(x)dµ(x) =

∫
X

f(x)dµ(x). (2.41)

6i.e. a topological space s.t. any two distinct points have disjoint neighbourhoods and any
point has a compact neighbourhood.

7i.e. if f takes values in [0,∞] then Λ(f) ≥ 0.
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Theorem 2.3. (Monotone convergence). Let fn be a sequence of measurable
functions and suppose that

(a) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ ∞ for all x ∈ X.

(b) fn(x)→ f(x) for all x ∈ X.

Then f is measurable and

lim
n→∞

∫
X

fn(x)dµ(x) =

∫
X

f(x)dµ(x). (2.42)

2.4 Self-adjointness: basic results

Now we use the above results in measure theory to study self-adjointness questions.
A reference for this subsection is [4, 5].

Example: [4, Chapter VIII, Proposition 2] Let f be a real valued, measurable,
finite a.e. function on a measure space (X,µ). Then the corresponding multi-
plication operator Tf on L2(X,µ) (acting by ψ(x) 7→ f(x)ψ(x)) defined on the
domain

D(Tf ) := {ψ ∈ L2(X,µ) |
∫
dµ(x) |f(x)ψ(x)|2 <∞} (2.43)

is self-adjoint. To prove this, we compute D((Tf )
∗): Suppose that ψ ∈ D((Tf )

∗)
and let χn be the characteristic function of {|f(x)| ≤ n}. We denote the cor-
responding multiplication operator by χn(x). Then making use of the monotone
convergence (or dominated convergence) theorem in the first step:

‖(Tf )∗ψ‖ = lim
n→∞

‖χn(x)(Tf )
∗ψ‖

= lim
n→∞

sup
‖φ‖=1

|〈φ, χn(x)(Tf )
∗ψ〉|

= lim
n→∞

sup
‖φ‖=1

|〈Tfχn(x)φ, ψ〉|

= lim
n→∞

sup
‖φ‖=1

|〈φ, χn(x)f(x)ψ〉| = lim
n→∞

‖χn(x)f(x)ψ‖. (2.44)

From the last equality and the monotone convergence theorem we conclude that
f(x)ψ(x) is square integrable and therefore D((Tf )

∗) = D(Tf ).

It turns out that any self-adjoint operator can be represented as a multiplication
operator on some measure space:

Theorem 2.4. (Spectral theorem, multiplication operator variant). Let A be a
self-adjoint operator on a separable Hilbert space H with domain D(A). Then there
is a measure space (X,µ) with µ a finite measure, a unitary operator U : H →
L2(X, dµ) and a real-valued, measurable function f on X which is finite almost
everywhere, s.t.
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(a) ψ ∈ D(A) iff f( · )(Uψ)( · ) ∈ L2(X, dµ).

(b) If φ ∈ U [D(A)], then (UAU∗φ)(x) = f(x)φ(x).

There is another variant of the spectral theorem, using the concept of spectral
measures:

Definition 2.5. Let X be a measurable space with a σ-algebra M. We say that
M3 ∆→ E(∆) ∈ B(H) is a spectral measure if:

• Each E(∆) is an orthogonal projection.

• E(∅) = 0, E(X) = 1.

• If ∆ =
⋃N
n=1 ∆n, with ∆n ∩∆m = ∅ for n 6= m, then

E(∆) = s− lim
N→∞

N∑
n=1

E(∆n). (2.45)

• E(∆1)E(∆2) = E(∆1 ∩∆2).

For any ψ ∈ H the expression ∆ → 〈ψ,E(∆)ψ〉 is a positive measure and the
formula

〈ψ,Aψ〉 =

∫
x 〈ψ, dE(x)ψ〉 (2.46)

defines a self-adjoint operator A on the domain

D(A) = {ψ ∈ H |
∫
|x|2〈ψ, dE(x)ψ〉 <∞}. (2.47)

It turns out that also the converse is true:

Theorem 2.6. (Spectral theorem, spectral measure variant). For any self-adjoint
operator (A,D(A)) there exists a spectral measure E on (a σ-algebra of measurable
sets) on R s.t.

A =

∫
σ(A)

xdE(x), (2.48)

where the last relation means that (2.46), (2.47) hold.

Idea of proof: Let A be bounded, for simplicity. Consider a map g → 〈ψ, g(A)ψ〉
defined first for polynomials and then extended, using the Stone-Weierstrass theo-
rem to continuous functions. Then we get by the Riesz-Markov-Kakutani theorem
a measure space (Xψ, µψ) s.t.

〈ψ, g(A)ψ〉 =

∫
Xψ

g(x)dµψ(x) (2.49)

and we can extend this expression to measurable functions g. In particular, we set
E(∆) := χ∆(A) and it is easy to check that this gives a spectral measure. �

Spectral theorem (multiplication operator form) has the following corollary which
is useful when dealing with tensor products:
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Corollary 2.7. [5, Theorem VIII.33] Let Ak be a self-adjoint operator on Hk

and let P (x1, . . . , xN) be a polynomial with real coefficients of degree nk in the k-th
variable and suppose that De

k is the domain of essential self-adjointness of for Ank .
Then P (A1, . . . AN) is essentially self-adjoint on

De = ⊗Nk=1D
e
k. (2.50)

(The polynomial involves tensor products of different operators. For example, if
P (x1, x2, x3) = x1x

3
2 +x3 then P (A1, A2, A3) = A1⊗A3

2⊗1+1⊗1⊗A3). Moreover,
we have the spectral mapping property:

σ(P (A1, . . . AN)) = P (σ(A1), . . . σ(An)). (2.51)

Example: Let ω(k) = |k| be a multiplication operator on h = L2(R3) defined on
the domain

D(ω) = {ψ ∈ L2(R3) |
∫
d3k |ω(k)ψ(k)|2 <∞}. (2.52)

We know from the example above, that (ω,D(ω)) is self-adjoint. In fact we can
also show this by checking that

(ω ± i)D(ω) = h. (2.53)

For this purpose pick an arbitrary ψ ∈ h and note that k → (ω(k) ± i)−1ψ(k) is
an element of D(ω). Therefore we can write

