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Motivation

Before I give the outline of these lectures I would like to explain in non-technical
terms what is non-relativistic QED. In short, it is a theory at the interface between
non-relativistic Quantum Mechanics and relativistic QED.

0.1 Quantum Mechanics

Consider a Hydrogen atom described by H = —A, — «/|z|. What quantum
mechanics teaches about the spectrum of this operator is that it consists of a
ground state and excited states

2
E, = —i%, n=1,23.. (0.1)
and then a continuous spectrum above zero. This means, that the electron in an
excited state would stay in such an excited state forever. But experiments tell you
that this is simply not true, the lines have a finite width (even at zero temperature)
and thus after some time the electron relaxes to a ground state emitting photons.
In the Schrodinger equation you know from Quantum Mechanics there are no
terms responsible for this effect. The physical reason is coupling of the electron to
the quantized electromagnetic field, which is usually not covered by introductory
Quantum Mechanics courses. Relaxation of excited atoms to the ground
state is one example of a question which cannot be answered within
non-relativistic Quantum Mechanics. Non-relativistic QED offers an
appropriate framework to study this question. (Relativistic QED is difficult

to apply to bound state problems due to its perturbative character - see below).

0.2 Relativistic Quantum Electrodynamics

Full Quantum Electrodynamics (QED) describes interactions between electrons
and positrons, described by the electric current density 7, and photons, described
by the electromagnetic potential A. The interaction, formally given by

VkQED = e/d%j(:c)A(x), (0.2)

turns out to be very singular, since j and A are distributions, but we ignore these
ultraviolet problems here for a moment. Given the interaction, the next step is to
write down the scattering matrix. Rules of the game of Quantum Mechanics give

S = Texp( —i /Z dt VE{QED(t)) (0.3)

where Vi{qpp is the interaction in the interaction picture. To compute the prob-
ability that a system evolves from some initial state |a) to a final state |5) one



needs to compute the scattering matrix element («|S|3). Let us consider Comp-
ton scattering, i.e. collision of one electron and one photon. The probability of a
transition o — [ (collision cross section[] o) satisfies

o ~ [{alS|B)*. (0.4)

(a|S|B) can be computed as a power series in the coupling constant e and the
resulting expressions can be depicted as Feynman diagrams which capture the
intuitive meaning of the respective contributions. The leading contribution is given
by a tree diagram (TREE DIAGRAM). Further contributions involve emission
and reabsorption of virtual photons (RADIATIVE CORRECTION DIAGRAM).
These contributions have the so called infrared divergences that is divergences
at small values of the photon energy. These divergences can be traced back to
vanishing mass of the photon and integration over whole space in . They
have to be regularized by introducing an infrared cut-off A > 0 (simply eliminating
photons of energy smaller than ). The resulting S-matrix element («|S*|3) can
be computed, but limy_,o{a|S*|3) = 0 as if there was no scattering. Thus standard
rules of Quantum Mechanics give an experimentally unacceptable result: o = 0!
This is one manifestation of the infrared problem.

A way out, proposed by Yennie, Frautschi and Suura [3] is a serious deviation
from these rules of the game. We should not consider the process o — [ alone, but
a whole family of processes a — f3,, where (,, involves emission of n photons of
total energe E; in addition to particles present in 5. (SOFT PHOTON EMISSION
DIAGRAM). The resulting inclusive cross-section is given by

Oine (Br) ~ lim > [{|SY(5) 2, (0.5)
n=0

which is finite and not identically zero. It gives results consistent with exper-
iments if F; is chosen below the sensitivity of the detector. A mathematically
rigorous derivation of this formula from first principles has not been achieved in
the perturbative framework of relativistic QED, in spite of many attempts [2].
In contrast, in the framework of non-relativistic QED, there has been
steady progress in understanding of the infrared problem. Important ad-
vantage: availability of a Hamiltonian as a self-adjoint operator on a Hilbert space
(and not just a formal power series).

The problem of relaxation of Hydrogen atom to the ground state is also difficult
to study in the perturbative setting of relativistic QED, because electron confined
in an atom cannot be considered a small perturbation of a freely moving electron.

0.3 Non-relativistic Quantum Electrodynamics

Start from the relativistic QED interaction:

Veqep = e/d%j(x)A(m) (0.6)

o=——= where d® is a loss of the flux due to the event, dz is the thickness of the target
material and n is the number density.



1. 7 and A are distributions, problems with pointlike multiplication. We need
to regularize: Replace j with a convolution j ¢ for a nice function ¢ so that
J * ¢ is now also a nice function. ¢ plays a role of charge distribution of the
electron.

2. Integral over whole R? difficult to control. It helps to remove terms from j
which are responsible for electron-positron pair creation. The result can be
denoted as no-pairs current jyy,.

Thus we are left with the interaction which is a controllable expression

Vanasp = / 02 (jup * 0) (@) A(2). (0.7)

After some further steps and simplifications one obtains the standard Hamiltonian
of non-relativistic QED (Pauli-Fierz Hamiltonian):

N

Fixnaen = 3 5 (s — e(A* 9)(a)))” + Vila) + Hy. (0.5)
j=1

where (pj, q;) are positions and momenta of electrons, V. is the Coulomb inter-

action between the electrons and Hy is the energy of photons. It is a reason-

able approximation to full QED in the low energy regime, in particular below the

electron-positron pair production threshold. In the next section we will obtain this

Hamiltonian along a different route by quantization of classical Maxwell equations

coupled to particles.
0.4 Outline of the course
1. Quantization of charged particles interacting with the electromagnetic field.

Pauli-Fierz Hamiltonian and other models of non-relativistic QED.

Fock spaces and self-adjointness of the Pauli-Fierz Hamiltonian.

-~ W N

Energy-momentum operators and their spectrum. Physical single-particle
states.

ot

Asymptotic photon fields and scattering matrix.

6. Infrared problems and the problem of asymptotic completeness.

1 Quantization of particles interacting with the
electromagnetic field [1]

1.1 Equations of motion

Let E, B, p, j be the electric field, magnetic field, charge density and current den-
sity, respectively. These are functions on space-time satisfying the Maxwell equa-
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tions (here we set velocity of light ¢ = 1):

OB = -V xE, (1.9)
OE = V xB-—j (1.10)
V-E = p, (1.11)
V-B = 0. (1.12)

We want p and j to describe a collection of NV particles of finite extension. Thus
we introduce a nice function ¢ € S(R3), s.t. ¢(x) = ¢(—x), which models the
charge distribution of each particle. Let ¢ — ¢;(¢) be the trajectories. The charge
and current are given by:

plt,x) = GZw(ﬂs—qj(t)), (1.13)

jto) = € pla - ()i ). (114)

They obviously satisfy the charge conservation equation:
Op(t,x) + V,j(t,x) = 0. (1.15)

The total charge of each particle is

Q= e/d3x o(z) = (21)%2ep(0). (1.16)

If @ # 0, the particle will be called an electron. If () = 0 the particle will be called
an atom.
We couple this system to the Newton equations of motion

mg;(t) = e(Ey(t, q;(t)) + ;(t) x By(t, ¢;(1))), (1.17)

where
E,(t.x) = (E p)(t,z) = / &y E(t,x — y)e(y), (1.18)

and similarly for B. Clearly, for ¢ — 0 we have E,(t,z) — E(t,z) and Q = e
but in this limit the system of equations becomes singular. Thus in general the
parameter e should be interpreted as a coupling constant, which determines the
strength of interaction between the fields and the particles, rather than charge.

1.2 Electromagnetic potentials
We introduce the electromagnetic potentials ¢, A, which satisfy
E = —0,A-Vo, (1.19)
B = VxA. (1.20)
5



Since V(V x A) =0 and (V x V¢) = 0, this guarantees
V-B=0 and 0B=-VxE. (1.21)

Note that the potentials (¢, A) are not unique. For example, for any smooth f, the
new potentials A(t, z) = A(t, z)+V f(z) and ¢(t, z) = ¢(t, ) give rise to the same
fields E, B. (Because V x Vf = 0). This is called a change of gauge of (¢, A).
Exploiting gauge freedom, we can impose additional conditions on the potentials.
For example, by choosing f s.t. Af = -V - A we obtain

V-A=0. (1.22)

In this case we say that A satisfies the Coulomb gauge condition.

1.3 Lagrangian formulation

The Lagrangian is given by
1 & 1
L= 33w [ @ B0.07 - B +iita) - Al - it )60.0))
j=1
= lzmq’%’ + /d% 1(—@/1 —V¢)? - 1(v x A)?
2 J 2 2

oYl g0 A-eY e ae). (1)

where {g;, (z), A(x)} are understood as coordinates. The Euler-Lagrange equa-
tions give the remaining equations of motion:

oL 0L

2 —=— =0 gives mj=e(Eu(t q(t)) + ¢ x Byt q(t)), (1.24)
aq]' 3qj
oL 0L
O— ——=0 ives VFE =p, 1.25
t5¢ 6 g p ( )
oL oL . .
t@ — SA =0 gives atE =V x B — ] (126)
Remark 1.1. In relativistic field theory one often considers action of the form
5 = [ ds £6(), B,0(0)), (1.27)
where x is a four-vector. Then the Euler-Lagrangian equations have the form
oL ) oL
ol =———= | = =—. 1.28
om9) - % 2%

Here L is a Lagrangian density (as opposed to the Lagrangian L) and therefore all
the derivatives can be considered partial derivatives (as opposed to the functional

derivatives §/5¢ computed according to ).
6



Let us show ((1.24)): We have

g{g = mq§+/d3a: ep(r — q;(t)A'(t, z), (1.29)
aqu = mij [ Preonplo - g O)A )
+ /d?’:z; ep(r — q;(1)0,A'(t, x), (1.30)
= mij+ [ Preplo - gO)foA k2)
+ /d?’x ep(r — q; ()0 A'(t, x), (1.31)
qu; = — /d%e(aiso(x —q;(1); A" — dip(a — Qj(t))¢)

- / d3$6(<ﬂ(w — gy (0)dE A" — oz — qj<t>>az¢) (1.32)
(Summation over index & understood). To conclude, we use
4 % (Vx A = (V@A) — (4 V)4 = oA — oA (133)
and the property ¢(z) = ¢(—x).

Let us now show ([1.25)): The functional derivative 6/d¢ is the "Frechet deriva-
tive in the direction of Dirac ¢’. The rule of the game is:

0ot z) _ o0
5oty Sz —vy). (1.34)
Thus we have
oLy
09(t,y)
oL S| — (= x) — x x —
i = [ #s( - ot - Vo) vt )

- e ela = g)ia )
= /d3x (VE(t, z)o(x —y) —ep(t,x)o(z — y))
— VE(y) - e ol - 40) (139

Finally, we show (|1.26)). First, we recall that

(V x A)f = Mmg,A™, (1.36)
7



where £ is the completely antisymmetric Levi-Civita tensor. And therefore

J

W(V x A(t,z))F = e¥m00imd(x — y) = 0,0 (x — ) (1.37)
5L ; N
T —/d BB A — V)s(x —y) = —E(t,y), (1.38)
5L
i = OEEY, (1.39)

oL /d%( (V x A)fer9,6(x — y +eZ<,0 5(:v—y))

AUt y)
— /d%(— eF9,(V x A)Fs +eZ<,0 5@—9))

—(V x (V < A))'(ty) +5'(ty)
—(V x B)'(t,y) + j'(t, y). (1.40)
1.4 Transverse and longitudinal field components

Recall that photon has just two polarizations, whereas here we use four functions
(¢, A) to describe the electromagnetic field. To obtain the physical Hamiltonian
(energy-operator) we have to eliminate the superfluous degrees of freedom. There is
a general formalism of quantisation with constraints, that could be applied here [3],
but that would take us too far from the main topic of these lectures. Instead, we
will make some informed guesses and in the end check that the resulting quantum
theory satisfies Maxwell equations.
To start with, it is convenient to pass to the Fourier representation:

1

E(k) = (27T)3/2/d3xeikxE(x), (1.41)
B(k) := (2#1)3/2 /deeik’”B(ac), (1.42)
A(k) = W/d?’xe“mfl(x). (1.43)

From now on we suppress the t-dependence in the notation.

