
Stochastic differential equations
Wojciech Dybalski

• There will be lecture notes and exercise sheets on https://wdybalski.faculty.wmi.amu.edu.pl.
The exercise sheets will be posted about one week before the class at which they will be discussed.

• Office hours: Tuesdays 12-13 (Except Tuesday 7.10) or by appointment.

• Textbook: In general Øksendal [Ok]. But first lecture: Roepstorff [Ro, Ch 1].

Lecture 1

1 Motivation

1. ODE are prolific in physics. Imagine a particle moving under the influence of an external force, e.g. a
pendulum

m
d2x(t)

dt2
= −kx(t), k > 0. (1)

A solution can be found given the initial conditions x0 = x(0), v0 =
dx(t)
dt |t=0:

x(t) = x0 cos(ωt) +
v0
ω

sin(ωt), ω =

√
k

m
. (2)

The picture in phase space is an elipse.

2. In a real laboratory situations there are imperfections. For example, the air viscosity will modify the
equation to

m
d2x(t)

dt2
= −kx(t)− γ

dx(t)

dt
, γ > 0. (3)

The picture in phase space is a spiral.

3. In addition there are perturbations which act like an external force: Trains passing by, seismic tremors,
electromagnetic forces for nearby electric devices (acting on a metal pendulum):

m
d2x(t)

dt2
= −kx(t)− γ

dx(t)

dt
+ σ

dBt

dt
, σ > 0. (4)

The picture in phase space is a rough spiral. The goal of the lecture is to understand the
problem of existence and uniqueness of solutions for such equations.

[It may seem hopeless to describe this influence of many factors which we do not control. What saves us
is the Central Limit Theorem: If the particle feels the combined effect of a large number of independent
kicks, ∫ t

0
ds
{
independent random kicks at time s

}
(5)

the net force looks approximately like a Gaussian random variable Bt called Brownian motion. dBt
dt is

called the white noise.]

4. From the practitioner’s point of view, random variable is something you can compute expectation E
(or average) of and get numbers. For Brownian motion we have
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• E(Bt) = 0,

• E(B2
t ) = t,

• E((B0 −Bt)(Bt −Bs)) = 0 for s > t > 0, (independence of increments).

• B0 = 0.

Dealing with t 7→ Bt naively as if it was a differentiable function is tricky: In fact,

1 =
d

dt
t =

d

dt
E(B2

t ) = 2E(Bt
dBt

dt
) = lim

∆t→0
2E

(
Bt
Bt+∆t −Bt

∆t

)
= 0, (6)

which is a contradiction. In reality, one can make sense of dB2
t

dt = 2Bt
dBt
dt + 1, which saves the game.

[This example shows, that closer mathematical scrutiny is needed to deal with such objects].

5. Equations involving such random noise are called stochastic differential equations (SDE).

• Since Bt are random variables, also x(t) are random variables. Concepts like existence and unique-
ness of solutions have to be reconsidered.

• Applications: climate fluctuations, turbulence, neural activity, option pricing.... [It is hard to
escape SDE if you want to model real world phenomena].

6. A financial mathematics application:

• Suppose a person has an asset or resource (e.g. house, stocks, oil...) that they want to sell.

• To start with, suppose that the value of the asset grows with r (∆t - compounded, annual) interest
rate:

∆X

X
= r∆t. (7)

• If we take the idealization of a continuous interest rate, this gives

dXt

dt
= rXt, (8)

with a solution Xt = X0e
rt [t measured in years].

• Since we are talking about a risky asset, the interest rate is fluctuating:

dXt

dt
=

(
r + α

dBt

dt

)
Xt, r, α > 0. (9)

Naive solution has the form:

Xt = X0e
rt+Bt (10)

One can make a mathematical sense out of it. But one can also make mathematical sense of the
solution:

Xt = X0e
(r− 1

2
)t+Bt , (11)

depending how exactly one defines stochastic integrals
∫
f(t)dBt. [This will be important part of

the course].

• Optimal stopping problem: The person knows {Xs}0≤s≤t and wants to find an optimal time
to sale the asset. [If you sell too early, you may loose future gains. If you sell to late the pay-off
may shrink].
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• An optimal portfolio problem: Suppose a person has two possible investments: a risky
investment (9) (a stock) and a safe investment (8) (a bond). How to divide the asset Xt =
utXt + (1− ut)Xt into a risky investment and a safe investment, given the selling time T?

• Pricing of options: Suppose that at time t = 0 the person of the previous question is offered
the right (but no obligation) to buy one unit of the risky asset at a specified price K and at a
specified future time t = T . [European call option]. How much should the person be willing to
pay for such an option? Problem solved by Black and Scholes in (1973), related to Nobel Prize in
Economics in 1997 (Scholes and Merton).

2 General probability I

[I will explain how Bt emerges from a random walk. We need some basic probabilistic notions needed to
describe the random walk and state the CLT. (Picture from the notes of Bertsekas and Tsitsiklis [BT, p.6]).]

1. Def: If Ω is a given set then a σ-algebra F on Ω is a family of subsets on Ω with the following properties:

(i) ∅ ∈ F .

(ii) A ∈ F ⇒ Ac ∈ F , where Ac is the complement of A in Ω.

(iii) A1, A2, . . . ∈ F ⇒ A :=
⋃∞

i=1Ai ∈ F .

• Example: For Ω = Rd the smallest σ-algebra containing all open sets is called the Borel σ-algebra
B(Rn).

• If (iii) holds only for finite sums, then F is called an algebra.

2. Def: The pair (Ω,F) is called a measurable space.

3. Def: A probability measure on a measurable space (Ω,F) is a function P : F → [0, 1] s.t.

(a) P (∅) = 0, P (Ω) = 1.

