Stochastic differential equations

Wojciech Dybalski

e There will be lecture notes and exercise sheets on https://wdybalski.faculty.wni.amu.edu.pl.

The exercise sheets will be posted about one week before the class at which they will be discussed.

e Office hours: Tuesdays 12-13 (Except Tuesday 7.10) or by appointment.
e Textbook: In general Qksendal [Ok|. But first lecture: Roepstorff [Ro, Ch 1].

Lecture 1

1

Introduction and motivation

1. ODE are prolific in physics. Imagine a particle moving under the influence of an external force, e.g. a

pendulum
d*x(t)
A solution can be found given the initial conditions xg = x(0),vg = dflgt) lt=0:
z(t) = zo cos(wt) + % sin(wt), w= L3 (2)
-0 v w ’ S Vm

The picture in phase space is an elipse.

. In a real laboratory situations there are imperfections. For example, the air viscosity will modify the

equation to

R —kx(t) — v T > 0. (3)

The picture in phase space is a spiral.

. In addition there are perturbations which act like an external force: Trains passing by, seismic tremors,

electromagnetic forces for nearby electric devices (acting on a metal pendulum):
d?x(t d(t dB

U0 — kaf) 20 o0
dt? dt dt

The picture in phase space is a rough spiral. =~ The goal of the lecture is to understand the
problem of existence and uniqueness of solutions for such equations.

> 0. (4)

[It may seem hopeless to describe this influence of many factors which we do not control. What saves us
is the Central Limit Theorem: If the particle feels the combined effect of a large number of independent
kicks,

t
/ ds{independent random kicks at time s} (5)
0

the net force looks approximately like a Gaussian random variable B; called Brownian motion. 4By g

dt
called the white noise.]

. From the practitioner’s point of view, random variable is something you can compute expectation F

(or average) of and get numbers. For Brownian motion we have
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E

(Bi) =
E(Bf) =t,
E((Bo — Bt)(Bt — Bs)) =0 for s >t > 0, (independence of increments).
By =0.

Dealing with ¢ — B, naively as if it was a differentiable function is tricky: In fact,

d.d_ dB,
L= —t= 2 B(B})=2B(B,—"

. Biiat — By
g ) = Aim 2B (B——) =0, (6)

2
which is a contradiction. In reality, one can make sense of % = QBt% + 1, which saves the game.
[This example shows, that closer mathematical scrutiny is needed to deal with such objects].

5. Equations involving such random noise are called stochastic differential equations (SDE).
e Since B; are random variables, also x(t) are random variables. Concepts like existence and unique-
ness of solutions have to be reconsidered.
e Applications: climate fluctuations, turbulence, neural activity, option pricing.... [It is hard to
escape SDE if you want to model real world phenomenal].

6. A financial mathematics application:

e Suppose a person has an asset or resource (e.g. house, stocks, oil...) that they want to sell.

e To start with, suppose that the value of the asset grows with r (At - compounded, annual) interest
rate:

ATX — At (1)

o If we take the idealization of a continuous interest rate, this gives

with a solution X; = Xpe™ [t measured in years|.

e Since we are talking about a risky asset, the interest rate is fluctuating:

dX; dB;
W = <7" + adt>Xt, r, o > 0 (9)

Naive solution has the form:
Xt = Xgert+aBt (10)

One can make a mathematical sense out of it. But one can also make mathematical sense of the
solution:

Xt — Xoe(rféaz)ri»aBt’ (11)
depending how exactly one defines stochastic integrals [ f(t)dB;. [This will be important part of

the course|.

e Optimal stopping problem: The person knows {X;}o<s<; and wants to find an optimal time
to sale the asset. [If you sell too early, you may loose future gains. If you sell to late the pay-off
may shrink].



e An optimal portfolio problem: Suppose a person has two possible investments: a risky
investment (9) (a stock) and a safe investment (8) (a bond). How to divide the asset X; =
u Xy + (1 — ug) Xy into a risky investment and a safe investment, given the selling time 77

e Pricing of options: Suppose that at time ¢ = 0 the person of the previous question is offered
the right (but no obligation) to buy one unit of the risky asset at a specified price K and at a
specified future time ¢t = T'. [European call option]. How much should the person be willing to
pay for such an option? Problem solved by Black and Scholes in (1973), related to Nobel Prize in
Economics in 1997 (Scholes and Merton).