~

Problem: Show that V - E(k) = ik - E(k).

Now let k := k /|k| and Py the corresponding projection. That is, for any vector
v € R? we have

P = k(k - v). (1.44)
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(In Dirac notation from quantum mechanics: P, = |k)(k|). Now we can decompose
the fields as follows

E(k) = PE(k) + (1 — Py)E(k) = Ey(k) + EL(k), (1.45)

where EH(I{:), E L (k) are called the longitudinal and transverse components. (B
and A are decomposed analogously). Now we note

—

V.-B=0 = V-B=0 = ik-B=0 = B =0, (1.46)

— PN k
V-E=p = V-E=p = ik- p = EH:—iﬁW(lA?)

&)
I

Given the second relation, we can eliminate ¢: Note that

E=-0A-V¢ = E=-0A—ikp = E =—-0A —ikp. (1.48)

Therefore,
kB =—k-0,A —ilk]?6 = —ip=—k-0,A —ilk]*s, (1.49)
which gives
¢ = #(ik - O A| + 7). (1.50)
Moreover,
E=FE, +E = -0,A, — @'ﬁ%, (1.51)
B=DB =V xA =ikxA,, (1.52)

because k x ;1] is proportional to k x k = 0.

1.5 Lagrangian in terms of transverse and longitudinal fields

Now we come back to the Lagrangian:

L %;mq; + [ #o(HE@? - B + i) Al) ~ plalota) ). (1.5

To rewrite in terms of Fourier transformed fields, we use the Plancherel identity:
[ #iwg) = [ @Fmgn (1.54)
valid for square-integrable functions. Using ([1.50)), (1.51)) and (1.52) we get
1 1 — -
L= ;mqg v /d3k(|8tAL]2 ke x AL+ kP

+ [ @R G Ak 20p8 — ik o). (155)
9



For example,
/d3x|E(x)|2 _ /d3k|ﬁ(k)|2:/d3k|8t//11+iﬁ%|2

[ RO + 41215P). (1.56)

Now we make two rearrangements of L:

(a) We use the charge conservation law ([1.15]):
Op+V-j=0 = Op+ik-j=0, (1.57)

which gives

o~

7o A—ilk| 725k -0A)) =

o~

AL+ A —ilk|2p(k - ,A))
AL+ PAy — il 0,4

AL+ KGR (k- Ay — ik %k - 9,A))
AL — [k (@) (k- Ay) — ilk| B0k - 9 A))
AL = ik 20Uk - AY)). (1.58)

I
SO S ) ) =)

The last term gives rise to a total time derivative contribution to L. Such
terms have no effect on the Euler-Lagrange equations, thus can be skipped.
Incidentally, this step eliminates A from the game. It is thus natural to set

:4] = 0 in the following. This amounts to choosing the Coulomb gauge, i.e.
0=V-A=V-A=ik-A=ik- A, (1.59)

which can be done without changing fields (E, B). (Cf. Subsection [1.2).
Thus we are left with two degrees of freedom of the electromagnetic field

described by A .

Remark 1.2. There are two independent justifications for setting A = 0:
gauge freedom and freedom to add a total time derivative to the lagrangian.
This 1s not a comcidenceﬂ' Consider the gauge-dependent part of the La-
grangian:

L - / Pu(j(t,z) - Alt,7) — plt, 2)(t, 7)) (1.60)

and make a general gauge transformation: A(t,x) = A'(t,z) + Vf(t, x),

2Thanks to Vincent Beaud for pointing this out.
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o(t,x) = ¢'(t,z) — 0 f(t,x). Then

LI==t/J%U@Jﬂw4@ﬂﬁ—p@xMKth
+/d%«vxawﬂum+pwm@ﬂum>
= [ Patitta) A(ta) - plt )6 (1.0)

+0, / Pap(t,z)f(t,x).

Now we choose f s.t. A\/H =0 and gg’(t, k) = #ﬁ(t, k). But from (1.58

~

can read off that f(t, k) = —ilk|2(k - :4](15, k)) does the job.

(1.61)

we

(b) Now we show that the |k|~2|p|? contribution gives rise to the Coulomb inter-
action. Let us set V(y) = (4n|y|)~*. Then V (k) = (27)~%2|k|=2. Thus we

have

Vo = 5 [ Esdyp@Vie - pn) = 5 [ Eop)V <o)

2
1

2

1 o=
- 5/fmm%mm3

_ —/dﬁﬁwxﬁib@»z%@mW{/fkm@Vwmw>

Since p(t,z) =e Z;\le o(x — ¢;(t)), we have

1

N
1

V'C:_Q d3 d3
Se Z/ x y@(x)4ﬂ|x_

Jy'=1

y+q;(t) — gy (t

)|<P(Z/)- (1.63)

In the limit of point charges, i.e. ¢ — § we get for j # j’ the expected
contribution (47|q;(t) — g;(¢)|)~*. For j = j' this limit diverges, however.

(Infinite self-energy of a point charge).

Given (a), (b), the Lagrangian (1.55) has the form (up to total time derivative)

L

N
1 1 — — = —~
j=1

N
1 1
= 3 > mg — V. + §/d3:c(|8tAl|2 — |V xA]?) + /d% (j-AL)(1.64)
Jj=1

11



1.6 Hamiltonian

Given formula (|1.64)) and recalling that j(t,z) = e Zjvzl o(x — q;(t))q;, we obtain
the canonical momenta:

pj = a_(f =mg; +eA1(g)), (1.65)
oL .
I(y) = L) Al(y) = —EL(y). (1.66)

The Hamiltonian has the following form

N

H = Zp]qj /d?’xH( VAL (z) — L

j=1
N

= om (p; — eAJ-M(%‘))Z + Ve
j=1

+ %/d?’a: {(EL)*+ (V x A1)}, (1.67)

with the canonically conjugate pairs {¢;,p;} and {A,(z), —FE,(z)}. To obtain this
formula, it suffices to notice that

[ st —ezq]/d?’:vso:v—q]()) M) = e > - Ar (g (1L68)

7=1

where we made use of p(z) = ¢(—z).

1.7 Formal quantization

We now proceed to a quantum theory, which means that {g;, p;} and {A, (z), —E, (z)}
will be operators on some Hilbert space. We first forget about the fields and quan-
tize the particles. We require that the following commutation relations hold:

a8 p)] = a0pf) — paf = 04,5015, (1.69)

where we set h = 1. Let H, = L*(R3*) and think about distiguishable parti-
cles (otherwise we would have to restrict attention to the subspace of symmet-
ric/antisymmetric functions). Then it is easy to see that

qg¢(x17"')xN) = $?¢($1,...,$N)7 (170)
pl(zy,. .. xy) = —i0; (a1, ..., 2N), (1.71)

satisfy (1.69).

To quantize the electromagnetic field, we will look for certain quantum fields
Ay, —E, ie. function] 2 — A, (z), + — —E,(z) with values in operators

3More precisely distributions.
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on some Hilbert space F (Fock space). We stress that from now on omitted
time-dependence means that the fields are evaluated at t = 0 i.e. A (x) =
A (t =0,z). We impose the following commutation relations:

[AS (2), =B (2/)] = i655(x — '), (1.72)

51y = (2m) / Bl e (8 — hus), (1.73)

which should be understood in analogy to (1.69). We will not try to explain a
priori why the transverse delta function d,5(z — 2’) (and not e.g. d,50(z — y))
should appear on the r.h.s. (It is plausible that this has to do with the Coulomb
gauge condition VA = 0 which we us@. Our strategy is to first find A, (x), £, (')
which satisfy . Then, in subsection , we will check that these quantum
fields satisfy the Maxwell equations, and thus the quantization prescription (|1.72])
was ‘correct’.
We first introduce an orthonormal basis at each k € R3
~ k

k= R e1(k), ea(k), (1.74)

which satisfies k - ex(k) = 0, A = 1,2, and e;(k) - e5(k) = 0. Completeness of the
basis can be expressed by

FR 4+ es(k)el (k) = das. (1.75)
A=1,2
We introduce auxiliary distributions (k,\) — a(k,A) and (k, ) — a*(k, \) with
values in operators on the Hilbert space F (Fock space). They are called annihi-
lation and creation operators, respectively, and satisfy

[a(kv )7 ( )] = 0y A’5(k - k/), (176)
[a(k, A), a(K', N)] = 0, (1.77)
[a*(k, A), a" (K", X)] = (1.78)

Their detailed definition is postponed to the next section, here we will only use
these commutation relations. Now we define the fields A, (z), E, (z’) via their
Fourier transforms:

Ak) = Z le(k (Ralk,A) + ex(—k)a*(—k, ), (L79)
E (k) = ,/ "“ (iex(k)a(k, \) —dex(—k)a*(—k,\)),  (1.80)

4This form of commutation relations can be derived from a general theory of quantization
with constraints, see [3].
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where w(k) = |k| is the dispersion relation (i.e. energy-momentum relation) of

photons. We note that
are indeed transverse.

Aulz) = (27‘(‘1)3

Ei(r) = 3/2

by definition k- A, (k) =0 and k- E, (k) = 0 i.e. the fields
In configuration space they have the form

1
2w

Z/d3 \/7 e*Ta(k,\) — e ™ a*(k, \)). (1.82)

e a(k,\) +e *a*(k,\)),(1.81)

In order to verify the commutation relation, -, we first compute

(A (k). EL(R)]) =

+—Zh/ V —k)eX (K)[a* (=k, A), a(k', X))

(—K)[alk,\),a* (=K', \)]

V 2w
AN

AN

ok + K (Ze/\(k)e/\,(k;)é,\,\/ + S (— k)ef/(—k)éw)

2
AN

—id(k + k') (605 — k°E”), (1.83)

where in the last step we made use of (1.75). Now we take Fourier transforms:

[AS (), =Y (a)

which gives (1.72)). By

(AT (=

— i(27r)_3 / dSkd?)kJ eikxeik/xla(k + kj) (5(1,3 o /]504/]5,3)
= iby(x — '), (1.84)
analogous computations we also obtain

), AL@@)] =0, [Ef(2), EL(«")] =0. (1.85)

For example (EXERCISE IN CLASS):

[AS (k), AT (K)]

- >z ¢ o ([ 09alb ), 4 (=Ko (-4 X

AN

“@P@th»w%mMuxﬂ
Z 2w1(k) o(k + k') (ef‘\‘(k)ef(k:) — ei(—k‘)ef(—k))

O 1) (8on = B = 0 = (<))

0. (1.86)
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The full electric field also has a longitudinal component. Recall that in the
Coulomb gauge £ = —ik¢ and ¢ = |k|?p. Therefore

1 ikx TN k ~
Bi(@) = o [ PR i) e pla) = eYople—a). (187
j=1
We have
N
P = eom) Y [ dre ot - g)
j=1
N N
= e> e tu(2m) / dre o) =e) e " uG(k).  (1.88)
j=1 j=1
Therefore
Ey(z) = —ie;i / d%ei’f@—%)@(k)i (1.89)
I (27)3/2 = k|2’ :

is an operator on H, = L*(R3"). The full electric field E(z) is a distribution with
values in H := H, ® F:

Ex)=E(r)®1+1® E, (x). (1.90)
For future reference, we also state the formula for the magnetic field

B(z) = VxA/(zx
- 2773/22/

1.8 Formal quantum Hamiltonian

zk x ex(k)) (e" a(k, \) — e " a*(k, \)).