ψ = (ω ± i)(ω ± i)−1ψ ∈ (ω ± i)D(ω). (2.54)

Example: Now let Hf := dΓ(ω) and D(Hf ) = Γfin(D(ω)). Let us show that
(Hf , D(Hf )) is an essentially self-adjoint operator: Let dΓ(n)(ω) = ω ⊗ · · · ⊗ 1 +
· · ·+ 1⊗ · · · ⊗ ω be the restriction of dΓ(ω) to Γ(n)(D(ω)), where

Γ(n)(D(ω)) = Sn(D(ω)⊗ · · · ⊗D(ω)), (2.55)

and Sn is the symmetrization operator. Denote be dΓ
(n)
us (ω) the corresponding

operator on the unsymmetrized tensor product space:

Γ(n)
us (D(ω)) = D(ω)⊗ · · · ⊗D(ω). (2.56)

By Corollary 2.7, dΓ
(n)
us (ω) is essentially self-adjoint on Γ

(n)
us (D(ω)) which means

that the sets

Xn := (dΓ(n)
us (ω)± i)Γ(n)

us (D(ω)) (2.57)

are dense in Γ
(n)
us (h). Since dΓ

(n)
us (ω) commutes with the projection Sn on the sym-

metric subspace, we have (by decomposing each Xn into a direct sum of orthogonal
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subspaces SnXn⊕(1−Sn)Xn which must be then separately dense in SnΓ
(n)
us (D(ω))

and (1− Sn)Γ
(n)
us (D(ω)), respectively) that the sets

(dΓ(n)(ω)± i)Γ(n)(D(ω)) (2.58)

are dense in Γ(n)(h). Now we want to show from (2.58) that

(dΓ(ω)± i)Γfin(D(ω)) (2.59)

is dense: Let Ψfin =
∑

n∈Nfin
Ψ(n) be an arbitrary element of Γfin(D(ω)) i.e. Ψ(n)

are arbitrary elements of Γ(n)(D(ω)) and Nfin is an arbitrary finite subset of N. We
have

(dΓ(ω)± i)Ψfin =
∑
n∈Nfin

(dΓ(b)± i)Ψ(n). (2.60)

By (2.58) we can approximate any element of Γfin(h) with such vectors, which
concludes the proof of essential self-adjointness of (Hf , D(Hf )).

Lemma 2.8. The operator H0 = p2

2m
⊗ 1 + 1 ⊗ Hf is essentially self-adjoint on

D(p2)⊗D(Hf ). Its closure H0 is a positive self-adjoint operator on some domain
D(H0).

Proof. Essential self-adjointness follows from Lemma 2.7 and from essential self-
adjointness of p2, dΓ(ω). Positivity of p2 and ω is obvious (by checking positivity
of the matrix elements 〈ψ, ·ψ〉). Then positivity of dΓ(ω) and H0 follows from the
spectral mapping property from Corollary 2.7. �

So we have H0 i.e. the non-interacting part of the Pauli-Fierz Hamiltonian
(with one electron8), under control. The full Hamiltonian has the form

H = H0 +H1, H1 = − e

m
p · A⊥,ϕ(q) +

e2

2m
A⊥,ϕ(q)2. (2.61)

To obtain essential self-adjointness of H we will follow a strategy which can be
called perturbation theory of linear operators. It consists in decomposing a self-
adjoint operator A into A = A0 +A1, where A0 is ‘simple’ and A1 is ‘small’. More
precisely:

Definition 2.9. Let A0 and A1 be densely defined linear operators on a Hilbert
space H. Suppose that:

(a) D(A1) ⊃ D(A0)

(b) For some a, b ∈ R and all φ ∈ D(A0)

‖A1φ‖ ≤ a‖A0φ‖+ b‖φ‖. (2.62)

Then A1 is said to be A0-bounded. The infimum of such a is called the relative
bound of A1 w.r.t. A0.

8From now on we consider only the Pauli-Fierz Hamiltonian with one electron
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Theorem 2.10. (Kato-Rellich). Let A0 be self-adjoint, A1 symmetric and A0-
bounded with a relative bound a < 1. Then A0 + A1 is self-adjoint on D(A0) and
essentially self-adjoint on any core of A0. Further, if A0 is bounded below by M
then A0 + A1 is bounded below by M −max{b/(1− a), a|M |+ b}.

Proof. We follow [5]. We will show that (A0 + A1 ± iµ)D(A0) = H for some
µ0 > 0, which implies self-adjointness. For φ ∈ D(A0) we have

‖(A0 + iµ)φ‖2 = ‖A0φ‖2 + µ2‖φ‖2. (2.63)

Letting φ = (A0 + iµ)−1ψ, where ψ ∈ H is arbitrary, we have

‖ψ‖2 = ‖A0(A0 + iµ)−1ψ‖2 + µ2‖(A0 + iµ)−1ψ‖2. (2.64)

We conclude from this that ‖A0(A0 + iµ)−1‖ ≤ 1 and ‖(A0 + iµ)−1‖ ≤ µ−1.
Therefore, applying (2.62) with φ = (A0 + iµ)−1ψ, we get

‖A1(A0 + iµ)−1ψ‖ ≤ a‖A0(A0 + iµ)−1ψ‖+ b‖(A0 + iµ)−1ψ‖ ≤ (a+ b/µ)‖ψ‖.(2.65)

Hence, for µ large, C := A1(A0 + iµ)−1 has norm less than one, since a < 1.
This implies that −1 /∈ σ(C), so Ran(I + C) = H. (Since (I + C)−1 exists, I
can write ψ = (I + C)(I + C)−1ψ for any ψ ∈ H). Since A0 is self-adjoint, also
Ran(A0 + iµ) = H. So the equation

(I + C)(A0 + iµ)φ = (A0 + A1 + iµ)φ, for φ ∈ D(A0) (2.66)

implies that Ran(A0 + A1 + iµ) = H. The proof that Ran(A0 + A1 − iµ) = H is
the same.