2 Brownian motion

2.1 General probability

[I will explain how B; emerges from a random walk. We need some basic probabilistic notions needed to
describe the random walk and state the CLT. (Picture from the notes of Bertsekas and Tsitsiklis [BT, p.6]).]

1. Def: If Q is a given set then a g-algebra F on 2 is a family of subsets on {2 with the following properties:
(i) 0 e F.
(i) Ae F = A° € F, where A° is the complement of A in .
(111) A1, Ag,...e F= A= Uf;Az e F.

e Example: For Q = R¢ the smallest o-algebra containing all open sets is called the Borel o-algebra
B(R™).
e If (iii) holds only for finite sums, then F is called an algebra.
2. Def: The pair (2, F) is called a measurable space.
3. Def: A probability measure on a measurable space (2, F) is a function P : F — [0, 1] s.t.

(a) P(0)=0, P(Q2) = 1.
(b) If Ay, Ag,... € F and {A;}2, disjoint (i.e., A4;NA; =0 isi# j) then

P GAi :iP(Ai). (12)
=1 =1

[Question: Why do we need a sigma field and cannot just define the measure on all subsets? Banach-
Tarski paradox.]

4. Def: The triple (2, F, P) is called a probability space.

5. Def. We say that the events A, B, are independent if P(AN B) = P(A)P(B). |Note that disjoint sets
are dependent. Examples: flipping a coin several times, rolling a die several times|. For a family of
events Ay, ... A,, we require for any non-empty subset I C {1,...n}

P(()4) =[] P4 (13)
i€l il
6. Def. Conditional probability:

P(A|B) = P(ANB)

) o P #0, (14)

That is, probability that A occurs provided that B is known to occur.
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7.

10.

11.

12.

13.

14.

Random variable is a functions X : Q — R which is F-measurable. That is, X ~1(O) € F for any
open O C R,

. Def. Every random variable induces a probability measure px on R, given by

ux(B) = P(X"\(B)) = P(X € B). (15)
It is called the distribution (or law) of X. One also writes £(X) := px or X ~ [Name of L(X)].
For example, if X : Q — R satisfies

Jix (A) = / L (16)

2mo?

we say that X is a Gaussian variable with law N (m,o?) (normal disribution) or X ~ N(m,a?).
Def. For a finite family of random variables X1, ..., X,, the joint law is the measure on R%" given by

txy..x,(A) = P(X1,...,X,) € A), AeBR™). (17)

Def. If [|X(w)|dP(w) < oo then the number

/X )dP(w /xdux( ) (18)

is called the expectation of X (w.r.t. P). Change of variables formula for measures.

If you are not comfortable with integration w.r.t. an arbitrary measure you may want to have a look
at [Ru, Chapter 1].

Def. If [|X(w)?dP(w) < oo then the number

var(X) = B(X?) — B(X)? = E[(X - E(X))?] (19)
is called the variance.
Def. We say that real-valued random variables X1,...,X,, are independent if
BXq Xy = HX; @ @ L, . (20)

Fact: If two random variables X,Y are independent, then they are uncorrelated

E[XY] = E[X]|E[Y] (21)
provided that E[|X]|] < oo and E[|Y]] < co. (Converse not true in general. But true for Gaussian
random variables as we will see).

Idea of proof: We compute for characteristic functions X = xr,, ¥ = xr,.