Recall the classical expression ([1.67]) for the Hamiltonian: (For clarity we denote
now classical quantites by ‘check’):

H= Z% (p; — eAL ,(4;))* + V. + Hy, (1.91)
Hy = %/d% {(E(z))*+ %(V x A (z))*}. (1.92)

We want to replace the classical quantities in the expression above by their quan-
tum counterparts and skip ‘checks’. Two problems may appear: First, multi-
plication of quantum quantites (operators) is not commutative - this may lead
to ambiguities. Second, quantum fields are distributions, thus expressions like
(E,(z))? may be problematic. Therefore we proceed in small steps:
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(a) §j,p; — qj,pj, defined in ([1.70)),(1.71), which act on H,, := L*(R3Y).
(b) A (2),EL(z) = AL(x), E (x), defined in (1.81)), (1.82), are distributions

with values in operators on F.

(c) AL@(x) — A, ,(z) is a function with values in operators on F. Explicitly,
we have

AL (k) = Axp(k) = (2m)*3(k) A(k). (1.93)

Thus making use of ¢(x) = p(—=z) and therefore p(k) = p(—k), we get

Apglz)=> / dk &))ek(k)( e a(k,\) + e *a*(k, ). (1.94)

(d) A, ,(g;) = AL ,(g;) involves both particle and photon degrees of freedom.
It is an operator on H := H, ® F, which is the full Hilbert space of the
model. It is defined as

ex(k) (™ @ a(k,\) + e %5 @ a*(k, \)). (1.95)

Aeslw)= 3 [ W

A=1,2
(The symbol ® will be often omitted for brevity).
(e) (p; — e/h#,(cjj)) — (p;®1—eA| ,(g;)) is an operator on H = H, ® F.

(f) (5 —eAL,(3))* — (p;®@1—eAl ,(g;))? is an operator on H = H, ® F, but
we have to be careful about ordering of operators: We have

(pj®1— eAJ_,@((Jj))Q = (pj®1—eAi(q))(p; ®1—eAl,(q)))
= (p; @ 1)* —e(p; ® DAL ,(g))
—eALo(q))(p; @ 1) + (eALo(g))*.
(1.96)

But if we expanded the square on the classical side, quantization could give
a priori different expressions:

(p; ®1)* = 2e(p; ® 1)ALu(q5) + (eALo(g;))?, (1.97)
(p; ®1)* = 2eA; ,(q;)(p; @ 1) + (eAL ,(q5))*. (1.98)

One could argue that is correct, because it gives a manifestly sym-
metric operator (recall that given two operators A, B s.t. A = A* and
B = B* then (AB)* = BA and therefore (AB + BA)* = (AB + BA)). But
fortunately all the expressions above turn out to be equal: Note that by

[qg;pf] = i(sa,ﬁéi,j

[p§, ™) = kee™a, [pf, e M) = — ke (1.99)
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Therefore,
[(pf ®1), AT ,(q))]

“Z/ PR e alh ) — ke (k)

A=1,2

(1.100)

where summation over « is understood and in the last step we made use of
transversality: e§(k)k® = 0. For completeness, we still have to show (1.99)):
(EXERCISE IN CLASS)

[, ™) = (pff — eMipgem )i, (1.101)

Now we consider a function f(n) = e p?e’i"kqf and compute
0,1 (1) = ikPeka [qf poleminktr = jpfeinkajg ekt = ke (1.102)

Therefore f(n) = f(0) — k*n = p§ — k®n, in particular f(1) = e"*%pGe % =
p§ —k®. Substituting this to (1.101) we conclude the proof of the first identity
in - Second identity follows by conjugation.

) [Pz (E () = [d’x : (EL(x))* : is an operator on F. The "Wick or-
dering’ : . of a quadratlc expression in a*(k, A) and a(k, A) means that all
creation operators should be shifted to the left of all the annihilation opera-
tors. This operation is needed to make sense of squaring distributions. We
have by the Plancherel theorem:

/d% : (EL(Q;))2 = /d3k cEL(k) - EL(k):
_ Z/d3 - (ex( — ex(=k)a(~k, \))

AN
(6)( —e,\/(—k:)a*(—kz,)\')) .

= Z/d?’ L] ( ) ex(k)a*(k, Na(k,\') + ex(—k) - ex(—k)a*(—k, N)a(—k, \')

AN

—ex(k) - ex(=k)a*(k,\)a*(—=k, X)) — ex(—k) - ex(k)a(—Fk, N)a(k, X))
- Z/d3k|k|a*(k,)\)a(k,)\)
— —Z/d‘gk\lﬂ ex(k) - ex(—k)a*(k,N)a*(—=k, ') + h.c.). (1.103)

AN
Without Wick ordering we would have in addition infinite ‘vacuum energy’:

S [ kS er 0 ext=lat—k 0. o (k)

AN

_ Z/d3 ) ex(—k)S(—k + k) =00 (1.104)

AN
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Using Wick ordering one can ‘prove’ many things. For example

Sk —K)=0(k—=Fk):=:[a(k),a*(K)] :=: (a(k)a* (k') — a*(K')a(k)) := 0
1.105)

By integrating we even get 1 = 0. Therefore it is sometimes useful to have a
more precise definition: Let Q be the vacuum vector which satisfies a(k)Q2 = 0
and 7, — 0 be a smooth delta-approximating sequence. We have

B (z)? := lim ((E x 0y () E(x) — (Q, (E * nn)(:t)E(x)Q>> (1.106)

n—oo

With this representation the problems above would not appear. It is also
clear that one can apply the Plancherel theorem.

h) [d2(V x A () — [d® : (V x A (2))? ;. Again, by the Plancherel
theorem

/d3 (VX A () = / (b x AL (k) - (k x AL (k) (1.107)
Now we recall that a(b x ¢) = b(c X a) and a x (b x ¢) = b(a-c) —c(a-b).
Therefore, since A, (k), A, (k') commute,

(kx AL(K)*) - (k x AL(k))

= |k (AL(k) - AL(K):;,  (1.108)

where we made use of the transversality condition. Thus we have
/d3k k)2 (AL(k)* - AL(K)) :
/d3k B (ea(k)a®(k, A) + ex(—k)a(—k, \))

AN
. (6)\/(1{3)(1(]{3, )\/) + 6)\/(—]6)@*(—]6‘, /\/)) :

- Z/d3k;|k|a*(k,/\)a(k, A)
4L Z/d3k|k;| ex(k) - ex(—k)a* (k, Na* (—k, X') + h.c.)(1.109)

AN

(i) Hyf — Hp =", [ dk |k|a*(k, \)a(k, ) which is an operator on F. (Follows
from (g) (h) above). The corresponding contribution to the Hamiltonian is
1 ® Hy as an operator on H = H, ® F.

18



Altogether, the quantum Hamiltonian has the form:

1
H= ;%(pj®1—eAl,so(qj))QJer(q)®1+1®Hf, (1.110)
Usually we will just skip ® and write like in the classical case
Yo
H =) o—(p;— eALy(q))” + Ve(g) + Hy. (1.111)
j=1

1.9 Quantum Maxwell-Newton equations

Given the Hamiltonian, we can define the time-evolution of the quantum fields in
the Heisenberg picture

E(t,z) =" (1@ EL(z)) + (EBj(z) ® 1))e ", (1.112)
A( ):: ”H< ®AL(z )) - (1.113)
B(t,z) =" (1® (V x Ay( ))) it (1.114)
p(t,x) =" (p(x) @ 1)e™. (1.115)

There is still one quantity missing, namely the current: Recall the classical current:

N
Jtx) =eY e —q;(t)d;(). (1.116)
j=1
(EXERCISE IN CLASS: QUANTIZE). We first define the velocity operator
0=y ® 1 - AL (g)" (1.117)
and then set
j(x) = %Z (evj(gp(qj —r)®1)+ h.c.), (1.118)
j(t,z) = e“JHj(:c)e—“H. (1.119)

This is a symmetric quantization of the classical current (|1.116|).

1.9.1 Verification of V-B=0and V- E =p

We have
VB(t,z) =™ (1@ V- (Vx Aj(z)))e™ = (1.120)
VE(t z) = e”H(VE”( ) ® 1)e e”H(,o(:c) ® 1)6’“H = p(t,z)(1.121)

where we made use of the relation:

Ej(z) = (%—1)3/2/&”1{: eik”(—iﬁ(k))%. (1.122)
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1.9.2 Verification of 9;,B = -V x F
Now we verify the dynamical equations. We have

O B(t,x) = e™i[H, (1® (V x Ay (z)))]e ™. (1.123)
Thus we have to verify commutators with the Hamiltonian. We have

p;®1,1® (Vx A (x))] =0, (1.124)
[ALp(g;), 1@ (V x AL(z))]

= (Vax) /d3y (plg; —y) @ DA @ [AL(y), AL(x)]) =0, (1.125)

where we made use of ((1.85]). Therefore

[(pj ® 1 — AL ()% (V x AL(2))] = 0. (1.126)
Now we note (POSSIBLE EXERCISE IN CLASS):
[Hy, Ay (K)]
31./11./ x /1.0 \/ I \/ 1 _ CL* _
_ %://d W a4, X )all', ), — e (en(R)alh )+ ex(—)a" (V)
= Z/d3]€/ \/“;j ( — e,\(k')a(k;', )\)(5(]{? - ]{7/)(5)9\/ + 6)\(—1{3)6L*<I€/, /\/)(5“{? + ]Cl)5)\)\/)
= Z \/@( —ex(k)a(k,\) + ex(—k)a*(—k, \)) = iEL (k). (1.127)
A
Hence
iHp, Av(r)] = —EL (2), (1.128)
i[Hf,V X Al(x)] =-V x EL(I‘) =-V X E(ZL‘), (1129)
and we get
0B(t,x) = =V x E(t,x). (1.130)

1.9.3 Verification of ),F =V x B —j
We write
OE(t,x) =e"i[H,(1® E\(z))]e”™ + ™i[H, (B (z) ® 1)) (1.131)

We consider first the commutator involving E;. We have (SECOND COMMU-
TATOR - POSSIBLE EXERCISE IN CLASS)

p; ®1,1® Ey(x)] =0, (1.132)
(AT (¢), 1@ B (z)] = /d3y (p(g; —y) © (1 @ [A% (), E (2)])

— i [ Pyele — 1)ty -2 @1 (1.133)
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Consequently,

[(pj ® 1 - eAL,w(Qj))Qv 1 ® Ef(x)]
= —e(p; ® 1 — eAL ,(q)*[AT ,(g)). 1 ® B ()]
—e[AS (g;), 1 ® B (2)](p; ® 1 — eA L o(q;))"

= z'emv?(/d3y o(g; — y)dflﬁ(y —z)®1) + h.c., (1.134)

with summation over o and definition of the velocity operator

« 1 «
vf = E(pj ®1—eAl ,(g;))" (1.135)