Let D0 be a core of A0. Then, we claim that by the bound (2.62),

D((A0 + A1)|D0) ⊃ D(A0|D0) = D(A0) = D(A0 + A1). (2.67)

Let us prove the inclusion above: Suppose ψ ∈ D(A0|D0). This means that
(ψ,A0|D0ψ) ∈ Gr(A0|D0) = Gr(A0|D0). Hence, there is a sequence ψn ∈ D0 s.t.
(ψn, A0ψn)→ (ψ,A0|D0ψ), that is

ψn → ψ, A0ψn → A0|D0ψ. (2.68)

We will show that ψ ∈ D((A0 + A1)|D0), i.e. (ψ, (A0 + A1)|D0ψ) ∈ Gr((A0 + A1)|D0) =
Gr((A0 + A1)|D0) i.e. that there is a sequence ψ′n ∈ D0 s.t. (ψ′n, (A0 +A1)ψ′n) con-
verges. (Then the limit can be called (A0 + A1)|D0ψ). We check that the sequence
from (2.68), i.e. ψ′n = ψn, does the job. Namely, we verify the Cauchy criterion:

‖(A0 + A1)(ψn1 − ψn2)‖ ≤ ‖A0(ψn1 − ψn2)‖+ ‖A1(ψn1 − ψn2)‖
≤ (1 + a)‖A0(ψn1 − ψn2)‖+ b‖(ψn1 − ψn2)‖ → 0,

(2.69)

where in the last step we used (2.68). This gives ψ ∈ D((A0 + A1)|D0). (We skip
the proof of semi-boundedness). �
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The Kato-Relich theorem gives rather concrete information about domains, but
the estimate (2.62) is somewhat difficult to verify in examples. We state below a
different result, the KLMN theorem, where the relevant bound is much easier to
check, but the information about the domains is less explicit. For this we need the
concept of quadratic forms:

Definition 2.11. A quadratic form is a map Q(q)×Q(q)→ C, (where Q(q) is a
dense linear subset of H), which is antilinear in the first argument and linear in
the second argument.

1. If q(φ, ψ) = q(ψ, φ), we say that the form is symmetric.

2. If q(φ, φ) ≥ 0 for φ ∈ Q(q) we say that the form is positive.

3. If q(φ, φ) ≥ −M‖φ‖2 for some M ≥ 0 and all φ ∈ Q(q) we say that the form
is semibounded.

4. If q is semibounded and Q(q) is complete under the norm
‖ψ‖+,1 :=

√
q(ψ, ψ) + (M + 1)‖ψ‖2, we say that q is closed9.

5. If there is a self adjoint operator (A,D(A)), s.t.

q(φ, ψ) = 〈φ,Aψ〉, Q(q) = D(|A|1/2), (2.70)

then we say that q is the quadratic form of this self-adjoint operator. (Strictly
speaking, we mean q(φ, ψ) = 〈|A|1/2φ, sgn(A)|A|1/2ψ〉, where x → sgn(x) is
the sign function). If this form is semibounded, then it is closed.

6. Given a self-adjoint operator (A,D(A)) as above, we write Q(A) := Q(q) =
D(|A|1/2).

The fundamental relation between quadratic forms and self-adjoint operators
is given by the following theorem:

Theorem 2.12. ( [4], Theorem VIII.15). Let q be a closed, semibounded quadratic
form. Then q is the quadratic form of a unique self-adjoint operator.

Theorem 2.13. (KLMN, [5], Theorem X.17). Let A0 be a positive self-adjoint
operator. Let β(ψ, φ) be a symmetric quadratic form defined for all ψ, φ ∈ Q(A0) =

D(A
1/2
0 ) s.t. for some constants 0 ≤ a < 1, 0 ≤ b <∞

|β(ψ, ψ)| ≤ a〈ψ,A0ψ〉+ b〈ψ, ψ〉 (2.71)

for all ψ ∈ Q(A0). Then there exists a unique self-adjoint operator A with Q(A) =
Q(A0) s.t.

〈ψ,Aφ〉 = 〈ψ,A0φ〉+ β(ψ, φ) (2.72)

for all ψ, φ ∈ Q(A). Moreover, A is bounded from below by −b.
9This definition looks quite different than closedness of an operator A, given by closedness of

Gr(A). But the latter definition can be reformulated as completeness of D(A) under the norm
ψ → ‖ψ‖+ ‖Aψ‖
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Remark 2.14. To construct the quadratic form β we will first write β(ψ, φ) :=
〈ψ,A1φ〉 on some ‘nice’ domain and then extend to the domain required in the
theorem. 〈φ,A1φ〉 is easier to estimate than ‖A1φ‖ = 〈φ,A2

1φ〉1/2 appearing in the
Kato-Rellich theorem.

Proof. Define a form γ(ϕ, ψ) = 〈ϕ,A0ψ〉 + β(ϕ, ψ) on Q(A0). By the bound
(2.71) we have

β(ϕ, ϕ) ≥ −a〈ϕ,A0ϕ〉 − b〈ϕ, ϕ〉 (2.73)

and therefore

γ(ϕ, ϕ) ≥ (1− a)〈ϕ,A0ϕ〉 − b‖ϕ‖2 ≥ −b‖ϕ‖2, (2.74)

since A0 is positive and 0 ≤ a < 1. Thus γ is bounded from below by−b. Moreover,

(1− a)〈ϕ,A0ϕ〉+ ‖ϕ‖2 ≤ γ(ϕ, ϕ) + (b+ 1)‖ϕ‖2

= 〈ϕ,A0ϕ〉+ β(ϕ, ϕ) + (b+ 1)‖ϕ‖2

≤ (1 + a)〈ϕ,A0ϕ〉+ (2b+ 1)‖ϕ‖2. (2.75)

This means that the norms ‖ · ‖+1,A0 and ‖ · ‖+1,γ are equivalent on Q(A0).
Since Q(A0) is closed under ‖ · ‖+1,A0 , it is closed under ‖ · ‖+1,γ. Thus γ is a
semibounded, closed quadratic form on Q(A0) and the existence of A now follows
from Theorem 2.12. �

2.5 Self-adjointness of the Pauli-Fierz Hamiltonian

For concreteness we study the Pauli-Fierz Hamiltonian with one electron. We
recall the definition of the Pauli-Fierz Hamiltonian:

H =
1

2m
(p⊗ 1− eA⊥,ϕ(q))2 + 1⊗Hf . (2.76)

We write

H0 =
1

2m
(p2 ⊗ 1) + 1⊗Hf , (2.77)

H1 = − e

m
p · A⊥,ϕ(q) +

e2

2m
A⊥,ϕ(q)2. (2.78)

To apply the KLMN theorem we first have to know that H0 is positive, self-
adjoint. This was checked in Lemma 2.8. Then we have to check that H1 defines a

symmetric quadratic form on D(H
1/2

0 )×D(H
1/2

0 ) s.t. for some constants 0 ≤ a < 1,

0 ≤ b <∞ and ψ ∈ D(H
1/2

0 )

|〈ψ,H1ψ〉| ≤ a〈ψ,H0ψ〉+ b〈ψ, ψ〉. (2.79)

We check it in a series of lemmas:
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Lemma 2.15. Let ψ ∈ D(Hf ) = Γfin(D(ω)) and h ∈ L2(R3) s.t. ω−1/2h ∈ L2(R3).
Then

‖a(h)ψ‖ ≤ ‖ω−1/2h‖2 〈ψ,Hfψ〉1/2, (2.80)

‖a(h)∗ψ‖ ≤ ‖ω−1/2h‖2 〈ψ,Hfψ〉1/2 + ‖h‖2‖ψ‖. (2.81)

Proof. First, we recall

(a(h)ψ)(n)(k1, . . . , kn) =
√
n+ 1

∫
d3q h(q)ψ(n+1)(q, k1, . . . , kn). (2.82)

Now to prove (2.80) we first compute for ψ ∈ Γfin(D(ω)) = D(Hf ):

‖a(h)ψ‖2

≤
∞∑
n=0

(n+ 1)

∫
d3nk

∫
d3q

1
d3q

2
|ω−1/2(q1)h(q

1
)ω−1/2(q2)h(q

2
)

×ω1/2(q1)ψ
(n+1)

(q
1
, k1, . . . , kn)ω1/2(q2)ψ(n+1)(q

2
, k1, . . . , kn)|

≤
∞∑
n=0

(n+ 1)

∫
d3nk

(∫
d3q

1
d3q

2
|ω−1/2(q1)h(q

1
)ω−1/2(q2)h(q

2
)|2
)1/2

×
(∫

d3q
1
d3q

2
|ω1/2(q1)ψ

(n+1)
(q

1
, k1, . . . , kn)ω1/2(q2)ψ(n+1)(q

2
, k1, . . . , kn)|2|

)1/2

≤ ‖ω−1/2h‖2
2

∞∑
n=0

(n+ 1)

∫
d3nk d3q ω(q)|ψ(n+1)(q, k1, . . . , kn)|2

= ‖ω−1/2h‖2
2〈ψ,Hfψ〉. (2.83)

Relation (2.81) now easily follows from the canonical commutation relations:

‖a(h)∗ψ‖2 = 〈ψ, a(h)a(h)∗ψ〉 = ‖h‖2‖ψ‖2 + 〈ψ, a(h)∗a(h)ψ〉 (2.84)

and the previous bound. �

Now we write
A⊥,ϕ(q) = a(fq) + a∗(fq), (2.85)

where fq(k, λ) = ϕ̂(k)
√

1/(2ω(k))eλ(k)e−ikq. It is also convenient to define f ′(k) =

ϕ̂(k)
√

1/(2ω(k)). It has to be kept in mind that q is here an operator so (2.85) is
an abuse of notation. In the proof of the next lemma we will first proceed as if q
was a number, and then explain why this is legitimate.

Lemma 2.16. For Ψ,Φ ∈ L2(R3)⊗ Γfin(D(ω)) we have

〈Ψ, A⊥,ϕ(q)2Ψ〉 ≤ 18‖ω−
1
2f ′‖2

2〈Ψ, (1⊗Hf)Ψ〉+ 12‖f ′‖2
2‖Ψ‖2. (2.86)

For Ψ ∈ D(p2)⊗ Γfin(D(ω))

|〈Ψ, p · A⊥,ϕ(q)Ψ〉| ≤ 1

2
〈Ψ, p2Ψ〉+

1

2
〈Ψ, A⊥,ϕ(q)2Ψ〉. (2.87)
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Proof. We obtain for Ψ ∈ L2(R3)⊗D(H
1/2
f )

〈Ψ, (a(f iq) + a∗(f iq))
2Ψ〉 = |〈Ψ, a(f iq)a(f iq)Ψ〉+ 〈Ψ, a(f iq)a

∗(f iq)Ψ〉
〈Ψ, a∗(f iq)a(f iq)Ψ〉+ 〈Ψ, a∗(f iq)a∗(f iq)Ψ〉|

≤ ‖a(f iq)Ψ‖ ‖a∗(f iq)Ψ‖+ ‖a∗(f iq)Ψ‖ ‖a∗(f iq)Ψ‖
+‖a(f iq)Ψ‖ ‖a(f iq)Ψ‖+ ‖a∗(f iq)Ψ‖ ‖a(f iq)Ψ‖

≤ 1

2

(
4‖a(f iq)Ψ‖2 + 4‖a∗(f iq)Ψ‖2

)
, (2.88)

where we made use of ab ≤ 1
2
(a2 + b2). Now, by Lemma 2.15, we have

‖a(f iq)Ψ‖2 ≤ ‖ω−1/2f i‖2
2 ‖(Hf )

1/2Ψ‖2, (2.89)

‖a∗(f iq)Ψ‖2 ≤
(
‖ω−1/2f i‖2 ‖(Hf )

1/2Ψ‖+ ‖f i‖2‖Ψ‖
)2

(2.90)

≤ 2
(
‖ω−1/2f i‖2

2 ‖(Hf )
1/2Ψ‖2 + ‖f i‖2

2‖Ψ‖2
)
, (2.91)

where in the last step we made use of (a+ b)2 ≤ 2(a2 + b2). Therefore

〈Ψ, A⊥,ϕ(q)2Ψ〉 =
3∑
i=1

〈Ψ, (a(f iq) + a∗(f iq))
2Ψ〉

≤ 6
3∑
i=1

‖ω−1/2f i‖2
2 ‖(Hf )