(b) If A1, A2, . . . ∈ F and {Ai}∞i=1 disjoint (i.e., Ai ∩Aj = ∅ is i ̸= j) then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (12)

[Question: Why do we need a sigma field and cannot just define the measure on all subsets? Banach-
Tarski paradox.]

4. Def: The triple (Ω,F , P ) is called a probability space.

5. Def. We say that the events A, B, are independent if P (A∩B) = P (A)P (B). [Note that disjoint sets
are dependent. Examples: flipping a coin several times, rolling a die several times]. For a family of
events A1, . . . An, we require for any non-empty subset I ⊂ {1, . . . n}

P (
⋂
i∈I

Ai) =
∏
i∈I

P (Ai). (13)

6. Def. Conditional probability:

P (A|B) :=
P (A ∩B)

P (B)
for P (B) ̸= 0, (14)

That is, probability that A occurs provided that B is known to occur.
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7. Random variable is a functions X : Ω → Rd which is F-measurable. That is, X−1(O) ∈ F for any
open O ⊂ Rd.

8. Def. Every random variable induces a probability measure µX on Rd, given by

µX(B) = P (X−1(B)) = P (X ∈ B). (15)

It is called the distribution (or law) of X. One also writes L(X) := µX or X ∼ [Name of L(X)].

For example, if X : Ω → R satisfies

µX(A) =

∫
A

1√
2πσ2

e−
(x−m)2

2σ2 dx, (16)

we say that X is a Gaussian variable with law N(m,σ2) (normal disribution) or X ∼ N(m,σ2).

9. Def. For a finite family of random variables X1, . . . , Xn the joint law is the measure on Rdn given by

µX1,...,Xn(A) = P ((X1, . . . , Xn) ∈ A), A ∈ B(Rdn). (17)

10. Def. If
∫
|X(ω)|dP (ω) <∞ then the number

E(X) :=

∫
Ω
X(ω)dP (ω) =

∫
R
x dµX(x) (18)

is called the expectation of X (w.r.t. P ). Change of variables formula for measures.

If you are not comfortable with integration w.r.t. an arbitrary measure you may want to have a look
at [Ru, Chapter 1].

11. Def. If
∫
|X(ω)|2dP (ω) <∞ then the number

var(X) = E(X2)− E(X)2 = E[(X − E(X))2] (19)

is called the variance.

12. Def. We say that real-valued random variables X1, . . . , Xn are independent if

µX1,...,Xn = µX1 ⊗ · · · ⊗ µXn . (20)

13. Fact: If two random variables X,Y are independent, then they are uncorrelated

E[XY ] = E[X]E[Y ] (21)

provided that E[|X|] < ∞ and E[|Y |] < ∞. (Converse not true in general. But true for Gaussian
random variables as we will see).

Idea of proof: We compute for characteristic functions X = χF1 , Y = χF2 .

E[χF1χF2 ] =

∫
χF1(ω)χF2(ω)dP (ω) = P (F1 ∩ F2) = P (F1)P (F2). (22)

Then, it follows for step functions. Recalling the definition of the Lebesgue integral, a measurable
function is approximated pointwise by step functions.

14. Thm (Central Limit Theorem (CLT)): Let (Xj)j≥1 be i.i.d. (independent identically distributed) R-
valued random variables with E(Xj) = m and Var(Xj) = σ2 with 0 < σ2 < ∞. Let Sn =

∑n
j=1Xj .

Let Yn = Sn−nm
σ
√
n

. Then Yn converges in distribution to Y , where Y ∼ N(0, 1). That is, for any
bounded, continuous function f on R∫

f(x)dµYn(x) →
∫
f(x)dµY (x). (23)

(This is also called weak convergence of measures).
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3 Example: Bernoulli trials and binomial probabilities

1. Consider one Bernoulli trial with a toss of a coin where we get heads (H) with probability p and tails (T)
with probability 1− p.

• Sample space: Ω0 = {H,T}
• σ-algebra: All subsets of Ω0

F0 = {∅, {H}, {T}, {H,T}} (24)

• Probability measure: P0(∅) = 0, P0({H}) = p, P0({T}) = 1− p, P0({H,T}) = 1.

2. Consider n independent Bernoulli trials.

• Sample space Ω = Ωn
0 . Any ω ∈ Ω has the form ω = (ω1, . . . , ωn), ωi ∈ {H,T}.

• σ-algebra: All subsets of Ω.

• Probability measure: By independence of trials,

P ({ω}) =
n∏

i=1

P0({ωi}) = pRn(ω)(1− p)n−Rn(ω), (25)

where Rn(ω) is the number of H in ω. Note that Rn : Ω → R is a random variable.

3. Define random variables ξi : Ω → {−1, 1} s.t.

ξi(ω) =

{
+1 if ωi = H,

−1 if ωi = T.
(26)

4. Then Rn = #{ i : ξi = +1} is the number of heads in n trials.

5. Fact: We have

P (Rn = ℓ) = P (ℓ heads come up in an n-toss sequence) =
(
n

ℓ

)
pℓ(1− p)n−ℓ. (27)

We will write Rn ∼ Binomial(n, p), i.e. the random variable Rn has a binomial probability distribution.

Proof:

• Suppose we fix a particular individual outcome, e.g. HTTHTT. There are ℓ = 2 heads in n = 6
trials. By independence of the tosses,

P (HTTHTT) = P (H)P (H)P (T)P (H)P (T)P (T) = pℓ(1− p)n−ℓ. (28)

• There are many events which have ℓ = 2 heads in n = 6 trials. For example HHTTTT. As this is
a disjoint event from HTTHTT we have

P (HHTHTT or HTTHTT) = P (HHTHTT) + P (HTTHTT). (29)

• Now, how many different sequences of n tosses contains exactly ℓ heads? Clearly,
(
n
ℓ

)
. □
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4 From random walks to Brownian motion

1. Particle moves on a lattice hZ, h > 0.

2. There occurs one step, to the left or to the right, within the period of time τ > 0.

3. Successive steps are independent: e.g. a fair coin (p = 1
2) is tossed at each step and the particle moves

to the left or to the right depending on the outcome (H or T). We can use the same sample space as
above Ω = {H,T}n, with probability P defined by (25).