Now we look at the commutator with the photon energy:

[Hfaﬁl(k)]

_ Z/d3k’|k’ (6 Na(k', XY, \/@(iq(k:)a(k;,/\) —iex(—k)a*(—k, )]

= Z / dgk’/ |k/|3/2 ( — Ze)\(k)5<]€ — k’)a(k’, )\/)5,\)\/ — ze,\(—k)(S(k: + k’)a*(k:’, >\I>(5)\)\/>
3/2

= (-i)) ”“\'/5 (eA(k)a(k:,)\) +ex(—k)a*(—k, A)). (1.136)

A

We show that the r.h.s. equals (—z)m We have

V x B(k) = V x VAL (k) = —(k x (k x A, (k)))
= —k(k-AL(k) + kAL (k) = K2A, (k)

3/2
-y A ( Ya(k, \) + ex(— k;)a*(—k,A)). (1.137)

>

Thus indeed we get
i[Hy, E\(z)] = V x B(x). (1.138)
Altogether, the result for the transversal part is
iH,1® E(z)] = (V x B)’(x)
— %Z (evjc-’(/d?’y o(q; — y)éiﬁ(y —I)® 1) + hc) (1.139)
J

Now we look at the longitudinal part: We recall

(3 r— k
E”(ZE) 3/22/d3k6k ) k)’kP (1.140)
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Since we know that [pf, e™"%] = —k*e~"% we have

1 e keokd
[p],Ef( )] = w(zw)ii/? /d?’kek W 3(k) TER (1.141)

To compute the last expression, we use fg = (27) %2 f % § with f(k) = e~*% 3(k)
and g(k) = k°kP/|k|? and

f(z) = oz — q), (1.142)

(#) = g | PR = (27)9(8u5(a) — Bla)-(1.149)

Q¢

Therefore,
[, B (2)] = (ie) /dBy P45 = y)(Gapd(y — ) = Oup(y — ), (1.144)

where we made use of symmetry of all the integrated functions. Since Ef ()
depends only on ¢, we have

[AL(q), By(z) ® 1] = 0. (1.145)
Consequently,
il(p; ®1—eALo(q)" Ef(x) @ 1) = (muf (ilp§, B (x)] ® 1) + h.c.)

~(~o) <mv;-*< [ uetas =) Gustly = )~ ity — o) @ 1) + h)

(1.146)
Since [1 ® Hy, B (x) ® 1] = 0, we get
i[H, B[ (x) ©1]
= "Z (ev /d?’w Y) (0apd(y — ) — 6,5(y — ) @ 1) +h.c.).
(1.147)

Thus, together with ((1.139), we obtain

HE@)] = (VxBY@) - 5 3 (e ([ @rot = 0oty = a) 0 1) 4 e

:(VX&W@—%E:Gﬁ@@—@®D+hé> (1.148)

Thus writing

j(z) = %Z (evj(np(qj —z)®1)+ h.c.) (1.149)



and j(t,z) := e j(z)e " we obtain
O E(t,x) = (V x B)(t,z) — j(t,x). (1.150)

We recall that (1.149) is a ‘symmetric’ quantization of the classical current
N
jta)=e) e —q;(t)d;(). (1.151)
j=1

1.9.4 Verification of the Newton equations

Recall that the velocity operator of the j-th particle at t = 0 is

1
vy (pj®1—eAL(q;))". (1.152)

T m

We have Uf(t) = ethvfe_th, and therefore
m@f(t) = meTi[H, v e !, (1.153)

]

Let us compute the relevant commutators. We note that H = 3,  mufvg +
V.+1® H. (Up to now all the commutators involving V,(¢) were vanishing. Now

they will be important). It is convenient to first evaluate [vg, vf . We have

(AL o) AL o)) = 0 (1.154)
because [g¢, ¢;] = 0 and [A, (z), A, (y)] = 0. Moreover,
e ©1,A1,(q5)"] = /d3y pg ®1,0(q; — y) © A (y)]
= [ Eylipele -] o A1
= Gy [ PO - ) © A1)

= Gy [y (-ibele; - 1) @ 2,400

= (=1)dr;00A (g)): (1.155)
Thus
o] =~ @1, ALe(0)’] — 5 [ALs(a), 0] © 1]
= 500010 - 210
- z‘%ég,jgaﬁvB;(qj). (1.156)
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(Comment, non-commutative geometry). In the last step we used

eBg;) = eerwpduAl (a))
(bac0p — BapOpa )0 AT ())
= (8aA7, — 0541 ,)(g))- (1.157)

Now we compute

- E mZUeUe7 ] -

m(vgifug, of] + o, o] Jof)

(]

S
Q

v§e* Bl (q;) + h.c.)

sﬁw’v?Bg(qj) - 557‘”B;(qj)vj'?‘)

NIRNI RN~ N~
Slo3|e 3o

—~ — —
|

(05 % Bola)) — (Bolgy) x v3)7). (L158)
Now we focus on the term 1 ® Hy from the Hamiltonian. We know that
i[H, Ay ()] = —E, (). (1.159)
Therefore,
1o . AL@) = [Eoille By - © )
[t - o1 @i;, @)
= /d?’xgo 2)(1® E\(2)) = —E1 ,(q;)-(1.160)
Hence
@ Hy ol =il @ Hy, (5 ©1 - eAup(q)’] = < Boplg). (1161)

Finally, we compute the commutator with the Coulomb interaction:

i[Valg) ® 1,0]] = i%[‘/c(q),pf] ®1=—(0,sV)(9)- (1.162)

We have, since p(t, k) = e Zjvzl e " p(k),

Z F @ G mE (1.16)

EE’

Vi(g) = / 0k (K2 5(k)
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and therefore

V)0 = -Z ¢ [ R e (k4 k5, G

0,0 =
—_— . . ~ 1 _ —_—
- —§eZ/d3k|k;|—2p(k)e—lk%k55jw(ls)+§eZ/dSk|k| 2p(k)
l e

1 el 1 — —_—
= —5e / d3k|k|_2p(k)e_’kqjikﬁ@(k)+§ / Bk k|72 p(k)e* 5 ikP (k)

- e / Pk K2 pR)e ik B(k),

p—

where we made use of the fact that p(k) = p(—k) and @(k) = o(—k) = p(k). We
recall that

1 , k
B _ 31, ikx
E/(z) = 2 /d ke Zp(/{i)—|k’2. (1.165)

Therefore

el () = 6/d3y90(qj —y)E[(y)
) B
= e [ @R = 0,V ). (1166)

(Making use of

e~k B (k) (1.167)

Mz

=e
J=1

it is easy to see that Ef SO(qj) = 0 for one particle. Thus particles do not interact
with their own Coulomb field). We have established

iIVala) @ 1,0]) = eE](ay). (1.168)

Summing up all the contributions we get the Newton equations with the
Lorentz force

mi; = ek, (g;) + %6((% x By(q;)) — (By(g;) x v;)). (1.169)

2 Self-adjointness of the Pauli-Fierz Hamiltonian

2.1 Fock space

The single-particle space has the form h := L*(R?) ® C* = L*(R® x {1,2}) =
L*(R?) with the scalar product

(hotsh = 3 [ @RRENLEN = [ EERE L. (2.1

A=1,2
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We have for n € N

®"h h---@bh=L*R™), (2:2)
®h = Su(h®-- @bh) = LI(R™), (2.3
®2h C(2, where Q is called the vacuum vector.

Here R®*" should be

read (R*)" = R® x ---
operator defined by

x R® and S, is the symmetrization

1
Sp= 1 3 0 where 0(fi @+ 8 fa) = fo) @+ @ fotw,

gePy,

(2.5)

P, is the set of all permutations and L2(R®") is the subspace of symmetric (w.r.t.

permutations of variables k; = (k;, \;)) square integrable functions. The (symmet-
ric) Fock space is given by

F(b) = EBnZO ®? h = @nzﬂLg(Kgn)' (26)
For brevity we will sometimes write F := ['(h) and F™ := T(™(h) := L2(R*").
We can write ¥, ® € I'(h) in terms of its Fock space components ¥ = {¥(™}, oo
® = {®™}, 5o and the scalar product in T'(h) is given by

o0

<\Ij7q)> = Z

(T oMy = Z/dg%@(”)(kl,---,En)@‘”)(kl,---,kn)- (2.7)
n=0 n=0

We define a dense subspace I's,(h) € I'(h) consisting of such ¥ that ¥ = 0
except for finitely many n. Next, we define a domain

D :={WU &g, ()| T™ € S(R*) for all n }.

(2.8)
Now, for each ¢ € R* we define an operator a(q) : D — I'(h) by

(a’(g)\p)(n)(kh st 7En) =vn _l_ 1\Ij(n+1)<g’ Elv s akn)a
In particular a(q)$2 = 0.

(2.9)

We will also use the notation a(g, A) for a(g), if convenient. Note that the adjoint
of a(q) is not densely defined, since formally

(a"(@)0) " (ky, ...

1 < _
) = 7 2 g = kW by K )

—n

(2.10)
where 6(q — k;) = 6(q — k)dxn for ¢ = (¢,\) and k = (k, \'). So, becuase of the
presence of deltas (which are not square integrable) the r.h.s. is not in the Hilbert
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space I'(h) if it is non-zero. Let us now justify (2.10): For &, ¥ € D we have:

="V +1/d3"@(”“)(g,gl, R )T (k)

=2 Vi / kg @ (kg by, k)3 — ko)W Ry, k)
n=0
= SV [ @I T b )00 BV )
=1

= \/ﬁ/di’)"’g@(”')(@;,gg, K= KT (K, LK)
=1

n'=1

Clearly, a*(q) is well defined as a quadratic form on D x D. Moreover, expressions

alg) = / Pal@g(@), a'(g) = / Poa(@g(e), geSE),  (212)

defined first as weak integrals, give rise to well-defined operators on D which can
be extended to I'g,(h). On this domain they act consistently with (2.9)):

(a(g)®) ™ (ky, ... k,) = Vn+1 / Pag(q) V" (g, ky, ... k), (2.13)

* n 1 n—
(a*(9)®) " (ky, . k) = %Zg(a)@( Dk key kg oo k). (214)
/=1

(In this sense a(g),a*(q) are operator valued distributions). These expressions

can be used to define a(g),a*(g) for g € L?(R*) and note that by (2.12) we have
a(g)® = a*(g) on I'su(h). Since these operators leave 'z, (h) invariant, one can
compute on this domain:

[a(f),a"(9)] = (f, 9)1 (2.15)

for f,g € L*(R*). Formally, this follows from [a(p, \), a*(q, )] = §(p — q)dxx, but
this computational rule does not make much sense without smearing (not even as
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quadratic forms). Thus let us give a formal proof of (2.15)):
(a()a*(9)®) D (ky, .. k) = Vi + 1/dsgf(g)(a*(g)‘lf)("ﬂ)(g k..o k)
:/d@?(g)g(g)\lf (ky,.. .k +Z/d3qf (Q7E1’"'7E£—1?E€+17"'7En)‘

The sum on the r.h.s. above is cancelled by

(@ (9)a())0) ks, k) = % Z 9(k)(@())O) " D key ke K, k)

= Zg k( /d3Qf )‘Ij(n)<gakl7'“7&5—17&6-{-17"'7&77,)7

which concludes the proof of (2.15)).
With the above definitions, the transverse electromagnetic potential and elec-
tric field, given by:

Al(z) = 273)3 Z / 2w1(k ek, \) + e a* (k, \)),(2.16)