1/2Ψ‖2 + 4
3∑
i=1

‖f i‖2
2‖Ψ‖2

≤ 18‖ω−1/2f ′‖2
2 ‖(Hf )

1/2Ψ‖2 + 12‖f ′‖2
2‖Ψ‖2. (2.92)

Let us now make a clarification concerning the notation a(fq) (given that q is an
operator): We defined the Hilbert space of the system as H = L2(R3

(p))⊗F , where

(p) reminds that we mean wave-functions in momentum representation. We have
the following standard isomorphisms:

H = L2(R3
(p))⊗F ' L2(R3

(q))⊗F ' L2(R3
(q);F), (2.93)

where the first equality is the Plancherel theorem and the last space contains
square-integrable functions of q′ with values in F . In this last representation we
have Ψ = {Ψq′}q′∈R3 and we can write, for example

〈Ψ, a∗(f iq)a(f iq)Ψ〉H =

∫
d3q′ 〈Ψq′ , a

∗(f iq′)a(f iq′)Ψq′〉F , (2.94)

‖Ψ‖2
H =

∫
d3q′ ‖Ψq′‖2

F . (2.95)

Our computations in the first part of the proof above should be considered a
short-hand notation for this.

Finally, we note that by Cauchy-Schwarz:

|〈Ψ, p · A⊥,ϕ(q)Ψ〉)| = |〈piΨ, Ai⊥,ϕ(q)Ψ〉| ≤ ‖piΨ‖ ‖Ai⊥,ϕ(q)Ψ‖

≤ 1

2
〈Ψ, p2Ψ〉+

1

2
〈Ψ, Aϕ(q)2Ψ〉, (2.96)
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which concludes the proof. �

Recall the definitions

H0 =
1

2m
(p2 ⊗ 1) + 1⊗Hf , (2.97)

H1 = − e

m
p · A⊥,ϕ(q) +

e2

2m
A⊥,ϕ(q)2. (2.98)

Lemma 2.17. (a) For Ψ ∈ D(p2)⊗Γfin(D(ω)) and ‖ω− 1
2f ′‖2, ‖f ′‖2 <∞ we have:

|〈Ψ, H1Ψ〉| ≤ a(e)〈Ψ, H0Ψ〉+ b(e)〈Ψ,Ψ〉, (2.99)

where a(e)→ 0 as e→ 0.
(b) The quadratic form β(Ψ,Φ) := 〈Ψ, H1Φ〉, defined first on the domain specified

above, extends to D(H
1/2

0 )×D(H
1/2

0 ).

(c) For Ψ ∈ D(H
1/2

0 ) we have

|β(Ψ,Ψ)| ≤ a(e)〈Ψ, H0Ψ〉+ b(e)〈Ψ,Ψ〉. (2.100)

Remark 2.18. Properties (b) and (c) above are assumptions of the KLMN theo-
rem.

Proof. We first derive an auxiliary estimate for Ψ,Φ ∈ D(p2) ⊗ Γfin(D(ω)).
Lemma 2.16 gives:

|〈Ψ, H1Φ〉| ≤ c1(e)|〈Ψ, p · A⊥,ϕ(q)Φ〉|+ c2(e)|〈Ψ, A⊥,ϕ(q)2Φ〉|
≤ c1(e)〈Ψ, p2Ψ〉1/2〈Φ, A⊥,ϕ(q)2Φ〉1/2

+ c2(e)〈Ψ, A⊥,ϕ(q)2Ψ〉1/2〈Φ, A⊥,ϕ(q)2Φ〉1/2

≤ c1(e)〈Ψ, p2Ψ〉1/2〈Φ, A⊥,ϕ(q)2Φ〉1/2

+ c′2(e)(〈Ψ, HfΨ〉+ ‖Ψ‖2)1/2(〈Φ, HfΦ〉+ ‖Φ‖2)1/2

≤ c′1(e)〈Ψ, H0Ψ〉1/2(〈Φ, H0Φ〉+ ‖Φ‖2)1/2

+ c′2(e)(〈Ψ, H0Ψ〉+ ‖Ψ‖2)1/2(〈Φ, H0Φ〉+ ‖Φ‖2)1/2

≤ c′′2(e)(〈Ψ, H0Ψ〉+ ‖Ψ‖2)1/2(〈Φ, H0Φ〉+ ‖Φ‖2)1/2, (2.101)

where c′′2(e)→ 0 for e→ 0.
Now suppose that Ψ,Φ ∈ D(H0). This means that (Φ, H0Φ) ∈ Gr(H0) =

Gr(H0) so there is a sequence of Φn ∈ D(H0) = D(p2)⊗Γfin(D(ω)) s.t. (Φn, H0Φn)→
(Φ, H0Φ) and similarly for Ψ. In other words:

Φn → Φ, H0Φn → H0Φ, (2.102)

Ψn → Ψ, H0Ψn → H0Ψ. (2.103)

We can define the quadratic form β on D(H0)×D(H0) by the formula

β(Ψ,Φ) := lim
n→∞
〈Ψn, H1Φn〉. (2.104)
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We check that the limit exists10 using the Cauchy criterion and the bound (2.101):

|〈Ψn1 , H1Φn1〉 − 〈Ψn2 , H1Φn2〉| ≤ |〈(Ψn1 −Ψn2), H1Φn1〉|+ |〈Ψn2 , H1(Φn1 − Φn2)〉|
(2.105)

It suffices to consider one of the two terms: By (2.101), (2.102), (2.103) we have

|〈(Ψn1 −Ψn2), H1Φn1〉| ≤ c′′2(e)
(
〈(Ψn1 −Ψn2), H0(Ψn1 −Ψn2)〉+ ‖Ψn1 −Ψn2‖2

)1/2

×
(
〈Φn1 , H0Φn1〉+ ‖Φn1‖2

)1/2 → 0. (2.106)