4. We want to compute probability

P (particle ends up at x = kh after n steps, starting from zero) =: P (kh, nτ) =: P [k, n]. (30)

• Define the random variable Sn = ξ1+ . . .+ξn, s.t. Snh is the position of the particle after n steps.
• We have Sn = (+1)Rn + (−1)(n−Rn), hence Rn = (n+ Sn)/2. So the event {Sn = k} := {ω ∈
Ω : Sn(ω) = k} is the same as {Rn(ω) = (n+ k)/2} := {ω ∈ Ω : Rn = (n+ k)/2}.

• Then P [k, n] = P (Sn = k) = P (Rn = (n+ k)/2). Since Rn ∼ Binomial(n, 1/2), we have

P [k, n] := P (Rn = (n+ k)/2) =

(
n

1
2(n+ k)

)
1

2n
, (31)

provided 1
2(n+ k) is integer. Otherwise P [k, n] = 0.

5. Let us now try to take the continuum limit h, τ → 0 s.t. t := nτ,����
x := kh, D := h2

2τ stay constant.

Position of the particle after n steps is x = hSn =
√
2τDSn =

√
2Dt
n Sn. We restrict attention to n of

the form n = tñ for t ∈ N and ñ ∈ N. Then x =
√

2D
ñ Sñt is still position of the particle after n steps

at time t expressed in terms of ñ which we will take to ∞. This motivates the definition (setting
D = 1/2 and renaming ñ→ n):

B
(n)
t :=

1√
n
S⌊nt⌋, (32)

with the convention S0 = 0.

6. Fact: By the CLT the limit

Bt := lim
n→∞

B
(n)
t (33)

exists in distribution and defines a family of Gaussian random variables Bt ∼ N(0, t).

Def: The family {Bt}t∈R+ is called the Brownian motion.

Proof of the fact: In our case Xj = ξj .

• Let us compute the law of ξi. Let A ∈ B(R). We note that ξi(ω) = ξ̃i(ωi).

µξi(A) := P (ω : ξi(ω) ∈ A) = P (ω : ξ̃i(ωi) ∈ A). (34)

• Independence: For n = 2

µξ1,ξ2(A1 ×A2) = P (ω : (ξ1(ω), ξ2(ω)) ∈ A1 ×A2)

= P (ω : (ξ̃1(ω1), ξ̃2(ω2)) ∈ A1 ×A2)

= P (ω : ξ̃1(ω1) ∈ A1, ξ̃2(ω2) ∈ A2)

= P (ω : ξ̃1(ω1) ∈ A1)P (ω : ξ̃2(ω2) ∈ A2) = µξ1(A1)µξ2(A2), (35)

where in the next to the last step we made use of the independence of coin tosses, i.e. (25). For
arbitrary n the argument is analogous.
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• We compute

mj = E(ξj) =

∫
ξj(ω)dP (ω) =

∫
ξjdµξj = (+1)

1

2
+ (−1)

1

2
= 0, (36)

σ2j = E(ξ2j ) =

∫
ξj(ωj)

2dP (ωj) =

∫
ξ2j dµξj = (+1)

1

2
+ (+1)

1

2
= 1. (37)

• Thus, by the CLT, Yn = Sn√
n

converges in distribution to a Gaussian random variable Y = Bt=1

with law N(0, 1).
• Similarly, for t ∈ N, Snt√

n
=

√
t Snt√

nt
=

√
tYnt →

√
tY =: Bt ∼ N(0, t). Its law is

µ√tY (A) = P (
√
tY ∈ A) = P (Y ∈ A/

√
t) =

∫
A/

√
t

1√
2π
e−y2/2dy =

∫
A

1√
2πt

e−y2/(2t)dy, (38)

that is Bt ∼ N(0, t). (I leave for the reader the extension to t ∈ R+). □

7. Remark: We know from the proof that E(Bt) = 0, E(B2
t ) = t. We would also like to show E((B0 −

Bt)(Bt − Bs)) = 0, s > t, but so far we do not have a joint probability space for Bt and Bs, t ̸= s.
However, already now, such an outcome is suggested by

E((B
(n)
0 −B

(n)
t )(B

(n)
t −B(n)

s )) = 0. (39)

The two factors have the form

B
(n)
t −B(n)

s =
1√
n
(ξ⌊nt⌋+1 + · · ·+ ξ⌊ns⌋), (40)

B
(n)
0 −B

(n)
t =

1√
n
(ξ1 + · · ·+ ξ⌊nt⌋). (41)

They involve independent coin tosses. For independent random variables we have E(XY ) = E(X)E(Y )
by (20), so (39) follows.

8. We can also compute E(B
(n)
t B

(n)
s ). By (39), for s > t,

E(B
(n)
t B(n)

s ) = E(B
(n)
t

2) =
1

n
E(ξ21 + · · ·+ ξ2⌊nt⌋) =

⌊nt⌋
n

. (42)

We used E(ξiξj) = E(ξ)E(ξj) = 0 for i ̸= j. Since the roles of t, s can be exchanged

E(B
(n)
t B(n)

s ) = min(
⌊nt⌋
n

,
⌊ns⌋
n

). (43)

As we will see, in the limit E(BtBs) = min(t, s).

9. Let us consider again the continuum limit h, τ → 0 s.t. t := nτ, x := kh, D := h2

2τ stay constant. There
is another way to see (heuristically) that the probability distribution of the position of the particle
must be Gaussian:

• Recall:
(
n+1
m

)
=

(
n
m

)
+
(

n
m−1

)
.