L 3 ’Lkm lecx *
E (z) = i Z/d ,/ a(k,\) — e *a*(k, ). (2.17)

can be understood as operator-valued distributions. Indeed, for f,g € S(R?) we
have as weak integrals

ALf) = / oA, (2

A= 12/

Bulg) = [ #sBu(w)g
— Z/d3

A=1,2

k) (F(=k)(alk, \) + f(k)a*(k, \), (2.18)

e)\ Ja(k,\) — g(k)a*(k,\)). (2.19)

By our earlier considerations we know that A, (f) and E, (g) extend to operators
on Fﬁn(h)

Consider a unitary operator u on h. Then, its 'second quantization’ is the
following operator on the Fock space:

D(u)lpomg =u® - @u, (2.20)
[(u)2 = €. (2.21)
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where '™ () is the n-particle subspace. We have the useful relations:
L(uw)a™(h)T'(w)* = a*(uh), T(u)a(h)T'(uw)* = a(uh). (2.22)

Let us show the latter formula in the special case where u = u(k) is a multiplication
operator. We set U,(ky,...,k,) = u(k,)...u(k,) and compute

)y iy

(C(w)a(h)T (@) W) (ky, ... k) = Un(ky, . k) (@)D () 0) W (ky, o k)

=U,(ky,...,k,)Vn+ 1/dgﬁﬁ(ﬁ)(F(u)*\I/)(”+l)(E,El, k)

—=) = ) —=n

= Upn(ky, ..., k,)Vn + 1 / Eh(E)T g1 (b Ky, k) (O (ke Ky, k)
VAT [ ERRERE b kK = ) D))
(2.23)

Consider a self-adjoint operator b on h with domain D,. Then, its ’second
quantization’ is the following operator on the Fock space:

()| reo @y = Z 1®- ®1, (2.24)
dr(bh)Q =0, (2.25)

whose domain of essential self—adjointnessﬂ is I'n(Dp). (In the definition above b
is on the i-th tensor factor in each term in the sum). Suppose that b = b(k) is a
multiplication operator in momentum space on h = L? (Rg). Then as an equality
of quadratic forms on D x D we have

dI'(b) = /d?’gb( (q)a(q) Z /d3qb q,\)a*(q, N)a(g, N). (2.26)

A€1,2

Indeed, let us compute for ¥, ® € D: (POSSIBLE EXERCISE IN CLASS)

[ @@ > [P UT@T b)) k)

/d3gb(g)(\11,a*(g)a(q)<l>> = /d3gb(g)(a(g)\ll,a(g)<1>>

/dS_ b(ﬂ) Z(n + 1) /‘d?mkﬁ(n—H) (ﬂ> El? s >En)(1)(n+l) (27 Ela e 7&71)
n=0

NE

n+1
n T (n+1) n
/d3( +1)E Z v (EU Tt 7E£7 t 7En+1)b<E€)qD( —H)(El? cee 7E€7 s 7kn+1)7
=1

S
I
o

(2.27)

5See Subsection
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and it is easy to see that the last expression is (U, dI'(b)®).
Finally, suppose that u(t) = e¥*. Then

T(u(t)) = e, (2.28)

where dI'(b) is the unique self-adjoint extension of dI'(b). (See e.g. Homework
Sheet 3 of my AQFT lectures).

Example: Time evolution of the free electric field. The Hamiltonian which gov-
erns the time evolution of the free electromagnetic field is given by

H, = / Pao(g)a’(@alg) = dATW), w(g) =g (2.20)

Moreover, we have for g € S(R?) real-valued

E(g) = / PrE, (x)g(x)

_ Z/cf" i/ e (900 Rhalk, ) — 3005, )

w(k)

= a(g) +a*(g), where g(k, \) := 5

ex(k)ig(k). (2.30)
The time-evolved, smeared electric field is given by
Ei(t,g) = B ()™ = TR, (g)e T
= T(e™)(a(g) +a”(@)T(e™™) = a(e™g) +a"(¢™7), (2.31)

where we made use of (2.28) and ([2.22]).

We define the non-smeared time evolved free electric field as the operator valued
distribution:

E, (t iIZ' 2 3/2 Z /dS I 7uu (k)t+ika (k,)\) . eiw(k)tfikza*(k’)\)).
7T

(2.32)
With E| (t,g) given by (2.31]), we have

E (t,g) = /d3x E (t,x)g(x). (2.33)

Of course analogous facts hold for A, and B=V x A,.

2.2 Self-adjointness: basic concepts

A reference for this subsection is Chapter VIII of [4].

Consider an unbounded operator A on a dense domain D(A) C H. Define the
graph of A (denoted Gr(A)) as the set of pairs (¢, Ap), ¢ € D(A). This is a subset
of H x H which is a Hilbert space with the product:

((p1,91), (02, 92)) = (p1,p2) + (1, 9a). (2.34)
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1. We say that (A, D(A)) is a closed operator if Gr(A) is closed.
2. We say that A; is an extension of A if Gr(A;) D Gr(A).

3. We say that A is closable if it has a closed extension. The smallest closed
extension is called the closure A.

4. If A is closable, then Gr(A) = Gr(A).

Define D(A*) as the set of all ¢ € H, for which there exists n € H s.t.

(A, o) = (1, n) for all Y € D(A). (2.35)

For such ¢ € D(A*) we define A*p = 7. Fact: (A, D(A)) is closable if and only if
D(A*) is dense in which case A = A**.

1. We say that (A4, D(A)) is self-adjoint if A = A* and D(A) = D(A").
Fact: Self-adjointness is equivalent to (A +i)D(A) = H.

2. Let (A, D(A)) be a self-adjoint operator. We define its spectrum o(A) as
the set of all A € C s.t. (A — A) does not have a bounded inverse. We have
o(A) CR. If 0(A) C [0,00), we say that A is positive. This is equivalent to
(1, Agp) > 0 for all o € D(A).

3. We say that (A, D(A)) is symmetric if D(A) C D(A*) and Ay = A*) for
€ D(A).

Fact : Any symmetric operator is closable.

4. We say that symmetric A is essentially self adjoint if A is self-adjoint. In this
case D(A) is called the core of A. (We stress that D(A) is usually smaller

than D(A)).

Fact 1: If A is essentially self-adjoint then it has exactly one self-adjoint
extension.

Fact 2: Essential self-adjointness is equivalent to (A +i)D(A) being dense.

2.3 Measure theory: basic concepts and results

The theory of self-adjoint operators relies heavily on measure theory. Here we
recall several basic concepts and facts which will be useful in the remaining part
of this section. Proofs can be found in the first two chapters of [6].

1. Let X be a topological space (a set with topology). A family M of subsets
of X is a o-algebra in X if it has the following properties:

e X e M,

e Ae M= A°e M,

e A,eM,neN, = A=) A, e M.
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If M is a o-algebra in X then X is called a measurable space and elements
of M are called measurable sets.

2. Let X be a measure space and Y a topological space. Thenamap f: X — Y
is called measurable if for any open V' C Y the inverse image f~'(V) is a
measurable set.

3. A (positive) measure is a function g : M — [0,00] s.t. for any countable
family of disjoint sets A; € M we have

u(U A;) = Z p(Ay). (2.36)

Also, we assume that p(A) < oo for at least one A € M. Moreover, we say
that a measure space is a measurable space whose g-algebra of measurable
sets carries a positive measure.

4. We denote by LP(X,pu), 1 < p < oo the space of measurable functions

f: X —=Cst.
£, = ( [ 1@t ) < . (2.3

We denote by LP(X, u) the space of equivalence classes of functions from
LP(X, u) which are equal almost everywhere w.r.t. u. Space LP(X,pu) is a
Banach space with the norm (2.37) (Riesz-Fisher theorem).

Theorem 2.1. (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff
spacﬂ and C.(X) the space of continuous compactly supported functions on X.
Let A : C.(X) — C be a positive linear functionall| Then there exists a o-algebra
M in X and a positive measure on M s.t.

— /Xf(:c)d,u(:c) for any f € C.(X). (2.38)

Theorem 2.2. (Dominated convergence). Let f, be a sequence of complex, mea-
surable functions on X s.t.

f(z) = lim f,(x) (2.39)

n—oo

exists for any x. If there exists a function g € LY(X, ) s.t.

|fn(x)] < g(x) for alln e N,z € X, (2.40)
then f € LY(X,u). Moreover,

lim fn / f(z)dp(z (2.41)

n—oo

bi.e. a topological space s.t. any two distinct points have disjoint neighbourhoods and any

point has a compact neighbourhood.
Ti.e. if f takes values in [0, 00| then A(f) > 0.
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Theorem 2.3. (Monotone convergence). Let f, be a sequence of measurable
functions and suppose that

(a) 0 < fi(x) < folz) <+ < oo forallz € X.
(b) fu(x) = f(x) for allxz € X.

Then f is measurable and

lim fn /f Ydp(x). (2.42)

n—o0

2.4 Self-adjointness: basic results

Now we use the above results in measure theory to study self-adjointness questions.
A reference for this subsection is [4}/5].

Example: [4, Chapter VIII, Proposition 2] Let f be a real valued, measurable,
finite a.e. function on a measure space (X, p). Then the corresponding multi-
plication operator Ty on L*(X, u) (acting by ¢(z) — f(z)(z)) defined on the
domain

D(Ty) = {6 € LX) [ dute) @) < oc) (243

is self-adjoint. To prove this, we compute D((T)*): Suppose that ¢ € D((T})*)
and let x, be the characteristic function of {|f(x)] < n}. We denote the cor-
responding multiplication operator by y,(z). Then making use of the monotone
convergence (or dominated convergence) theorem in the first step:

[T ol = T [a(e)(Ty) ¥
= Tim sup |(6, xu(2)(T))"0)

T el=t

= lim sup [(Trxn(2)p, )|

T lgll=1

= Jmsup ({6, (@) f@))] = i (o (@)f @0l (244

0 ¢=1

From the last equality and the monotone convergence theorem we conclude that
f(x)¥(x) is square integrable and therefore D((T})*) = D(T}).

It turns out that any self-adjoint operator can be represented as a multiplication
operator on some measure space:

Theorem 2.4. (Spectral theorem, multiplication operator variant). Let A be a
self-adjoint operator on a separable Hilbert space H with domain D(A). Then there
is a measure space (X, u) with p a finite measure, a unitary operator U : H —
L3(X,du) and a real-valued, measurable function f on X which is finite almost
everywhere, s.t.
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(a) &€ D(A) iff f(-)UL)(+) € L*(X, dp).
(b) If & € UID(A)], then (UAU*¢)(x) = f(x)o(x).

There is another variant of the spectral theorem, using the concept of spectral
measures:

Definition 2.5. Let X be a measurable space with a o-algebra M. We say that
M> A — E(A) € B(H) is a spectral measure if:

e Fach E(A) is an orthogonal projection.
e E(0)=0, BE(X)=1.
o IfA= Ugil A, with A, N A, =0 for n # m, then

E(A) = s— lim 3 E(A,). (2.45)

N—o0
n=1

[ ] E(Al)E(AQ) == E(Al N Ag)

For any ¢ € H the expression A — (¢, E(A)y) is a positive measure and the
formula

. Av) = [ 2. dB@) (2.46)
defines a self-adjoint operator A on the domain
D) = (v e U] [ laP(w,dB (@) < ). (2.47)

It turns out that also the converse is true:

Theorem 2.6. (Spectral theorem, spectral measure variant). For any self-adjoint
operator (A, D(A)) there ezists a spectral measure E on (a o-algebra of measurable
sets) on R s.t.