ElXrXR] = /XF1 (Wxp (W)dP(w) = P(Fy N Fy) = P(F1)P(F). (22)

Then, it follows for step functions. Recalling the definition of the Lebesgue integral, a measurable
function is approximated pointwise by step functions.

Thm (Central Limit Theorem (CLT)): Let (Xj;);>1 be i.i.d. (independent identically distributed) R-
valued random variables with E(X;) = m and Var(X;) = o2 with 0 < 02 < co. Let S, = Y X

Let Y,, = 5"77"7;” Then Y,, converges in distribution to Y, where Y ~ N(0,1). That is, for any

g
bounded, continuous function f on R

/f z)dpy, (z) = /f )dpy (). (23)
(This is also called weak convergence of measures)
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2.2 Example: Bernoulli trials and binomial probabilities

1. Consider one Bernoulli trial with a toss of a coin where we get heads (H) with probability p and tails (T)
with probability 1 — p.

e Sample space: Qo ={H,T'}
e o-algebra: All subsets of g
Fo={0,{H} {T}{H,T}} (24)

e Probability measure: Py(0) =0, Ph({H}) =p, P({T}) =1—-p, PB({H,T}) = 1.
2. Consider n independent Bernoulli trials.

e Sample space Q = Q. Any w € Q has the form w = (w1,...,wy), w; € {H,T}.
e o-algebra: All subsets of 2.

e Probability measure: By independence of trials,
P({w}) = [T Pofws}) =™ (1 = p)r=Fin@), (25)
i=1

where R, (w) is the number of H in w. Note that R, :  — R is a random variable.

3. Define random variables &; : @ — {—1,1} s.t.

+1 if w; = H,
W) = 26
4. Then R,, = #{¢ : & = +1} is the number of heads in n trials.
5. Fact: We have
P(R,, = {) = P({ heads come up in an n-toss sequence) = <Z>pé(1 —p)h (27)

We will write R,, ~ Binomial(n,p), i.e. the random variable R,, has a binomial probability distribution.

Proof:

e Suppose we fix a particular individual outcome, e.g. HITTHTT. There are { = 2 heads in n = 6
trials. By independence of the tosses,

P(HTTHTT) = P(H)P(H)P(T)P(H)P(T)P(T) = p’(1 — p)"~*. (28)

e There are many events which have £ = 2 heads in n = 6 trials. For example HHTTTT. As this is
a disjoint event from HTTHTT we have

P(HHTHTT or HTTHTT) = P(HHTHTT) + P(HTTHTT). (29)

e Now, how many different sequences of n tosses contains exactly £ heads? Clearly, (Z) U



2.3

1.
2.
3.

From random walks to Brownian motion
Particle moves on a lattice hZ, h > 0.
There occurs one step, to the left or to the right, within the period of time 7 > 0.

Successive steps are independent: e.g. a fair coin (p = l) is tossed at each step and the particle moves
to the left or to the right depending on the outcome (H or T). We can use the same sample space as
above Q = {H,T}", with probability P defined by (25).

We want to compute probability
P(particle ends up at = = kh after n steps, starting from zero) =: P(kh,nt) =: Plk,n]. (30)

e Define the random variable S, = & +...4&,, s.t. Sph is the position of the particle after n steps.

e We have S,, = (+1)R,, + (—1)(n — Ry,), hence R, = (n + Sp)/2. So the event {5, =k} = {w €
Q: Sp(w) =k} is the same as {R,(w) = (n+k)/2} ={weQ : R, = (n+k)/2}.
e Then P[k,n] = P(S, = k) = P(R, = (n+ k)/2). Since R,, ~ Binomial(n, 1/2), we have

Plk,n) :== P(R, = (n+k)/2) = <% (n”+ k)> Qin (31)

provided i (n + k) is integer. Otherwise P[k,n] = 0.