• Hence: P [k, n+ 1] = 1
2P [k − 1, n] + 1

2P [k + 1, n]. In fact,

P [k, n+ 1] =

(
n+ 1

1
2(n+ 1 + k)

)
1

2n+1
=

1

2

(
n

1
2(n+ 1 + k)

)
1

2n
+

1

2

(
n

1
2(n+ 1 + k)− 1

)
1

2n
. (44)

Alternatively, we can say that the event { particle at point k after n+ 1 steps } is a union of two
disjoint events { particle at point k− 1 after and n steps, then jump to the right } and { particle
at point k + 1 after n steps, then jump to the left }
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• Thus, we have

P (kh, (n+ 1)τ)− P (kh, nτ)

τ
=
h2

2τ

P ((k + 1)h, nτ)− 2P (kh, nτ) + P ((k − 1)h, nτ)

h2
(45)

If the continuum limit p̃(x, t) := limh,τ→0 P (kh, nτ) exists, then
∫
I p̃(x, t)dx is the probability of

finding the particle in the interval I ⊂ R. The probability distribution p̃ satisfies the heat equation

∂p̃(x, t)

∂t
= D

∂2p̃(x, t)

∂x2
. (46)

This is an example of a Fokker-Planck equation, describing the probability distribution of a
stochastic process (in our case {Bt}t∈R+).

• In the continuum limit ‘starting’ the process at x = 0 corresponds to the initial condition p̃(x, 0) =
δ0(x) (Dirac delta) as this means zero probability of finding the particle in any I not containing
{0}. Then the solution of the heat equation is:

p̃(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
. (47)

Setting D = 1/2 (as above) this is the probability distribution of Bt.

Lecture 2

The goal is now to construct a joint probability space for all Bt, t ∈ R+.

5 Stochastic processes

1. Def. A stochastic process is a parametrized collection of random variables

{Xt}t∈T (48)

defined on a probability space (Ω,F , P ) and assuming values in Rd. (T is a set. Typical choices:
R+ := [0,∞), [a, b], N...).

2. Remark: For fixed t ∈ T we have a random variable Ω ∋ ω 7→ Xt(ω) ∈ Rd.

3. Def: For fixed ω the function T ∋ t 7→ Xt(ω) is called a path of Xt. (Interpretation: result of an
experiment ω at time t. Eg. position of a random walker at time t).

4. Remark: For fixed stochastic process {Xt}t∈T we may associate with each ω a function t 7→ Xt(ω) =:
ω(t) from T into Rd. (Recall that for random walk ω = HHT . . . TH was uniquely determining the
path).

• Then, we regard Ω as a subset of Ω̃ = (Rd)T . Namely, with any ω we associate a path {t→ Xt(ω)}.
We denote this embedding by ι : Ω → Ω̃.

• The σ-algebra F̃ on Ω̃ is generated by ‘cylinder sets’ of the form

Ct1,...,tk;F1,...,Fk
:= {ω̃ ∈ (Rd)T : ω̃(t1) ∈ F1, . . . , ω̃(tk) ∈ Fk}, Fi ⊂ Rd Borel. (49)

Fact: For T countable, F̃ is the Borel algebra on Ω̃ provided that Ω̃ is equipped with the product
topology. (The product topology is the smallest topology containing sets (49) with Fi open).
[There is a statement in [Ok, p.10] that the same is true for T = [0,∞), but I have doubts if it
really holds. Remains to be checked.]
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• We define the measure P̃ on (Ω̃,B) as follows

P̃ (C) = P (ι−1(C)) (50)

for cylinder sets C.

In view of the above, one can see the stochastic process as a measure P̃ on the space of paths (Ω̃, F̃).
We include all possible paths in Ω̃ = (Rd)T , but some of them may have probability zero. For example,
for the random walk, the path for which after time τ the walker is at position 2h has probability zero.

5. Def: Suppose that {Xt}t∈T and {Yt}t∈T are stochastic processes on (Ω,F , P ). Then, we say that
{Xt}t∈T is a version of (or modification of) {Yt}t∈T if

P ({ω ∈ Ω : Xt(ω) = Yt(ω)}) = 1 for all t. (51)

6. Def: The finite-dimensional distributions of the process X = {Xt}t∈T are the measures νt1,...,tk defined
on Rdk, k = 1, 2, . . . , by

νt1,...,tk(F1 × F2 × · · · × Fk) = P [Xt1 ∈ F1, . . . , Xtk ∈ Fk]

=

∫
χ(Xt1(ω) ∈ F1) . . . χ(Xtk(ω) ∈ Fk)dP (ω), (52)

where ti ∈ T and F1, . . . Fk denote Borel sets in Rd.

7. Under certain conditions, it is possible to reconstruct the stochastic process {Xt}t∈T from the distri-
butions:

Theorem 5.1. (Kolmogorov’s extension theorem). For all t1, . . . , tk ∈ T let νt1,...,tkbe probability
measures on Rdk s.t.

νtσ(1),··· ,tσ(k)
(F1 × · · · × Fk) = νt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k)) (K1)

for all permutations σ on {1, 2, . . . , k} and

νt1,··· ,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1,...,tk+m
(F1 × · · · × Fk × Rd × · · · × Rd). (K2)

Then, there exists a probability space (Ω,F , P ) and a stochastic process {Xt}t∈T on Ω s.t.

νt1,...,tk(F1 × · · · × Fk) = P (Xt1 ∈ F1, · · · , Xtk ∈ Fk), (53)

for all ti ∈ T , k ∈ N and all Borel sets Fi.

6 Brownian motion

1. To construct {Bt}t≥0 it suffices to specify a family of probability measures {νt1,...tk}t1,...tk≥0 satisfying
the conditions from the Kolmogorov theorem.