A= /U(A) zdE(x), (2.48)

where the last relation means that , hold.

Idea of proof: Let A be bounded, for simplicity. Consider a map g — (¥, g(A)y)
defined first for polynomials and then extended, using the Stone-Weierstrass theo-
rem to continuous functions. Then we get by the Riesz-Markov-Kakutani theorem
a measure space (Xy, fy) S.t.

(W, g(A)) = /X 9()dpy () (2.49)

and we can extend this expression to measurable functions ¢g. In particular, we set
E(A) := xa(A) and it is easy to check that this gives a spectral measure. [J

Spectral theorem (multiplication operator form) has the following corollary which
is useful when dealing with tensor products:
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Corollary 2.7. [5, Theorem VIIL.33] Let Ay be a self-adjoint operator on Hj,
and let P(xq,...,zN) be a polynomial with real coefficients of degree ny, in the k-th
variable and suppose that Dy, is the domain of essential self-adjointness of for A™.
Then P(Ay,...Ay) is essentially self-adjoint on

D¢ =@y, D§. (2.50)

(The polynomial involves tensor products of different operators. For example, if
p(iL'l, T2, 333) = $1l’§+l‘3 then P(Al, AQ, Ag) = A1 ®Ag®1—|—1® 1®A3) MOT’QO’UGT’,
we have the spectral mapping property:

o(P(Ay,... An)) = P(o(Ay), ... o(A,). (2.51)

Example: Let w(k) = |k| be a multiplication operator on h = L?(R?) defined on
the domain

D) = (v € PE)| [ PElo®u® <o} (252

We know from the example above, that (w, D(w)) is self-adjoint. In fact we can
also show this by checking that

(wEi)D(w) =bh. (2.53)

For this purpose pick an arbitrary ¢ € b and note that k — (w(k) +4)" (k) is
an element of D(w). Therefore we can write

Y= (wxi)(wxi) e (wxi)D(W). (2.54)

Example: Now let H; := dI'(w) and D(Hy) = T'gn(D(w)). Let us show that
(H, D(Hy)) is an essentially self-adjoint operator: Let dI™(w) =w ® - ® 1 +
-4+ 1®---®w be the restriction of dI'(w) to I'™(D(w)), where

™ (D(w)) = S,(D(w) ® - - ® D(w)), (2.55)

and S, is the symmetrization operator. Denote be ary (w) the corresponding
operator on the unsymmetrized tensor product space:

I (D(w)) =D(w)®--- @ D(w). (2.56)

By Corollary , ariy (w) is essentially self-adjoint on Fq(f;)(D(w)) which means
that the sets

X, == (dI'"(w) £ )" (D(w)) (2.57)
(n)

are dense in I'ys (). Since ariy (w) commutes with the projection S,, on the sym-
metric subspace, we have (by decomposing each X, into a direct sum of orthogonal
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subspaces S, X, ®(1—5,)X,, which must be then separately dense in SnR(Z) (D(w))
and (1 — Sn)ng)(D(w)), respectively) that the sets

(AT (w) £ )T (D(w)) (2.58)
are dense in T'™(h). Now we want to show from that
(dI'(w) i) Fn (D (w)) (2.59)

is dense: Let Wg, = > U™ be an arbitrary element of I'g,(D(w)) i.e. ¥

are arbitrary elements of '™ (D(w)) and Ny, is an arbitrary finite subset of N. We
have

(AP (w) £ i)Wy = Y (AT (b) £8) ™. (2.60)

n€ENgn

By (2.58)) we can approximate any element of I's,(h) with such vectors, which
concludes the proof of essential self-adjointness of (Hy, D(Hy)).

Lemma 2.8. The operator Hy = % ®1+1® Hy is essentially self-adjoint on
D(p®) ® D(Hy). Its closure Hy is a positive self-adjoint operator on some domain
D(H,).

Proof. Essential self-adjointness follows from Lemma and from essential self-
adjointness of p?, dI'(w). Positivity of p? and w is obvious (by checking positivity
of the matrix elements (¢, - 1)). Then positivity of dI'(w) and H, follows from the
spectral mapping property from Corollary 2.7, O

So we have Hj i.e. the non-interacting part of the Pauli-Fierz Hamiltonian
(with one electronED, under control. The full Hamiltonian has the form
e e? 9
H:H0+H1, H1 = _EPAJ—#P(Q)—’_%AJ—,‘P(Q) . <261)

To obtain essential self-adjointness of H we will follow a strategy which can be
called perturbation theory of linear operators. It consists in decomposing a self-
adjoint operator A into A = Ay + A, where Aq is ‘simple’ and A; is ‘small’. More
precisely:

Definition 2.9. Let Ay and A; be densely defined linear operators on a Hilbert
space H. Suppose that:

(a) D(A1) D D(Ay)
(b) For some a,b € R and all ¢ € D(Ayp)
[A10]] < al[Aog]| + bll¢]l- (2.62)

Then A is said to be Ag-bounded. The infimum of such a is called the relative
bound of Ay w.r.t. Ag.

8From now on we consider only the Pauli-Fierz Hamiltonian with one electron
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Theorem 2.10. (Kato-Rellich). Let Ay be self-adjoint, Ay symmetric and Ag-
bounded with a relative bound a < 1. Then Ay + Ay is self-adjoint on D(Ag) and
essentially self-adjoint on any core of Ag. Further, if Ag is bounded below by M
then Ag + Ay is bounded below by M — max{b/(1 — a),a|M| + b}.

Proof. We follow [5]. We will show that (Ay + A; £ iu)D(Ay) = H for some
o > 0, which implies self-adjointness. For ¢ € D(Ag) we have

1(Ao +ip)ol* = [[Aos||* + 1?[| 9] (2.63)
Letting ¢ = (Ao + iu) "4, where ¢ € H is arbitrary, we have
0017 = [ Ao(Ao + i) 11”4 12| (Ao + i) 10|, (2.64)

We conclude from this that [|[Ag(Ag + i)™t < 1 and ||(Ag + ip) 7Y < ph
Therefore, applying (2.62) with ¢ = (Ag + iu) "¢, we get

141 (Ao + i)~ [l < afl Ao (Ao + i) || + bl (Ao + ip) "l < (a+ b/pa)[0]](2.65)

Hence, for u large, C' := A;(Ag + iu)~! has norm less than one, since a < 1.
This implies that —1 ¢ o(C), so Ran(I + C') = H. (Since (I + C)~! exists, I
can write ¢ = (I + C)(I + C)~ " for any ¢ € H). Since Ay is self-adjoint, also
Ran(Ag + i) = H. So the equation

I+ C)Ag+ip)p = (Ao + A1 +ip)¢, for ¢ € D(Ay) (2.66)

implies that Ran(Ao + A; + iu) = H. The proof that Ran(Ag + Ay —ip) = H is
the same.
Let Dy be a core of Ag. Then, we claim that by the bound (2.62)),

D((Ag + ADDy) > D(AgDg) = D(Ag) = D(Ay + Ay). (2.67)

Let us prove the inclusion above: Suppose @ € D(Ag|Dy). This means that
(1, Ao| Do) € Gr(Ao|Dy) = Gr(Ap|Dyp). Hence, there is a sequence 1, € Dy s.t.

(Y, Agn) — (¥, Ag| Dotb), that is
U =, Agn, — Ag| Dot (2.68)

We will show that ¢ S D((Ao + A1)|D0), ie. (77/), (A() + A1)|D0@Z)) c Gl"((Ao + A1)|D0) =
Gr((Ao + A1)| Do) i.e. that there is a sequence ¢!, € Dy s.t. (¢, (Ao+ A1)Y),) con-
verges. (Then the limit can be called (Ag + A1)|Dgp). We check that the sequence

from (2.68)), i.e. ¥}, = ¥, does the job. Namely, we verify the Cauchy criterion:

(Ao + AD) (Wny = Yl < [[Ao(n, — o) |+ [[ A1 (Y0, — ¥, )|
< (1 +a)[Ao(Wny — o)l + bl () — Una)|| = O,
(2.69)

where in the last step we used (2.68). This gives 1 € D((Ay + A1)[Dy). (We skip
the proof of semi-boundedness). [J

37



The Kato-Relich theorem gives rather concrete information about domains, but
the estimate is somewhat difficult to verify in examples. We state below a
different result, the KLMN theorem, where the relevant bound is much easier to
check, but the information about the domains is less explicit. For this we need the
concept of quadratic forms:

Definition 2.11. A quadratic form is a map Q(q) x Q(q) — C, (where Q(q) is a
dense linear subset of H ), which is antilinear in the first argument and linear in
the second argument.

1. If q(¢,v) = q(v, ¢), we say that the form is symmetric.
2. If q(¢,0) > 0 for ¢ € Q(q) we say that the form is positive.

3. If (¢, ¢) > —M]||9||* for some M > 0 and all ¢ € Q(q) we say that the form
15 semibounded.

4. If q is semibounded and Q(q) is complete under the norm
[ll1 = /a0, ©) + (M + D[[G[, we say that g is closed}

5. If there is a self adjoint operator (A, D(A)), s.t.

a(o,¥) = (¢, AY),  Q(q) = D(JA]'?), (2.70)

then we say that q is the quadratic form of this self-adjoint operator. (Strictly
speaking, we mean q(¢,0) = (|A|"2¢,sgn(A)|A|V%)), where x — sgn(x) is
the sign function). If this form is semibounded, then it is closed.

6. Given a self-adjoint operator (A, D(A)) as above, we write Q(A) := Q(q) =
D(JA]'?).

The fundamental relation between quadratic forms and self-adjoint operators
is given by the following theorem:

Theorem 2.12. (4], Theorem VIII.15). Let q be a closed, semibounded quadratic
form. Then q is the quadratic form of a unique self-adjoint operator.

Theorem 2.13. (KLMN, [5], Theorem X.17). Let Ay be a positive self-adjoint
operator. Let 5(1, @) be a symmetric quadratic form defined for all, ¢ € Q(Ag) =
D(A(l)/Q) s.t. for some constants 0 <a <1,0<b< o0

|B(h, ¥)| < alep, Agt)) + b{ep, v) (2.71)

for all € Q(Ao). Then there exists a unique self-adjoint operator A with Q(A) =
Q(A()) s.1.

(, Ap) = (¥, Ao) + B(¢, 9) (2.72)
for all 1, ¢ € Q(A). Moreover, A is bounded from below by —b.

9This definition looks quite different than closedness of an operator A, given by closedness of
Gr(A). But the latter definition can be reformulated as completeness of D(A) under the norm

¥ = 9l + (1Al
38



Remark 2.14. To construct the quadratic form [ we will first write 5(¢, ¢) :=
(1, A1p) on some ‘nice’ domain and then extend to the domain required in the
theorem. (¢, A1¢) is easier to estimate than |A1¢|| = (¢, A2¢)Y/? appearing in the
Kato-Rellich theorem.