Let us now try to take the continuum limit h,7 — 0 s.t. t := n7,z:="%h, D = % stay constant.
Position of the particle after n steps is x = hS,, = vV27DS,, = %5’”. We restrict attention to n of

the form n = tn for t € N and n € N. Then = =

2;? Sht is still position of the particle after n steps
at time ¢ expressed in terms of 7 which we will take to co.  This motivates the definition (setting
D = 1/2 and renaming 1 — n):

n 1
with the convention Sy = 0.
Fact: By the CLT the limit
(n)
nh_)ngoB (33)
exists in distribution and defines a family of Gaussian random variables By ~ N(0,t).
Def: The family {B;}cr, is called the Brownian motion.
Proof of the fact: In our case X; = &;.
e Let us compute the law of &. Let A € B(R). We note that & (w) = & (w;).
pe(A) = P(w : &(w) € A) = P(w : &(wi) € A). (34)

e Independence: For n = 2

pe 6 (AL x Az) = P(w « (&1(w), &2(w)) € A1 x Ag)
=P(w : (§1(w1),&(w2)) € A1 x Ap)
=Pw : 51(60 ) € A1, € (w2) € Ag)
= P(w : &i(w1) € A)P(w : &aw2) € Az) = pg, (A1) e, (A2), (35)

where in the next to the last step we made use of the independence of coin tosses, i.e. (25). For
arbitrary n the argument is analogous.



e We compute
my = B(§) = [ 6)aPw) = [ &g = (+1)5 + (-5 =0, (36)
9 9 1 1
7t = B&) = [ G(iPdP) = [ &dug, = ()5 + (1)5 = 1. (37

e Thus, by the CLT, Y,, = % converges in distribution to a Gaussian random variable Y = By;—y
with law N (0, 1).
e Similarly, for t € N, Snt = Vi St — /1Yy — VEY =: By ~ N(0,1). Its law is
1

1
-v*/24 :/ -v?/(2t) g 38
river Vot b )

that is By ~ N(0,t). (I leave for the reader the extension to t € Ry ). [

iy (A) = P(VIY € A) = P(Y € A/VE) = /A

7. Remark: We know from the proof that E(B;) = 0, E(B?) = t. We would also like to show E((By —
B)(B; — Bs)) = 0, s > t, but so far we do not have a joint probability space for By and Bs, t # s.
However, already now, such an outcome is suggested by

E((BS" - B{")(B{" — B™)) = 0. (39)
The two factors have the form
n n 1
Bt( )_Bg ) = ﬁ(&mtﬁ—l“‘"""g\_nsj)v (40)
B — B = (g1 + -+ + € ). (41)
0 t \/ﬁ [nt]

They involve independent coin tosses. For independent random variables we have E(XY) = E(X)E(Y)
by (20), so (39) follows.

8. We can also compute E(Bfn)Bgn)). By (39), for s > t,

(BB = BB = Lt g = 1. (12)
We used E(&&;) = E(§)E(&) =0 for i # j. Since the roles of ¢, s can be exchanged
E(B"BM) = min(" [13) (43)
n n

As we will see, in the limit F(B;Bs) = min(t, s).

9. Let us consider again the continuum limit A, 7 — 0 s.t. t :=n7,x :=kh, D := 2 stay constant. There
is another way to see (heuristically) that the probability distribution of the position of the particle
must be Gaussian:

o Recall: (%41) = (2) + (,):

e Hence: Plk,n+ 1] = 2Pk —1,n]+ 1Pk +1,n]. In fact,

n+1 1 1 n 1 1 n 1
Pl 1] = _ 2 — 4= —. (44
[k, +1] (é(n+1+k))2n+1 2<§(n+1+k)>2n+2(§(n+1+k)—1>2” ()

Alternatively, we can say that the event { particle at point k after n + 1 steps } is a union of two
disjoint events { particle at point k& — 1 after and n steps, then jump to the right } and { particle
at point k + 1 after n steps, then jump to the left }
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e Thus, we have

P(kh,(n+1)7) — P(kh,nt) _ h? P((k + 1)h,n7) — 2P(kh,n7) + P((k — 1)h,n7)
T T or h?