• For fixed x ∈ Rd define

p(t, x, y) = (2πt)−d/2 exp
(
− |x− y|2

2t

)
for y ∈ Rd, t > 0. (54)

• If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk define a measure νt1,...tk on Rdk by

νt1,...,tk(F1 × · · · × Fk)

=

∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 . . . dxk, (55)

where we use the convention p(0, x, y)dy = δx(y)dy (unit point mass at x in physicist’s notation).
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• Extend to all finite sequences using (K1). Since
∫
p(t, x, y)dy = 1 for all t ≥ 0, also (K2) holds.

2. Remark: Note that for x = 0, d = 1, we have

νt1(F1) =

∫
F1

p(t1, 0, x1)dx1 =

∫
F1

p̃(t1, x1)dx1 (56)

where p̃ appeared in (47) as a limit of random walk probability distributions, satisfying ∂p̃(x,t)
∂t =

D ∂2p̃(x,t)
∂x2 .

3. Consequently, there exists a probability space (Ω,F , P x) and a stochastic process {Bt}t≥0 on Ω s.t.
the finite-dimensional distributions Bt are given by:

P x(Bt1 ∈ F1, · · · , Btk ∈ Fk) =

∫
F1×···×Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk. (57)

This formula determines the law of a family of random variables in the sense of (17). In the notation
of (17) it reads

P x(Bt1 ∈ F1, · · · , Btk ∈ Fk) = µBt1 ,...,Btk
(F1 × . . .× Fk). (58)

Hence, the measure on the l.h.s. of (57) is absolutely continuous w.r.t. the Lebesgue measure on
the r.h.s. with density given by p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk). Thus, for any Borel measurable
function f on Rd we have∫

f(Bt1 , . . . , Btk)P
x(Bt1 ∈ dx1, · · · , Btk ∈ dxk)

:=

∫
f(x1, . . . , xk)µBt1 ,...,Btk

(x1, . . . , xk)

=

∫
f(x1, . . . , xk){p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)}dx1 · · · dxk. (59)

The notation P x(Bt1 ∈ dx1, · · · , Btk ∈ dxk), popular in probability theory, is defined by the above
relations.

4. Def: The process constructed above is called (a version of) a Brownian motion starting at x.

5. Properties of the Brownian motion:

(i) {Bt}t∈R+ is a Gaussian process, i.e., for all 0 ≤ t1 ≤ · · · ≤ tk the random variable Z =
(Bt1 , . . . , Btk) ∈ Rdk has a multi-normal distribution. (To be defined below.)

(ii) Bt has independent increments, i.e.,

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1
, (60)

are independent for all 0 ≤ t1 < t2 · · · < tk.

(iii) Brownian motion has a version with continuous paths. By considerations above (49), Brownian
motion can be seen as the space C([0,∞),Rd) with probability measure P x.

These properties will be precisely stated and proven in Section 8 after preparatory Section 7.
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7 Gaussian random variables

This appendix is based on [Ok, Appendix A].

Definition 7.1. Let (Ω,F , P ) be a probability space. A random variable X : Ω → R is (non-degenerate)
normal if the distribution of X has a density of the form

pX(x) =
1

σ
√
2π

exp

(
− (x−m)2

2σ2

)
(61)

where σ > 0 and m ∈ R. That is

P (X ∈ G) =

∫
G
pX(x)dx for G ⊂ R Borel. (62)

By Gaussian integration:

E(X) =

∫
Ω
XdP =

∫
R
xpX(x)dx =

∫
R
(x+m)

1

σ
√
2π

exp

(
− x2

2σ2

)
dx = m, (63)

var(X) = E[(X −m)2] =

∫
R
(x−m)2pX(x)dx = σ2. (64)

Lecture 3

Definition 7.2. A random variable X : Ω → Rd is called (non-degenerate) multi-normal N(m,C) if the
distribution of X has a density of the form

pX(x1, . . . , xd︸ ︷︷ ︸
x

) =

√
det(A)

(2π)n/2
exp

(
− 1

2

∑
j,k

(xj −mj)aj,k(xk −mk)

)
(65)

=

√
det(A)

(2π)n/2
exp

(
− 1

2
(x−m)TA(x−m)

)
(66)

=

√
det(A)

(2π)n/2
exp

(
− 1

2
⟨(x−m), A(x−m)⟩

)
(67)

where m = (m1, . . . ,md) ∈ Rd and C = A−1 = [cj,k]1≤j,k≤d ∈ Rd×d is a symmetric positive definite matrix
(i.e. all eigenvalues strictly positive).

Similarly as for d = 1, by Gaussian integration,

E(Xj) = mj , (68)
E[(Xj −mj)(Xk −mk)] = cj,k. (69)

Definition 7.3. The characteristic function of a random variable X : Ω → Rd is the function ϕX : Rd → C
defined by

ϕX(u1, . . . , ud) = E[exp(i(u1X1 + · · ·+ udXd))] =

∫
Rd

ei⟨u,x⟩µX(dx), (70)

where µX(G) = P (X ∈ G) = P ((X1, . . . Xd) ∈ G) and ⟨u, x⟩ = u1x1 + · · ·+ udxd.

Remark 7.4. ϕX determines the distribution µX uniquely. Otherwise, we would have∫
Rd

ei⟨u,x⟩µX1(dx) =

∫
Rd

ei⟨u,x⟩µX2(dx), (71)

11



for all u ∈ Rd and two different measures µX1 , µX2. By integrating both sides w.r.t. u with some f ∈ S(Rd) 1

we would get ∫
Rd

f̂(x)µX1(dx) =

∫
Rd

f̂(x)µX2(dx), where f̂(x) :=

∫
Rd

ei⟨u,x⟩f(u)du (72)

is the Fourier transform. Since Fourier transform maps S(Rd) onto S(Rd) and S(Rd) is dense in C0(Rd) 2 in
the supremum norm, the equality extends to functions from C0(Rd). Now the assumption that the measures
are different is in conflict with the Riesz-Markov theorem. (A positive, linear functional on C0(Rd) is given
by integration against a uniquely given measure, cf. [Ru]).