Proof. Define a form v(p,¢) = (@, Ag¥) + B(¢, ) on Q(Ag). By the bound
(2.71)) we have

Blw, p) > —alp, Aop) — b{p, ) (2.73)

and therefore

Ve, 9) = (1= a)(p, Aop) — bllpll® > —blloll?, (2.74)

since Ay is positive and 0 < a < 1. Thus 7 is bounded from below by —b. Moreover,

(1= a)(e, Aop) + leoll> < (e ) + (b+ 1)
= {p, Aop) + B, 0) + (b+ Dl

< (T+a){e, Aop) + 20+ Dllel®. (2.75)
This means that the norms || - [|11,4, and || - |41, are equivalent on Q(Ay).
Since Q(Ap) is closed under || - ||4+1,4,, it is closed under || - ||41,. Thus 7 is a

semibounded, closed quadratic form on Q(Ag) and the existence of A now follows

from Theorem 2.120 [

2.5 Self-adjointness of the Pauli-Fierz Hamiltonian

For concreteness we study the Pauli-Fierz Hamiltonian with one electron. We
recall the definition of the Pauli-Fierz Hamiltonian:

1
H=o-(pol-ediy(q) +1aH. (2.76)
We write
1
Hy=—@{@P’®1)+1® H 2.
0 2m(p® ) +1® Hy, (2.77)
e e 9
Hy=——p- ALp(q) + 5 —ALe(@) (2.78)

To apply the KLMN theorem we first have to know that H, is positive, self-
adjoint. This was checked in Lemma [2.8] Then we have to check that H; defines a

symmetric quadratic form on D(ﬁéﬂ) X D(Fé/ 2) s.t. for some constants 0 < a < 1,
O§b<ooandw€D(H(1)/2)

(0, Hih)| < a{w), How) + b(w, ). (2.79)

We check it in a series of lemmas:
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Lemma 2.15. Lett € D(Hf) = Tgn(D(w)) and h € L*(R?) s.t. w™Y2h € L*(R?).
Then

la(h)wo || < llw™"?hllz (v, Hp)'/2, (2.80)
la(R) || < llw™ 2Rz (0, Hpy)' /2 + [[Al|2]| - (2.81)

Proof. First, we recall
(a(h)) (ks k) = Vit / Cah(Qv" V(g by k). (2.82)
Now to prove we first compute for ¢ € I'g,(D(w)) = D(Hy):
la(h)y”

<> (n+1) / &k / dq,dq, |w () h(g, )0 (2)(g,)
n=0
—(n+1
xw (@) (g ks )2 (@) (g, K k)

: i(n Y / "k ( / &’q,d’q, |w1/2(q1)h(g1)w1/2(q2)ﬁ(g2)|2> )

1/2
—(n+1 n
- (/ @, dq, (@) (g ks )0 (g0 (g, ,@n>|2\)

< o 2RS4 1) / kP (g, ks k)P

n=0

= [lw™2hl5(, Hyt). (2.83)
Relation ([2.81]) now easily follows from the canonical commutation relations:

la(h)*bI1* = (&, a(h)a(h) ) = [|AIP[[Y]* + (&, a(h)*a(h)y) (2.84)
and the previous bound. [J

Now we write

AL o(q) = alfy) +a*(fy), (2.85)

where f,(k,\) = §(k)\/1/(2w(k))ex(k)e~™*4. Tt is also convenient to define f'(k) =
o(k)\/1/(2w(k)). It has to be kept in mind that ¢ is here an operator so @ is
an abuse of notation. In the proof of the next lemma we will first proceed as if ¢
was a number, and then explain why this is legitimate.

Lemma 2.16. For ¥, ® € L*(R?) ® ', (D(w)) we have
(U, Ay (q)*W) < 18]w™2 f/[3(¥, (1@ HYW) + 12] /|3 %> (2.86)

For ¥ € D(p?) @ T'gn(D(w))

(W, p0) + (0, AL (0 0). (2.87)

DN | —

(U, p- ALy(Q) )] <
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Proof. We obtain for ¥ € L*(R?) ® D(H}'?)

(T, (a(fy) +a"(f))*0) = K¥,a(f)al(f)¥) + (¥, a(fya" (f)¥)
(U, a"(f)a(f)0) + (¥, a" (fa" (f) V)]

< Ma(£)®lHla" (f) el + lla” (f) @l lla™ (£) ¥l
Hla(f) Ul a(f) ] + lla” (f) el lla(f;) Y]
< %(4lla(f§)‘1’!|2+4Ha*(f§)‘1f||2), (2.88)

where we made use of ab < $(a® + b?). Now, by Lemma [2.15] we have

la(f)l* < w231 (Hp) 20, (2.89)
la* (Dl < (o™ f o NCH) Y] + ) LI (2.90)
< 2l LN 2E N + LRI ), (2.91)

where in the last step we made use of (a + b)? < 2(a? 4 b*). Therefore

3
(U, AL (@*W) = Y (U, (alfy) +a"(f,)*P)
=1
< 6w LIS I P+ 4 (L5
=1 =1
< 18l 2SI () V2P + 12 15 (2.92)

Let us now make a clarification concerning the notation a(f,) (given that ¢ is an
operator): We defined the Hilbert space of the system as H = L2(R:()’p)) ® F, where
(p) reminds that we mean wave-functions in momentum representation. We have
the following standard isomorphisms:

H = L*(R},) ® F ~ L*(R},) ® F ~ L*(R{,; F), (2.93)

where the first equality is the Plancherel theorem and the last space contains
square-integrable functions of ¢’ with values in F. In this last representation we
have ¥ = {W, },crs and we can write, for example

(U, a"(fy)a(fy)V)a = /dSQ’ (T, a" (f)a(fy) Vo), (2.94)

10l = [ @ e (2.99)

Our computations in the first part of the proof above should be considered a
short-hand notation for this.
Finally, we note that by Cauchy-Schwarz:

(T p-ALp(@U)] = (¥, AL (@) V)] < [lp ¥ AL ()]

< Y )4 %(W,A@(q)Q\D% (2.96)

2
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which concludes the proof. [
Recall the definitions

1
Hy=—@eo)+10H 2.97
0 2m<p 02y )+ ® f ( )
e e )
H1 = —Ep . AL@(Q) —+ %AL@(Q) . (298)

Lemma 2.17. (a) For ¥ € D(p?) @ Tgn(D(w)) and |[w™2 f'||2, || /||2 < 0o we have:
(U, Hi0)| < a(e)(V, HoW) + b(e)(V¥, V), (2.99)

where a(e) — 0 as e — 0.

(b) The quadratic form (¥, ®) := (U, H,®), defined first on the domain specified
above, extends to D(H(l)/Q) X D(Féﬂ).

(c) For ¥ € D(ﬁé/z) we have

1B(0, W)| < a(e)(W, HyW¥) + b(e)(V, ). (2.100)

Remark 2.18. Properties (b) and (c) above are assumptions of the KLMN theo-
rem.

Proof. We first derive an auxiliary estimate for ¥, ® € D(p?) @ Fgn(D(w)).
Lemma [2.16] gives:

(¥, H,D)] c1(e)(W,p- AL (Q)P)] + ca(e) (T, AL 4(q)*®)|
1 (e) (U, pPU2(D, A} (q)* D)2

+ea(e)(W, AL g()* W) /2(@, ALy (g)*®)" 2
c1(e)(W, p2\11>1/2<<1>, Al#,(q)%b)l/2

+ h(e) (W, HpW) + [[W]1*) 2 (D, Hp®) + || ®[|*)"/?
< (e) (¥, Ho)' (@, Hy®) + [|®*)"*

+ cy(e) (W, HoW) + [[W[*)/2((®, Ho®) + ||®]|*)"/*

< ) (¥, HoW) + |92 (@, Ho®) + ||®]*)"?,  (2.101)

VARVAN

IN

where cj(e) — 0 for e — 0. - B B
Now suppose that W, ® € D(H,). This means that (¢, Ho®) € Gr(Hy) =
6 (

(®, Hy®) and similarly for ¥. In other words:

o, — &, Hyd, — Hyd, (2.102)
U, =V, Hyl, — HyU. (2.103)

We can define the quadratic form 8 on D(H,) x D(H,) by the formula
B(W, ) := lim (¥, H,®,). (2.104)

n—00
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We check that the limit existﬂ using the Cauchy criterion and the bound ([2.101):

|<\IJTL17H1(D711> - <\PN27H1(I)712>| < |<(\I/n1 - \Ijm)leCI)mH + |<\Ijn2’H1(¢)m - (I)nz)>|
(2.105)

It suffices to consider one of the two terms: By (2.101)), (2.102)), (2.103) we have

1/2
|<<\Ijn1 - \Ijnz)? qu)n1>| < 6/2/(6)(«\1]”1 - \Ian), HO(\Ijnl - qjﬂz)) + ||\Ijn1 - \Ijn2||2)
X (@, Ho®p) + [ @y, 2)* = 0. (2.106)

Now we check that the bound (2.101]) extends to D(Hy) x D(Hy): We have

|5(‘1’,‘1>)| - hm |<\IjnaH1(I)n>‘
< lim ey(e) (W, HoWn) + [[Wal|*) 2 (@, Ho®y) + [ €4 ]%)"/
= &)U, Ho®) + [ W*)2((, Ho®) + [|@]*)"/*. (2.107)

Finally, we extend ( to U, ® € D(Hl/z): Let ¥, := x(Hy < n)¥, &, =
x(Hy < n)®. We set

B(T, @) = lim B(T,,D,). (2.108)

n—o0

We check the Cauchy criterion and make use of the bound (2.107). For ny > n4
|B(\Ijn1’ (I)Tu) - /B(anzv (I)n2)| < |6(“I’n2 - \Ijnw ®n1)’ + |/8(\Ijn27 (I)nz - q)n1)|(2109)

It suffices to consider one of these terms. We have by (|2.107))

= 1/2
|B<\Iln2 - \Ijmv (I)n1)| < Cl2l<€)(<(\1[n2 - ‘Ijm)vHO(\I[nz - \I]nl)> + ||\IITL2 - \IlmHQ) /
X((Pny, Ho®n,) + ||, [1)172. (2.110)

We note that ¥,, — ¥, = x(n; < Hy < ny)¥. Now we have by the spectral
theorem:

(Uy — 0 ) (T, — T,)) = / Ax(m < A < no) (¥, dE(\)D)

< /Ax(nl < MW, dEOV)) — 02.111)

where dE is the spectral measure of H, and in the last step we used dominated
convergence: For any fixed \

lim Ax(n1 <) =0. (2.112)

nip—o0

190ne should also check that the resulting expression is a quadratic form and that it does not
depend on the choice of the approximating sequences. We leave this part to the reader.
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Moreover, Ax(n; < A) < A and, since dE is supported on the spectrum of Hy,
which is a subset of R, and ¥ € D(H,)

—1/2 . —=1/2

/M\I/,dE()\)\If) = (U, HyV) = (H,)"V, H)/ ¥) < o0, (2.113)

By similar and simpler arguments we complete verification of the Cauchy criterion.
Finally we extend the bound ({2.107) to D(ﬁé/Q) X D(ﬁé/Q). We have

BE, @) = lim |B(W,, P,)
< lim (o) ((Hy "W, x(Ho < n)Hy W) + [[x(Ho < n)w|?)?
—1/2 — —1/2 —
X ((Hy @, x(Ho < n)Hy*®) + ||x(Ho < n)®|)/2

< G)((U, HoW) + [[W]1*) (@, Ho®) + [|@]*)12, (2.114)

where we made use of the spectral theorem and the fact that ¥, ® € D(ﬁém). O

From Lemma [2.17] Lemma [2.8 and the KLMN theorem we obtain:

Theorem 2.19. For |e| > 0 sufficiently small and ||w__%f/\|27 |f']l2 < oo there
exists a unique self-adjoint operator H with Q(H) = Q(Hg) s.t.