(45)

If the continuum limit p(z,t) := limy, 0 P(kh,nT) exists, then f[ﬁ(x, t)dx is the probability of
finding the particle in the interval I C R. The probability distribution p satisfies the heat equation
Ip(x, t) 0*p(, 1)

5 =D 92 (46)

This is an example of a Fokker-Planck equation, describing the probability distribution of a
stochastic process (in our case {B;}cr., ).

e In the continuum limit ‘starting’ the process at = 0 corresponds to the initial condition p(z,0) =
do(x) (Dirac delta) as this means zero probability of finding the particle in any I not containing
{0}. Then the solution of the heat equation is:

1 x?
p(x,t) = ex - — . 47
Pt = i < 4Dt> o
Setting D = 1/2 (as above) this is the probability distribution of B;.

Lecture 2
The goal is now to construct a joint probability space for all By, t € R.

2.4 Stochastic processes

1. Def. A stochastic process is a parametrized collection of random variables

{Xi}ter (48)

defined on a probability space (€, F, P) and assuming values in R?. (7 is a set. Typical choices:
R4 :=[0,00), [a,b], N...).

2. Remark: For fixed t € T we have a random variable > w — X;(w) € R%.

3. Def: For fixed w the function 7 > t — X;(w) is called a path of X;. (Interpretation: result of an
experiment w at time ¢. Eg. position of a random walker at time ¢).

4. Remark: For fixed stochastic process {X;};e7 we may associate with each w a function ¢ — X;(w) =:
w(t) from 7 into RY. (Recall that for random walk w = HHT ...TH was uniquely determining the
path).

e Then, we regard Q2 as a subset of Q = (RNd)T. Namely, with any w we associate a path {t — X (w)}.
We denote this embedding by ¢ : 2 — Q.
e The o-algebra F on Q is generated by ‘cylinder sets’ of the form

Chyotribr b, =0 € RYT 2 O(th) € Fy,...,0(t) € By}, F; € R Borel. (49)

Fact: For T countable, F is the Borel algebra on Q provided that Q is equipped with the product
topology. (The product topology is the smallest topology containing sets (49) with F; open).
[There is a statement in [Ok, p.10| that the same is true for 7 = [0, 00), but I have doubts if it
really holds. Remains to be checked.|



e We define the measure P on (€2, B) as follows
P(C) = P(H(C)) (50)
for cylinder sets C.

In view of the above, one can see the stochastic process as a measure P on the space of paths (Q, F ).
We include all possible paths in Q = (R%)7, but some of them may have probability zero. For example,
for the random walk, the path for which after time 7 the walker is at position 2h has probability zero.

5. Def: Suppose that {X;}e7 and {Y;}.e7 are stochastic processes on (£2, F,P). Then, we say that
{X¢}e7 is a version of (or modification of) {Y;}ier if

P{we N : Xi(w) =Y (w)}) =1 for all t. (51)
6. Def: The finite-dimensional distributions of the process X = {X;}+c7 are the measures vy, ; defined
on R¥* k=12 ... by
Vgt (F1 X Fy X -+« X Fy) = P[Xy, € F1,..., Xy, € Fl
= /X(Xt1 (w) € F1)...x(Xy, (w) € Fy)dP(w), (52)

where t; € T and Fy,. .. F), denote Borel sets in RY.

7. Under certain conditions, it is possible to reconstruct the stochastic process {X;}ie7 from the distri-
butions:

Theorem 2.1. (Kolmogorov’s extension theorem). For all ty,...,t, € T let vy, . 4, be probability
measures on R¥ s.t.