Theorem 7.5. If X : Ω → Rd is multi-normal, i.e., N(m,C), then

ϕX(u1, . . . , ud) = exp

(
− 1

2

∑
j,k

ujcj,kuk + i
∑
j

ujmj

)
(73)

= exp

(
− 1

2
⟨u,Cu⟩+ i⟨u,m⟩

)
. (74)

• Proof by Gaussian integration. (HS2).

• By Remark 7.4, we can equivalently define a Gaussian random variable X : Ω → Rd as having the
characteristic functional (73).

• This latter definition makes sense also for non-negative definite C (i.e., having eigenvalues larger or
equal to zero). We will use the concept of multi-normal distribution N(m,C) in this extended sense,
unless stated otherwise. If some eigenvalues of C are zero, the multi-normal distribution is called
degenerate.

Theorem 7.6. Let Xj : Ω → R be random variables, 1 ≤ j ≤ d. Then

X = (X1, . . . , Xd) (75)

is multi-normal iff

Y = λ1X1 + · · ·+ λdXd =: ⟨λ,X⟩ is normal for all λ1, . . . , λd ∈ R. (76)

The equivalence also holds for (multi-)normal non-degenerate random variables if we restrict to λ ̸= 0 in
(76).

Proof. If X is multi-normal, by Theorem 7.5

E[exp(iũY )] = E[exp(iũ⟨λ,X⟩)] = exp

(
− 1

2
ũ2⟨λ,Cλ⟩+ iũ⟨λ,m⟩

)
, (77)

so Y is normal with E(Y ) = ⟨λ,m⟩ and var(Y ) = ⟨λ,Cλ⟩.
Conversely, suppose that Y = ⟨λ,X⟩ is normal with E(Y ) = m and var(Y ) = σ2, i.e.,

E[exp(iũY )] = exp
(
− 1

2
ũ2σ2 + iũm

)
. (78)

Then, by (63), (64)

m = E(Y ) =
∑
j

λjE(Xj), (79)

σ2 = E[(Y − E(Y ))2] = E
[(∑

j

λj(Xj −mj)
)2]

=
∑
i,j

λiλj E((Xi −mi)(Xj −mj))︸ ︷︷ ︸
ci,j

, (80)

1Schwartz class functions: smooth and bounded together with its derivatives even after multiplication by polynomials.
2Continuous functions tending to zero at infinity.
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where mj = E(Xj). As λ arbitrary, by comparing with (73), (68), (69) we obtain that X is multi-normal.
To prove the non-degenerate case, we use that a symmetric matrix C has all eigenvalues strictly positive

iff ⟨λ,Cλ⟩ > 0 for all λ ̸= 0. □

Theorem 7.7. Let Y0, Y1 . . . Yd be real random variables on Ω. Assume that X = (Y0, Y1, . . . Yd) is multi-
normal and Y0 and Yj are uncorrelated for j ≥ 1, i.e.,

E[(Y0 − E[Y0])(Yj − E[Yj ])] = 0, 1 ≤ j ≤ n. (81)

Then Y0 is independent of {Y1, . . . Ym}.

Remark 7.8. Recall that independent random variables are always uncorrelated. But the converse is not
true in general: Such random variables X,Y that A := {X ̸= 0} and B := {Y ̸= 0} are disjoint, are not
independent3 (P (A ∩ B) ̸= P (A)P (B)). But, if we choose them so that E(X) = E(Y ) = 0, we obtain
E(XY ) = 0, hence uncorrelated.

Proof. We have to prove that

P [Y0 ∈ G0, Y1 ∈ G1, . . . , Yd ∈ Gd] = P [Y0 ∈ G0] · P [Y1 ∈ G1, . . . , Yd ∈ Gd], (82)

for all Borel sets G0, . . . Gd ⊂ R. By (81), the covariance matrix

ck,j = E[(Yk − E[Yk])(Yj − E[Yj ])] (83)

has only the first entry c0,0 non-zero in the first row and first column. Thus, writing u = (u0, u⃗) we have

⟨u,Cu⟩ = c0,0u
2
0 + ⟨u⃗, C̃u⃗⟩. (84)

Therefore, by (73),

ϕX(u) = exp

(
− 1

2
⟨u,Cu⟩+ i⟨u,m⟩

)
= exp

(
− 1

2
c0,0u

2
0 −

1

2
⟨u⃗, C̃u⃗⟩+ i⟨u0,m0⟩+ i⟨u⃗, m⃗⟩

)
= ϕY0(u0)ϕ(Y1,...,Yd)(u1, . . . , ud). (85)

By Remark 7.4, ϕX determines the law uniquely, so (82) follows. □

8 Proofs of basic properties of the Brownian motion

Let us come back to the Brownian motion, starting at x, which is a family of random variables {Bt}t∈[0,∞)

on a probability space (Ω,F , P x).

Theorem 8.1. {Bt}t∈[0,∞) is a Gaussian process, i.e., for all 0 ≤ t1 ≤ · · · ≤ tk the random variable
Z = (Bt1 , . . . Btk) ∈ Rdk has a multi-normal distribution with mean and covariance

m = (x, x, . . . , x), c(j,ℓ),(j′,ℓ′) = min(tj , tj′)δℓ,ℓ′ , (86)

where j, j′ = 1, . . . , k, ℓ, ℓ′ = 1, . . . , d. (In particular, Ex[(Bti − x) · (Btj − x)] = dmin(ti, tj) in agreement
with random walk considerations.)