<(I)7 H\II> = <(I)7ﬁ0\1j> + B(q)u \Ij)7 f07” CI), Ve Q(EO) (2115)
and B(®, V) extends the quadratic form (®, HyV) as described in Lemma [2.17,

This theorem gives self-adjointness of the Pauli-Fierz Hamiltonian, but the
information about domains is somewhat indirect. To improve on that, one verifies
by more cumbersome analysis (we skip the details) that

IH ] < e(e)llp- ALe(@) ¥+ ca(e)l|ALg(a)"¥],
< ale)[HoV[| + cof| ¥ (2.116)

where ¢;(e) — 0 as e — 0. This gives:

Theorem 2.20. For |e| > 0 sufficiently small and ™2 12, [ £/ll2 < oo the
operator H = Hy + H, is self-adjoint on D(H,).

3 Elements of scattering theory

In this section we will give an overview of scattering theory for Pauli-Fierz Hamil-
tonians. In contrast to the previous section, we will not pay much attention to
‘domain questions’. Nevertheless, ideas of some proofs will be given.
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3.1 Total momentum operators and fiber Hamiltonians

The following lemma expresses translation-invariance of the Pauli-Fierz Hamilto-
nians.

Lemma 3.1. The total momentum operators
P=p1+1® P, Pr=dl'(k), (3.1)
commute (strongly) with the Pauli-Fierz Hamiltonian.

Proof. We give only the computational part of the proof, which implies vanishing
of a commutator on some ‘nice’ domain. For methods of improving this weak
commutativity to strong commutativity (i.e. commutation of spectral measures)
interested reader may consult [7].

Recall that H = Hy + Hy, where

1
Hy = %(pQ ®1)+1®d'(w), (3.2)
e e? 5
Hy=——p- A ,(q)+ %AJ_,@<Q) : (3.3)

We have i[dI'(k),dI'(w)] = dI'([k,w]) = 0. So it suffices to show that
[P, ALe(q)] = 0. (3.4)

Clearly, this follows from e”VA, ,(q)e™¥ = A, ,(q), which in turn is equivalent
to

VAL (@)Y = AL (g)e (35)

We recall that for f,(k, \) = B(k)\/1/(2w(k))ex(k)e~iks
Ale(g) = a(fy) +a fq) (3.6)
- / (k:)(e““'qa(k,)\)+e*"k'qa*(k,)\)). (3.7)

A=1,2

Clearly, e?Yqge~"Y = q + y. Therefore

= Z /dgk 40) ex(k)(e™e*va(k,\) + e * e *Ya* (k,N)). (3.8)

Now consider

e TIVAL (@)Y = e BV (a(fy) + a* (f,)e MY = T(e* ) (a(fy) + a* (fo))T (")
= ale _lkqfq)“‘@ (e qufq) (3.9)

which proves (3.5), O
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Thus we have a family of four commuting self-adjoint operators (H, P!, P?, P3)
and we draw their joint spectrum. For small values of the coupling constant e and
for H < 3, for some constant ¥ > inf o(H) its shape is, schematically depicted
on the figure. Namely, the lower boundary of the spectrum £ — E(&) is a small
perturbation of the non-interacting dispersion relation ¢ — £2/(2m) [8]. The
restriction to energies less that Y is needed to ensure that the electron moves slower
than photons. For higher energies other interesting effects arrise, e.g. Cherenkov
radiation, which are outside the scope of these notes.

For a more detailed discussion of this spectrum it is convenient to introduce
the fiber Hamiltonians:

Proposition 3.2. The Pauli-Fierz Hamiltonian
1
H=_—(p—eA *+H 3.10
(p— eAL (@) + Hy (310
has the following direct integral representation

D
H=v' [ $¢HEOV. HO= 5~ P-eAdl P+ Hy (1)

where the ‘fiber Hamiltonians’ H (&) are self-adjoint operators on (a domain in) F,
A, = A1 ,(0) and the unitary

Vo <L2(R§q)) ®F ~ LZ(R?@;}")) — <L2(R?@;]—“) ~ /@ d3§F(h)> (3.12)

is given by V = Fe''r4 where F is the Fourier transform in variables (£,q), that
18

(FF)(€) = (2m) %2 / e i€ f(g)dq. (3.13)
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Proof. As a preliminary computation, let us first consider a general expression
{G(—iV,) }4ers, which is understood as an operator on L2(]R“E’q); F). Then, by the
properties of the Fourier transform we have

FIG(-19, b F* = (0w = [ 660 (3.14)
As a second preliminary computation, we write
¢iPrape=iPre = oPra(—iv e iPre

ein'qe’in'q(—i)QPf + ein'qe’in’q(—di) =p— P;. (3.15)

As a third preliminary computation we obtain from that

¢PraAL (q)e P = Pr(g* (e f) 4+ a(e= ™))t

= a’(f) +al(f) = AL,(0), (3.16)
where we decomposed f, = e~ f. From the three observations above we obtain

Vip—AL,(@)V" = Flp—Pr— AL )F" ={({ — Py — ALy)}eers
(&)
— / dP¢ (& — Pr— AL ), (3.17)

and analogous result holds for (p — A} ,(q))?. Also, since [Hy, Py} =0,

®
VHV® = F({Hybyew)F* = {Hyheew = [ déH, (3.15)

which concludes the proof. [J

3.2 Conventional scattering theory and its limitations

We denoted the lower boundary of the joint spectrum of the energy-momentum
operators by £ — E(£). Since the lower boundary of the spectrum corresponds
to configurations of the system of lowest possible energy, this quantity is in fact
the dispersion relation (energy-momentum relation) of the ‘physical massive par-
ticlelﬂ’ (as opposed to the ‘bare massive-particle’ whose dispersion relation is
& — £2/(2m)). With the help of the fiber Hamiltonians we can write

E(€) = inf o(H(€)). (3.19)

A decisive question for scattering theory is whether F() is an eigenvalue or not
(for sufficiently many &).

If this is the case, then, denoting by ¢ the corresponding normalized eigen-
vector of H (&), we can form wave-packets

D
by =V* / &€ g(€)ve € IARY) © F, (3.20)

1T deliberately avoid the term ‘electron’ here as it suggests non-zero electric charge. See below.
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for square-integrable g supported in F(§) < X. Such vectors (in the defining
Hilbert space of the model) describe a propagating massive particle in empty space
(that is just massive particle and no photons). It is easy to see that it satisfies

e_itHZZJg _ C_itE(P)'QDg, (321)

where E(P) is the function £ — E(&) of the momentum operator. We call the
subspace of all such vectors Hs, C x(H < X)H.

Unfortunately, Hy, = {0} for electrically charged particles This fact is known
as the infraparticle problem, and was shown in non-relativistic QED in [10].To
be more precise, recall that the interaction

AJ-M(CI) = a"(fy) +alfy) (3.22)

involves f,(k,\) = @(k)\/1/(2w(k))ex(k)e " and ¢ has the interpretation of the
charge distribution of the particle. So the total charge of the particle is given by

Q= [ dapla) = r750) (3.23)

and ©(0) # 0 implies that E(&) is not an eigenvalue whenever VE(&) # 0 [10].
This result has a partial converse, namely if (k) ~ |k|° near zero for some § > 0
one can show that Hy, # {0} [§]. This is the situation in which conventional
scattering theory, described below, can be applied. It covers electrically neutral
particles, as for example a small dipole, hydrogen atom in its ground state etc. For
charged particles more complicated infraparticle scattering theory is available [9]
but will not be discussed here.

To construct states describing incoming and outgoing configurations of the
massive particle and photons, we need the concept of asymptotic creation and
annihilation operators:

Lemma 3.3. [10] For ¢ € x(H < X)H the following limits exist

agf)(h)w = lim e ) (e~ k) itHy), (3.24)

t—o0

and are called the asymptotic (outgoing) creation and annihilation operators. They
satisfy

[ay(h1), aX(he)] = (h1, ha), (3.25)
@ (i =0, (326

for vectors vy € Hs,. The incoming creation and anninhilation operators a(f)(h)
are defined analogously by taking the limit t — oo in

Given this, scattering states describing one massive particle and n photons are
defined as follows

W, =a’(h) ... a%(hy)t,. (3.27)
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Due to properties (3.25)), (3.26]), the scalar product of two such vectors is analogous
as for the corresponding vectors from F & Hsgp:

(UF U ) = G (U, W) > (B hoy) - (il By (3.28)

O'ESn

therefore they can be interpreted as asymptotic configurations of independent par-
ticles.

Of course incoming scattering states W~ are defined analogously and one can de-
fine scattering matrix elements (¥*, ¥'~), and transition probabilities [(U+, W'~} |?
of physical processes.

The problem of asymptotic completeness is the question if scattering states
of the form (3.27) span the entire subspace y(H < X)H. In spite of some
progress [11-15], this problem is largely open to date, especially for models with
massless photons (as the one we study). Important fact for the study of asymp-
totic completeness is the existence of a closed-form formula for the Wave—operato@,
whose range is spanned by the scattering states . Let us recall the construc-
tion [17].

Define the extended Fock space I'*(h) = I'(h) @ I'(h). Let U : T'(h d h) —
['(h) ® I'(h) be the canonical identification given by

Ua*(h) = (a*(h) @ 1+ 1@ a* (W)U, UQ=0Q®Q. (3.29)

Let ¢p, ¢ be operators on b and define ¢ : h — h®@bh which acts by ch = (coh, csoh).
Then

['(c) := UT(c) (3.30)
is a mapping I'(h) — I'**(h). Note that I'(c) : I'(h) — I'(h & b), acting by
F(C)|F(">(h) =c®---Rc, (331)

is a generalization of the map introduced before in the context of second quanti-
zation.
Now define the extended Hilbert space

H*X=HT(h) = LZ(R3) @ I'(h) @ ['(h) (3.32)
and the extended Hamiltonian

H*=H®1+1® H;. (3.33)

We define a tentative wave operator W+ o — H,

W= lim ¢ D(1,1) e ™ (H* < %), (3.34)
t—00
12Recall that in quantum mechanics H = —A + V(z), Hy = —A and the wave-operator is
W+ — hmt%oo ethe—iHot
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where I'(1,1)* is naturally extended from I'**(h) to H. It is easy to see that the

existence of the limit follows from Lemma (3.3, The actual wave operator is given
by

W =W* | (Hyp ®T(h)) (3.35)

and it is easy to see that vectors from the range of this operator are scattering
states of the form (3.27).

In the language of the wave operators, the problem of asymptotic completeness
amounts to invertibility of W*. But it is easy to find a candidate for this inverse,
namely

ex ~

M = lim e T(coy, c14)e "M x(H < %), (3.36)

t—o00
where ¢p; + ¢ = 1 and apart from this can be arbitrarylﬂ. Then, if M exists
and maps into the domain of W, we can write for any ¢ € Ran x(H < X)

W+M+Q/} — tliglo eitwa(L 1>*671‘1EH‘”‘eiz&He"F(q(Lt7 ql’t)efitHw — 1/]’ (337)

since T'(1,1)*T(qoy, 1) = I'(1,1)* T (qos, ¢10) = 1. Therefore any such ¢ is in the
range of the wave-operator and therefore a scattering state. Thus we could reduce
the problem of density of scattering states (which does not look very tractable) to
the problem of existence of the limit in (3.36]) (which is still difficult, but much
more concrete). One difficulty with proving asymptotic completeness in relativistic
(algebraic) QFT is the absence of such a closed-form formula for the wave operator.
The above considerations suggest that the split property should be relevant in this
context [18].
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