Vg, (Fl X oo X Fk) = Vi, tk(FO'_l(l) X e X Fa—l(k)) (Kl)

(1) slo (k) )
for all permutations o on {1,2,... k} and
Fi x - x Fy x RTx ... x RY). (K2)

Vtq, g (Fl XX Fk) = Vty,..., tkytk+17---7tk+m(

Then, there exists a probability space (0, F, P) and a stochastic process { X} e on Q s.t.
th,‘..,tk(Fl X oo X Fk) = P(th S Fl, cee ,th S Fk), (53)
for allt; € T, k € N and all Borel sets Fj.

2.5 Brownian motion from Kolmogorov theorem

1. To construct {By}>0 it suffices to specify a family of probability measures {vy, ¢, }t,,..,>0 satisfying
the conditions from the Kolmogorov theorem.

e For fixed z € R? define

|z —y|?

o7 ) forye RY, ¢ > 0. (54)

pt,a,y) = (2mt) "2 exp (-
o If 0 <ty <tg <--- <t define a measure v, 4, on R4k by
Uiyt (F1 X o X F)
= / p(tr,x, x1)p(te — t1, 21, 22) - - p(te — th1, Th—1, Tx)dxy - . . day, (55)
F1><~-><Fk

where we use the convention p(0, z, y)dy = d,(y)dy (unit point mass at x in physicist’s notation).
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e Extend to all finite sequences using (K1). Since [ p(¢,z,y)dy =1 for all ¢t > 0, also (K2) holds.

2. Remark: Note that for x = 0, d = 1, we have

vy (F1) = / p(t1,0,21)dey = / Bty 21)day (56)
F I3
where p appeared in (47) as a limit of random walk probability distributions, satisfying % =
D82§(5§7t).
xr

3. Consequently, there exists a probability space (2, F, P*) and a stochastic process {B;}:>0 on Q s.t.
the finite-dimensional distributions B; are given by:

P*(By, € F1,--+ , By, € Fy) = / p(ty,z, 1) - p(te — tho1, Tp—1, Tg)dxy - - - dp. (57)
Fi1 XX Fy,

This formula determines the law of a family of random variables in the sense of (17). In the notation
of (17) it reads

PI(Btl c F1,~ . e 7Btk € Fk) = /I/Bt’l"'”’Bth (Fl X ... X Fk) (58)

Hence, the measure on the L.h.s. of (57) is absolutely continuous w.r.t. the Lebesgue measure on
the r.h.s. with density given by p(t1,x,21) - p(tx — tg—1,2k—1, ). Thus, for any Borel measurable
function f on R? we have

/f(Btl,. . .,Btk)Px(Btl edxy,--- 7Btk S dxk)
= /f(a:l, .. vxk)MBtl,-..,Btk (z1,...,xk)
- / F@re o et 2, 21) - plts — thor, 2ot 2) o - da. (59)

The notation P*(By, € dx1,---, By, € dxy), popular in probability theory, is defined by the above
relations.

4. Def: The process constructed above is called (a version of) a Brownian motion starting at x.
5. Properties of the Brownian motion:

(i) {Bt}ter, is a Gaussian process, i.e., for all 0 < t; < --- < {5 the random variable Z =
(B, -, By,) € R% has a multi-normal distribution. (To be defined below.)

(ii) By has independent increments, i.e.,
B, ,By, — By,,..., By, — By, (60)

are independent for all 0 <t < t9--- < t}.

(iii) Brownian motion has a version with continuous paths. By considerations above (49), Brownian
motion can be seen as the space C(]0,00), R?) with probability measure PZ.

These properties will be precisely stated and proven in Section 2.7 after preparatory Section 2.6.
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2.6 Gaussian random variables

This appendix is based on [Ok, Appendix A].