3If two random variables X, Y are independent, then X−1(F1), Y −1(F2), F1, F2 ∈ B(Rd), are independent events. (We will
come to this reformulation of independence later).
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Proof. Recall that

P x(Bt1 ∈ F1, · · · , Btk ∈ Fk)

=

∫
F1×···×Fk

p(t1, x, x1) · · · p(tk−1 − tk−2, xk−2, xk−1)p(tk − tk−1, xk−1, xk)dx1 · · · dxk, (87)

where

p(t, x, y) = (2πt)−d/2 exp
(
− |x− y|2

2t

)
for y ∈ Rd, t > 0. (88)

Consequently

E[exp(i⟨u,Z⟩)] =
∫

exp(iu1Bt1 + · · ·+ iukBtk)P
x(Bt1 ∈ dx1, . . . Btk ∈ dxk)

=

∫
exp(iu1x1 + · · ·+ iukxk)p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk

=

∫
exp(iu1x1 + · · ·+ iukxk)p̃(∆t1, x− x1︸ ︷︷ ︸

z1

) · · · p̃(∆tk, xk−1 − xk︸ ︷︷ ︸
zk

)dx1 · · · dxk

= eiU1x

∫
exp(iU1z1 + · · ·+ iUkzk)p̃(∆t1, z1) · · · p̃(∆tk−1, zk−1)p̃(∆tk, zk)dz1 · · · dzk

= eiU1x
k∏

m̃=1

̂̃p(∆tm̃, Um̃) = ei(
∑k

j=1 uj)·x− 1
2

∑k
m̃=1(∆tm̃)U2

m̃ , (89)

where ̂̃p is the Fourier transform of p̃, Um̃ :=
∑k

j=m̃ uj and ∆tm̃ := tm̃ − tm̃−1 t0 := 0. From this we read off
the mean m = (x, x, . . . , x). Now we read off the covariance:

k∑
m̃=1

∆tm̃U
2
m̃ =

k∑
m̃=1

∆tm̃(

k∑
j=m̃

uj)
2

=

k∑
m̃=1

∆tm̃

k∑
j,j′=m̃

uj · uj′ =
k∑

m̃=1

∆tm̃

k∑
j,j′=1

χ(j ≥ m̃)χ(j′ ≥ m̃)uj · uj′

=

k∑
j,j′=1

uj · uj′
min(j,j′)∑
m̃=1

∆tm̃ =

k∑
j,j′=1

uj · uj′(t1 − t0 + t2 − t1 + · · ·+ tmin(j,j′))

=
k∑

j,j′=1

uj · uj′tmin(j,j′) =
k∑

j,j′=1

uj · uj′min(tj , tj′), (90)

where in the last step we used that the times are ordered t1 ≤ t2 ≤ · · · ≤ tj ≤ · · · ≤ tk. Thus, c(j,ℓ),(j′,ℓ′) :=
min(tj , tj′)δℓ,ℓ′ . □

Lecture 4

Theorem 8.2. {Bt}t∈R+ has independent increments, i.e.,

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1
, (91)

are independent for all 0 ≤ t1 < t2 · · · < tk. Moreover, (Bt − Bs)
i ∼ N(0, |t − s|). (Upper index i in Bi

t

denotes component, not power.)
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Proof. By Theorem 7.7, it suffices to check that the variables are uncorrelated. By Theorem 8.1Ex(B̃t1B̃t2) =
dmin(t1, t2), where B̃t = Bt − x. Then,

E[(Bt2 −Bt1)
i(Bt3 −Bt2)

i] = E[(B̃t2 − B̃t1)
i(B̃t3 − B̃t2)

i]

= E[B̃i
t2 · B̃

i
t3 ]− E[B̃i

t2 · B̃
i
t2 ]− E[B̃i

t1 · B̃
i
t3 ] + E[B̃i

t1 · B̃
i
t2 ]

= (t2 − t2 − t1 + t1) = 0 (92)

and analogously for other pairs.
As for the last statement: By Theorem 7.6, (Bt −Bs)

i, i = 1, . . . , d, are Gaussian random variables. We
have E(Bt −Bs)

i = 0 and

E({(Bt −Bs)
i}2) = E((Bi

t)
2 − 2Bi

tB
i
s + (Bi

s)
2) = t+ s− 2min(t, s) = |t− s|, (93)

which concludes the proof. □

Now we justify the continuity property (iii) of the Brownian motion:

Theorem 8.3. (Kolmogorov’s continuity theorem). Suppose that the process {Xt}t∈R+ satisfies the following
condition: For all T > 0 there exist constants α, β,D > 0 s.t.

E[|Xt −Xs|α] ≤ D|t− s|1+β, 0 ≤ s, t ≤ T. (94)

Then there exists a continuous version of X.

To verify the assumptions of Theorem 8.3 for Xt = Bt, we prove the following lemma:

Lemma 8.4. There holds, that

Ex[|Bt −Bs|4] = Ex[{(Bt −Bs) · (Bt −Bs)}2] ≤ D|t− s|2. (95)

for some D > 0.

Remark 8.5. We could replace above Ex with Ex=0, since Bt −Bs = B̃t − B̃s, where B̃t = Bt − x.

Proof. Let Xi := Bi
t − Bi

s ∼ N(0, |t − s|), cf. Theorem 8.2. Then Zi = 1
|t−s|1/2X

i ∼ N(0, 1), cf. (38). We
have

Ex[|Bt −Bs|4] = Ex[|X|4] = |t− s|2Ex[
{ d∑

i=1

(Zi)2
}2

]. (96)

The last factor is finite, since

Ex[
{ d∑

i=1

(Zi)2
}2

] =
1

(2π)d/2

∫
Rd

dz
{ d∑

i=1

(zi)2
}2

e−
1
2
|z|2 . (97)

This concludes the proof. (Actually, (97) = d(d+ 2) see HS3). □

We summarize our discussion of the Brownian motion with the following axiomatic definition of a particular
version of the Brownian motion:

Theorem 8.6. Let Ω = C(R+;Rd) be equipped with the topology of uniform convergence on compact sets
and let B be the resulting Borel σ-algebra. Let Bt(ω) = ω(t) be the coordinate processes. For any x ∈ Rd

there exists a unique probability measure P x on (Ω,B) such that

1. P (B0 = x) = 1.

2. (Bt)t∈R+ has independent increments.