Now we check that the bound (2.101) extends to D(H0)×D(H0): We have

|β(Ψ,Φ)| = lim
n→∞

|〈Ψn, H1Φn〉|

≤ lim
n→∞

c′′2(e)(〈Ψn, H0Ψn〉+ ‖Ψn‖2)1/2(〈Φn, H0Φn〉+ ‖Φn‖2)1/2

= c′′2(e)(〈Ψ, H0Ψ〉+ ‖Ψ‖2)1/2(〈Φ, H0Φ〉+ ‖Φ‖2)1/2. (2.107)

Finally, we extend β to Ψ,Φ ∈ D(H
1/2

0 ): Let Ψn := χ(H0 ≤ n)Ψ, Φn :=
χ(H0 ≤ n)Φ. We set

β(Ψ,Φ) := lim
n→∞

β(Ψn,Φn). (2.108)

We check the Cauchy criterion and make use of the bound (2.107). For n2 ≥ n1

|β(Ψn1 ,Φn1)− β(Ψn2 ,Φn2)| ≤ |β(Ψn2 −Ψn1 ,Φn1)|+ |β(Ψn2 ,Φn2 − Φn1)|.(2.109)

It suffices to consider one of these terms. We have by (2.107)

|β(Ψn2 −Ψn1 ,Φn1)| ≤ c′′2(e)
(
〈(Ψn2 −Ψn1), H0(Ψn2 −Ψn1)〉+ ‖Ψn2 −Ψn1‖2

)1/2

×(〈Φn1 , H0Φn1〉+ ‖Φn1‖2)1/2. (2.110)

We note that Ψn2 − Ψn1 = χ(n1 < H0 ≤ n2)Ψ. Now we have by the spectral
theorem:

〈(Ψn2 −Ψn1), H0(Ψn2 −Ψn1)〉 =

∫
λχ(n1 < λ ≤ n2)〈Ψ, dE(λ)Ψ〉

≤
∫
λχ(n1 < λ)〈Ψ, dE(λ)Ψ〉 → 0.(2.111)

where dE is the spectral measure of H0 and in the last step we used dominated
convergence: For any fixed λ

lim
n1→∞

λχ(n1 < λ) = 0. (2.112)

10One should also check that the resulting expression is a quadratic form and that it does not
depend on the choice of the approximating sequences. We leave this part to the reader.
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Moreover, λχ(n1 < λ) ≤ λ and, since dE is supported on the spectrum of H0,
which is a subset of R+, and Ψ ∈ D(H0)∫

λ〈Ψ, dE(λ)Ψ〉 = 〈Ψ, H0Ψ〉 = 〈H1/2

0 Ψ, H
1/2

0 Ψ〉 <∞, (2.113)

By similar and simpler arguments we complete verification of the Cauchy criterion.

Finally we extend the bound (2.107) to D(H
1/2

0 )×D(H
1/2

0 ). We have

|β(Ψ,Φ)| := lim
n→∞

|β(Ψn,Φn)|

≤ lim
n→∞

c′′2(e)(〈H1/2

0 Ψ, χ(H0 ≤ n)H
1/2

0 Ψ〉+ ‖χ(H0 ≤ n)Ψ‖2)1/2

×(〈H1/2

0 Φ, χ(H0 ≤ n)H
1/2

0 Φ〉+ ‖χ(H0 ≤ n)Φ‖2)1/2

≤ c′′2(e)(〈Ψ, H0Ψ〉+ ‖Ψ‖2)1/2(〈Φ, H0Φ〉+ ‖Φ‖2)1/2, (2.114)

where we made use of the spectral theorem and the fact that Ψ,Φ ∈ D(H
1/2

0 ). �

From Lemma 2.17, Lemma 2.8 and the KLMN theorem we obtain:

Theorem 2.19. For |e| > 0 sufficiently small and ‖ω− 1
2f ′‖2, ‖f ′‖2 < ∞ there

exists a unique self-adjoint operator H with Q(H) = Q(H0) s.t.

〈Φ, HΨ〉 = 〈Φ, H0Ψ〉+ β(Φ,Ψ), for Φ,Ψ ∈ Q(H0) (2.115)

and β(Φ,Ψ) extends the quadratic form 〈Φ, H1Ψ〉 as described in Lemma 2.17.

This theorem gives self-adjointness of the Pauli-Fierz Hamiltonian, but the
information about domains is somewhat indirect. To improve on that, one verifies
by more cumbersome analysis (we skip the details) that

‖H1Ψ‖ ≤ c1(e)‖p · A⊥,ϕ(q)Ψ‖+ c2(e)‖A⊥,ϕ(q)2Ψ‖,
≤ c1(e)‖H0Ψ‖+ c2‖Ψ‖ (2.116)

where c1(e)→ 0 as e→ 0. This gives:

Theorem 2.20. For |e| > 0 sufficiently small and ‖ω− 1
2f ′‖2, ‖f ′‖2 < ∞ the

operator H = H0 +H1 is self-adjoint on D(H0).

3 Elements of scattering theory

In this section we will give an overview of scattering theory for Pauli-Fierz Hamil-
tonians. In contrast to the previous section, we will not pay much attention to
‘domain questions’. Nevertheless, ideas of some proofs will be given.

44



3.1 Total momentum operators and fiber Hamiltonians

The following lemma expresses translation-invariance of the Pauli-Fierz Hamilto-
nians.

Lemma 3.1. The total momentum operators

P := p⊗ 1 + 1⊗ Pf , Pf = dΓ(k), (3.1)

commute (strongly) with the Pauli-Fierz Hamiltonian.

Proof. We give only the computational part of the proof, which implies vanishing
of a commutator on some ‘nice’ domain. For methods of improving this weak
commutativity to strong commutativity (i.e. commutation of spectral measures)
interested reader may consult [7].