Definition 2.2. Let (2, F, P) be a probability space. A random variable X : Q — R is (non-degenerate)
normal if the distribution of X has a density of the form

1 (x —m)?
pxa) = ——ep ( ~ ) (o1
where ¢ > 0 and m € R. That is
P(X €G) = / px(x)dx for G C R Borel. (62)
G
By Gaussian integration:
72
= /QXdP— /Rarpx(ac)dx = /(m—km)ar exp< 202>dx = (63)
var(X) = B[(X —m)¥ = / (2 — m)2px (z)dz = o2 (64)
R

Lecture 3

Definition 2.3. A random variable X : Q — RY is called (non-degenerate) multi-normal N(m,C) if the
distribution of X has a density of the form

det(A) 1
px(Z1,...,xq) = (271)”/2 exp < 5 k —my)a;ji(xy — mk)> (65)
T Js
\/det(A 1
(27r)”/2 exp ( 5 z—m)TA(x — m)) (66)
\/det(A 1
@ exp ( 5 m), A(z — m)>> (67)
where m = (my,...,mg) € R and C = A1 = [cjxl1<jr<a € R is a symmetric positive definite matriz
(i.e. all eigenvalues strictly positive).
Similarly as for d = 1, by Gaussian integration,
E(XJ) = my, (68)
E[(Xj —my)(Xg —mp)] = cjp. (69)

Definition 2.4. The characteristic function of a random variable X : Q — R? is the function ¢x : R* — C
defined by

dx(uty...,ug) = Elexp(i(u1 X1+ -+ ugXy))| = /Rd ei<“’x>ux(dx), (70)

where ux(G) = P(X € G) = P((X1,...Xq) € G) and (u,x) = uixy + - - + ugxq.

Remark 2.5. ¢x determines the distribution pux uniquely. Otherwise, we would have

[ e (o) = [ e, o), (1)
R4 Rd
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for all u € R? and two different measures px,, jtx,. By integrating both sides w.r.t. u with some f € S(RY) !
we would get

f@)px,(de) = [ f@)nx,(dz),  where  f(x) ¢=/ ') f (w)du (72)
R4 R4 Rd

is the Fourier transform. Since Fourier transform maps S(R?) onto S(R?) and S(R?) is dense in Co(R?) 2 in
the supremum norm, the equality extends to functions from Co(RY). Now the assumption that the measures
are different is in conflict with the Riesz-Markov theorem. (A positive, linear functional on Co(R?) is given
by integration against a uniquely given measure, cf. [Ruf).

Theorem 2.6. If X : Q — R? is multi-normal, i.e., N(m,C), then

1 .
dx(ug,...,uqg) = exp (— 2Zuj0j7kuk+zz:ujmj) (73)
Jk J

:exp<—

e Proof by Gaussian integration. (HS2).

(u, Cu) + i(u, m>) (74)

N |

e By Remark 2.5, we can equivalently define a Gaussian random variable X : @ — R? as having the
characteristic functional (73).

e This latter definition makes sense also for non-negative definite C' (i.e., having eigenvalues larger or
equal to zero). We will use the concept of multi-normal distribution N(m,C) in this extended sense,
unless stated otherwise. If some eigenvalues of C' are zero, the multi-normal distribution is called
degenerate.

Theorem 2.7. Let X;:€Q — R be random variables, 1 < j < d. Then
X =(X1,...,Xq) (75)
18 multi-normal iff
Y=MX1+ -+ X Xg = (\, X) is normal for all A1, ..., g € R. (76)

The equivalence also holds for (multi-)normal non-degenerate random variables if we restrict to X # 0 in
(76).

Proof. If X is multi-normal, by Theorem 2.6
1
Elexp(iuY)] = Elexp(iu(\, X))] = exp ( - 51]2()\, CN) +iu(, m>>, (77)

so Y is normal with E(Y) = (A, m) and var(Y) = (\,CX).