3. For all 0 ≤ s < t, Bt −Bs ∼ N(0, (t− s)Id), where Id is the d× d identity matrix.

It is called the canonical Brownian motion.

For proof cf. [Pa, Chapter VII].
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8.1 Brownian motion as a path integral

Recall the formula

Ex(f(Bt1 , . . . , Btk))

=

∫
f(Bt1(ω), . . . , Btk(ω))dP

x(ω) =

∫
f(x1, . . . , xk)p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk,

where

k∏
ℓ=1

p(tℓ − tℓ−1, xℓ−1, xℓ) =
[ k∏
ℓ′=1

1

(2π(tℓ′ − tℓ′−1))d/2
]
exp

(
−

k∑
ℓ=1

|xℓ−1 − xℓ|2

2(tℓ − tℓ−1)2
(tℓ − tℓ−1)

)
. (98)

Suppose tℓ′ − tℓ′−1 = ε and we consider the heuristic continuum limit ε → 0 and k → ∞ for 0 ≤ t ≤ T . In
this limit:

• f depends on Bt for all t ∈ [0, T ], thus becomes a function of a path starting at x

f(Bt1(ω), . . . , Btk(ω)) = f(ω(t1), . . . , ω(tk)) → f({ω(t)}t∈[0,T ]) = f(ω). (99)

• exp
(
−
∑k

ℓ=1
|xℓ−1−xℓ|2
2(tℓ−tℓ−1)2

(tℓ − tℓ−1)
)
→ exp

(
−
∫ T
0

1
2

(dω(t)
dt

)2
dt
)
.

•
[∏k

ℓ′=1
dxℓ′

(2π(tℓ′−tℓ′−1))
d/2

]
→ 1

NDω, where Dω is (non-existent) infinite product of Lebesgue measures
and N is a normalization constant.

• Altogether,∫
f(Bt1(ω), . . . , Btk(ω))dP

x(ω) →
∫
ω(0)=x

f(ω)
1

N
exp

(
−

∫ T

0

1

2

(
dω(t)

dt

)2

dt

)
Dω, (100)

which is an example of a path integral.

• Dω does not exist and the paths ω are a.s. not differentiable. But the product 1
N exp

(
−
∫ T
0

1
2

(dω(t)
dt

)2
dt

)
Dω

makes sense as a Gaussian measure on the Banach space C([0, T ];Rd).

• Since
∫
dP x(ω) = 1,

N =

∫
exp

(
−
∫ T

0

1

2

(
dω(t)

dt

)2

dt

)
Dω. (101)

Thus (105) can be written as a quotient of two path integrals.

Connection to quantum mechanics:

• Let f(ω) = δy(ω(T )) so that it fixes the final value of the path to x. Then, the quantity

KE(T ; y, x) :=

∫ ω(T )=y

ω(0)=x

1

N
exp

(
−
∫ T

0

1

2

(
dω(t)

dt

)2

dt

)
Dω (102)

is called the Euclidean (imaginary time) propagator (or Green function). It does not have a clear
physical meaning.
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• Let us change variables t = iτ , T = iT and interpret q(τ) := ω(iτ) as the position of the quantum
particle. Then the (real time) propagator is given by

K(T ; y, x) :=

∫ q(T )=y

q(0)=x

1

N ′ exp

(
i

∫ T

0

1

2

(
dq(τ)

dτ

)2

dτ

)
Dq. (103)

• Consider a free quantum mechanical particle described at τ = 0 by a wave function Rd ∋ x 7→ ψ0(x).
Then, the probability of finding the particle in the region A ⊂ Rd is

∫
A |ψ0(x)|2dx.

• At time τ = T the quantum mechanical particle is described by the wave function

ψT (y) :=

∫
K(T ; y, x)ψ0(x)dx. (104)

Then, the probability of finding the particle in the region A ⊂ Rd is
∫
A |ψT (y)|2dy. (These quantum

probabilities do not come from the probability space (Ω,B, P x). There is no generally accepted prob-
ability space for quantum mechanics, but there are some proposals, called hidden variables theories).

• More generally, for a quantum mechanical particle moving in an external potential V

KV (T ; y, x) :=

∫ q(T )=y

q(0)=x

1

N ′ exp
(
iS[q])

)
Dq, (105)

where S[q] :=
∫ T
0 [12

(dq(τ)
dτ

)2 − V (q(τ))]dτ is called action. The minimum of the action is given by the
trajectory of the classical particle in potential V . It satisfies the Newton equations

d2q(τ)

dτ2
= −(∇V )(q(τ)). (106)

This is a special case of a certain paradigm in physics: Suppose we are given a theory which in the
regime of small fluctuations (i.e. variances) is described by a variational principle (like minimizing
q 7→ S[q]). Then, using path integrals of schematic form (105), one can cover the case of larger
fluctuations. This applies to the step from classical mechanics to quantum mechanics. Similar relation
holds between thermodynamics and statistical physics.

9 Stochastic integral

Unless stated otherwise, in this section we consider Brownian motion with values in R starting at x = 0. We
will write P = P x=0, E = Ex=0.

9.1 Motivation

Recall the risky investment equation from (9)

dXs

ds
=

(
r + α

dBs

ds

)
Xs, r, α > 0. (107)

As we suspect from (6) that s 7→ Bs(ω) is not differentiable in the usual sense, let us integrate both sides
w.r.t s ∈ [0, t]:

Xt = X0 +

∫ t

0
rXsds+ ”

∫ t

0
αXsdBs”. (108)

This is a special case of a general class of equations

Xt = X0 +

∫ t

0
b(s,Xs)ds+ ”

∫ t

0
σ(s,Xs)dBs”. (109)

How to give meaning to the last integral?
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