Recall that H = H0 +H1, where

H0 =
1

2m
(p2 ⊗ 1) + 1⊗ dΓ(ω), (3.2)

H1 = − e

m
p · A⊥,ϕ(q) +

e2

2m
A⊥,ϕ(q)2. (3.3)

We have i[dΓ(k), dΓ(ω)] = dΓ([k, ω]) = 0. So it suffices to show that

[P,A⊥,ϕ(q)] = 0. (3.4)

Clearly, this follows from eiP ·yA⊥,ϕ(q)e−iP ·y = A⊥,ϕ(q), which in turn is equivalent
to

eip·yA⊥,ϕ(q)e−ip·y = e−iPf ·yA⊥,ϕ(q)eiPf ·y. (3.5)

We recall that for fq(k, λ) = ϕ̂(k)
√

1/(2ω(k))eλ(k)e−ikq

A⊥,ϕ(q) = a(fq) + a∗(fq) (3.6)

=
∑
λ=1,2

∫
d3k

ϕ̂(k)√
2ω(k)

eλ(k)
(
eik·qa(k, λ) + e−ik·qa∗(k, λ)

)
. (3.7)

Clearly, eip·yqe−ip·y = q + y. Therefore

eip·yA⊥,ϕ(q)e−ip·y

=
∑
λ=1,2

∫
d3k

ϕ̂(k)√
2ω(k)

eλ(k)
(
eik·qeik·ya(k, λ) + e−ik·qe−ik·ya∗(k, λ)

)
. (3.8)

Now consider

e−iPf ·yA⊥,ϕ(q)eiPf ·y = e−idΓ(k)·y(a(fq) + a∗(fq))e
idΓ(k)·y = Γ(e−ik·y)(a(fq) + a∗(fq))Γ(eik·y)

= a(e−ikqfq) + a∗(e−ikqfq) (3.9)

which proves (3.5), �
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Thus we have a family of four commuting self-adjoint operators (H,P 1, P 2, P 3)
and we draw their joint spectrum. For small values of the coupling constant e and
for H ≤ Σ, for some constant Σ > inf σ(H) its shape is, schematically depicted
on the figure. Namely, the lower boundary of the spectrum ξ 7→ E(ξ) is a small
perturbation of the non-interacting dispersion relation ξ → ξ2/(2m) [8]. The
restriction to energies less that Σ is needed to ensure that the electron moves slower
than photons. For higher energies other interesting effects arrise, e.g. Cherenkov
radiation, which are outside the scope of these notes.

For a more detailed discussion of this spectrum it is convenient to introduce
the fiber Hamiltonians:

Proposition 3.2. The Pauli-Fierz Hamiltonian

H =
1

2m
(p− eA⊥,ϕ(q))2 +Hf (3.10)

has the following direct integral representation

H = V ∗
∫ ⊕

d3ξ H(ξ)V, H(ξ) =
1

2m
(ξ − Pf − eA⊥,ϕ)2 +Hf , (3.11)

where the ‘fiber Hamiltonians’ H(ξ) are self-adjoint operators on (a domain in) F ,
A⊥,ϕ := A⊥,ϕ(0) and the unitary

V :

(
L2(R3

(q))⊗F ' L2(R3
(q);F)

)
→
(
L2(R3

(ξ);F) '
∫ ⊕

d3ξ Γ(h)

)
(3.12)

is given by V = F eiPf ·q, where F is the Fourier transform in variables (ξ, q), that
is

(Ff)(ξ) = (2π)−3/2

∫
e−iξ·qf(q)d3q. (3.13)
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Proof. As a preliminary computation, let us first consider a general expression
{G(−i∇q)}q∈R3 , which is understood as an operator on L2(R3

(q);F). Then, by the
properties of the Fourier transform we have

F{G(−i∇q)}q∈R3F ∗ = {G(ξ)}ξ∈R3 =

∫ ⊕
d3ξ G(ξ). (3.14)

As a second preliminary computation, we write

eiPf ·qpe−iPf ·q = eiPf ·q(−i∇q)e
−iPf ·q

= eiPf ·qe−iPf ·q(−i)2Pf + eiPf ·qe−iPf ·q(−i∇q) = p− Pf . (3.15)

As a third preliminary computation we obtain from (3.9) that

eiPf ·qA⊥,ϕ(q)e−iPf ·q = eiPf ·q(a∗(e−ikqf) + a(e−ikqf))e−iPf ·q

= a∗(f) + a(f) = A⊥,ϕ(0), (3.16)

where we decomposed fq = e−ikqf . From the three observations above we obtain

V (p− A⊥,ϕ(q))V ∗ = F (p− Pf − A⊥,ϕ)F ∗ = {(ξ − Pf − A⊥,ϕ)}ξ∈R3

=

∫ ⊕
d3ξ (ξ − Pf − A⊥,ϕ), (3.17)

and analogous result holds for (p− A⊥,ϕ(q))2. Also, since [Hf , Pf ] = 0,

V HfV
∗ = F ({Hf}q∈R3)F ∗ = {Hf}ξ∈R3 =

∫ ⊕
dξ Hf , (3.18)

which concludes the proof. �

3.2 Conventional scattering theory and its limitations

We denoted the lower boundary of the joint spectrum of the energy-momentum
operators by ξ → E(ξ). Since the lower boundary of the spectrum corresponds
to configurations of the system of lowest possible energy, this quantity is in fact
the dispersion relation (energy-momentum relation) of the ‘physical massive par-
ticle11’ (as opposed to the ‘bare massive-particle’ whose dispersion relation is
ξ → ξ2/(2m)). With the help of the fiber Hamiltonians we can write

E(ξ) = inf σ(H(ξ)). (3.19)

A decisive question for scattering theory is whether E(ξ) is an eigenvalue or not
(for sufficiently many ξ).

If this is the case, then, denoting by ψξ the corresponding normalized eigen-
vector of H(ξ), we can form wave-packets

ψg = V ∗
∫ ⊕

d3ξ g(ξ)ψξ ∈ L2(R3)⊗F , (3.20)

11I deliberately avoid the term ‘electron’ here as it suggests non-zero electric charge. See below.
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for square-integrable g supported in E(ξ) ≤ Σ. Such vectors (in the defining
Hilbert space of the model) describe a propagating massive particle in empty space
(that is just massive particle and no photons). It is easy to see that it satisfies

e−itHψg = e−itE(P )ψg, (3.21)

where E(P ) is the function ξ → E(ξ) of the momentum operator. We call the
subspace of all such vectors Hsp ⊂ χ(H ≤ Σ)H.

Unfortunately, Hsp = {0} for electrically charged particles This fact is known
as the infraparticle problem, and was shown in non-relativistic QED in [10].To
be more precise, recall that the interaction

A⊥,ϕ(q) = a∗(fq) + a(fq) (3.22)

involves fq(k, λ) = ϕ̂(k)
√

1/(2ω(k))eλ(k)e−ikq and ϕ has the interpretation of the
charge distribution of the particle. So the total charge of the particle is given by

Q =

∫
d3xϕ(x) = (2π)3/2ϕ̂(0) (3.23)

and ϕ̂(0) 6= 0 implies that E(ξ) is not an eigenvalue whenever ∇E(ξ) 6= 0 [10].
This result has a partial converse, namely if ϕ̂(k) ∼ |k|δ near zero for some δ > 0
one can show that Hsp 6= {0} [8]. This is the situation in which conventional
scattering theory, described below, can be applied. It covers electrically neutral
particles, as for example a small dipole, hydrogen atom in its ground state etc. For
charged particles more complicated infraparticle scattering theory is available [9]
but will not be discussed here.

To construct states describing incoming and outgoing configurations of the
massive particle and photons, we need the concept of asymptotic creation and
annihilation operators:

Lemma 3.3. [16] For ψ ∈ χ(H ≤ Σ)H the following limits exist

a
(∗)
+ (h)ψ = lim

t→∞
eitHa(∗)(e−it|k|h)e−itHψ (3.24)

and are called the asymptotic (outgoing) creation and annihilation operators. They
satisfy

[a+(h1), a∗+(h2)] = 〈h1, h2〉, (3.25)

a+(h)ψg = 0, (3.26)

for vectors ψg ∈ Hsp. The incoming creation and anninhilation operators a
(∗)
− (h)

are defined analogously by taking the limit t→∞ in (3.24)

Given this, scattering states describing one massive particle and n photons are
defined as follows

Ψ+
n,g = a∗+(h1) . . . a∗+(hn)ψg. (3.27)
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Due to properties (3.25), (3.26), the scalar product of two such vectors is analogous
as for the corresponding vectors from F ⊗Hsp:

〈Ψ′+
n′,g′ ,Ψ

+
n,g〉 = δn,n′〈Ψg′ ,Ψg〉

∑
σ∈Sn

〈h′1, hσ(1)〉 . . . 〈h′n, hσ(n)〉, (3.28)

therefore they can be interpreted as asymptotic configurations of independent par-
ticles.

Of course incoming scattering states Ψ− are defined analogously and one can de-
fine scattering matrix elements 〈Ψ+,Ψ

′−〉, and transition probabilities |〈Ψ+,Ψ
′−〉|2

of physical processes.
The problem of asymptotic completeness is the question if scattering states

of the form (3.27) span the entire subspace χ(H ≤ Σ)H. In spite of some
progress [11–15], this problem is largely open to date, especially for models with
massless photons (as the one we study). Important fact for the study of asymp-
totic completeness is the existence of a closed-form formula for the wave-operator12,
whose range is spanned by the scattering states (3.27). Let us recall the construc-
tion [17].

Define the extended Fock space Γex(h) = Γ(h) ⊗ Γ(h). Let U : Γ(h ⊕ h) →
Γ(h)⊗ Γ(h) be the canonical identification given by

Ua∗(h) = (a∗(h)⊗ 1 + 1⊗ a∗(h))U, UΩ = Ω⊗ Ω. (3.29)

Let c0, c∞ be operators on h and define c : h→ h⊗h which acts by ch = (c0h, c∞h).
Then

Γ̌(c) := UΓ(c) (3.30)

is a mapping Γ(h)→ Γex(h). Note that Γ(c) : Γ(h)→ Γ(h⊕ h), acting by

Γ(c)|Γ(n)(h) = c⊗ · · · ⊗ c, (3.31)

is a generalization of the map introduced before in the context of second quanti-
zation.

Now define the extended Hilbert space

Hex = H⊗ Γ(h) = L2(R3)⊗ Γ(h)⊗ Γ(h) (3.32)

and the extended Hamiltonian

Hex = H ⊗ 1 + 1⊗Hf . (3.33)

We define a tentative wave operator W̃+ : Hex → H,

W̃+ := lim
t→∞

eitH Γ̌(1, 1)∗e−itH
ex

χ(Hex ≤ Σ), (3.34)

12Recall that in quantum mechanics H = −∆ + V (x), H0 = −∆ and the wave-operator is
W+ = limt→∞ eiHte−iH0t
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where Γ̌(1, 1)∗ is naturally extended from Γex(h) to Hex. It is easy to see that the
existence of the limit follows from Lemma 3.3. The actual wave operator is given
by

W+ := W̃+ � (Hsp ⊗ Γ(h)) (3.35)

and it is easy to see that vectors from the range of this operator are scattering
states of the form (3.27).

In the language of the wave operators, the problem of asymptotic completeness
amounts to invertibility of W+. But it is easy to find a candidate for this inverse,
namely

M+ := lim
t→∞

eitH
ex

Γ̌(c0,t, c1,t)e
−itHχ(H ≤ Σ), (3.36)

where c0,t + c∞,t = 1 and apart from this can be arbitrary13. Then, if M+ exists
and maps into the domain of W+, we can write for any ψ ∈ Ranχ(H ≤ Σ)

W+M+ψ = lim
t→∞

eitH Γ̌(1, 1)∗e−itH
ex

eitH
ex

Γ̌(q0,t, q1,t)e
−itHψ = ψ, (3.37)

since Γ̌(1, 1)∗Γ̌(q0,t, q1,t) = Γ(1, 1)∗Γ(q0,t, q1,t) = 1. Therefore any such ψ is in the
range of the wave-operator and therefore a scattering state. Thus we could reduce
the problem of density of scattering states (which does not look very tractable) to
the problem of existence of the limit in (3.36) (which is still difficult, but much
more concrete). One difficulty with proving asymptotic completeness in relativistic
(algebraic) QFT is the absence of such a closed-form formula for the wave operator.
The above considerations suggest that the split property should be relevant in this
context [18].
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