Conversely, suppose that Y = (), X) is normal with E(Y) = m and var(Y) = 02, i.e.,
Elexp(iaY)] = exp (— 30202 + ium). (78)
Then, by (63), (64)
m=E(Y)=> NEX)), (79)
J
o? = E[(Y — E(Y))*] = E[(D_M(X; —my)*] =3 Ak B((Xi — ma)(X; — my)), (80)
J .3

Cij

!Schwartz class functions: smooth and bounded together with their derivatives even after multiplication by polynomials.
2Continuous functions tending to zero at infinity.
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where m; = E(Xj). As X arbitrary, by comparing with (73), (68), (69) we obtain that X is multi-normal.
To prove the non-degenerate case, we use that a symmetric matrix C' has all eigenvalues strictly positive
iff (\,CA) >0 forall A\#0. O

Theorem 2.8. Let Yy, Y1 ...Yy be real random variables on Q). Assume that X = (Yo, Y1,...Yy) is multi-
normal and Yy and Y are uncorrelated for j > 1, i.e.,

El(Yo — EG))(Y; — BV}l =0, 1<j<n. (s1)
Then Yy is independent of {Y1,... Y, }.

Remark 2.9. Recall that independent random wvariables are always uncorrelated. But the converse is not
true in general: Such random variables X,Y that A := {X # 0} and B := {Y # 0} are disjoint, are not
independent’ (P(A N B) # P(A)P(B)). But, if we choose them so that E(X) = E(Y) = 0, we obtain
E(XY) =0, hence uncorrelated.

Proof. We have to prove that
P[Yy € Go, Y1 € Gy,..., Y€ Gg] = P[Yp € Go| - P[Y1 € Gy,...,Y; € Gy, (82)
for all Borel sets Gy, ...Gq C R. By (81), the covariance matrix
ey = E[(Ye — E[Yi])(Y; — E[Y]])] (83)
has only the first entry ¢ non-zero in the first row and first column. Thus, writing u = (ug, @) we have
(u, Cu) = cooud + (i, C't). (84)
Therefore, by (73),

1

bx (1) = exp < - %(u, Cu) + i(u,m)) — exp < _ % o = (@ Ca) + g, mo) + (7 m>>

= dvy (u0) Py, vy (U1, - - ug)- (85)

By Remark 2.5, ¢x determines the law uniquely, so (82) follows. O

2.7 Proofs of basic properties of the Brownian motion

Let us come back to the Brownian motion, starting at x, which is a family of random variables { B }c(0,00)
on a probability space (2, F, P?).

Theorem 2.10. {Bi}ic(0,00) @5 a Gaussian process, i.e., for all 0 <t < -+ <ty the random variable
Z = (B, ... By,) € R¥* has a multi-normal distribution with mean and covariance
m=(z,z,...,z), C(j,0),35' &) = min(tj, tj/)(SE,g/, (86)

where j,5" = 1,....k, £,¢' =1,...,d. (In particular, E*[(By, — ) - (By; — x)] = dmin(t;, t;) in agreement
with random walk considerations.)

3If two random variables X, Y are independent, then X ™' (F}), Y ™! (F), F1, F» € B(R?), are independent events. (We will
come to this reformulation of independence later).
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Proof. Recall that
.Pm(.Bt1 S Fl, o ;Btk S Fk)
= / p(t, @, x1) - p(te—1 — th—2, Th—2, Tp—1)P(tk — tg—1, Tp—1, T )dx1 - - - dxg, (87)
Fy XX Fy,

where

2
p(t, z,y) = (27t) Y% exp (- |:1:2ty|) for y € R% ¢ > 0. (88)

Consequently
Elexp(i(u, Z))] = /exp(iulBt1 + -+ iug By, )P (By, € dxy, ... By, € dxy)
= /exp(z’uwl + - Fiugag)p(ty, o, 1) - plte — tp—1, Tp—1, Tk )dxy - - - dag,

= [ exp(iugzy + - - - + tupxr)p(Aty, 2 — x1) - - - p(Atg, Tp—1 — xg)dxy - - - dx
/P(11 ki) P(Aty 1) P(Atg, xp—1 — xp)day k

21 2k

= eiU”"/exp(z'Ulzl + o+ iUrzp)p(Aty, 21) -+ p(Atg—1, 2k—1)P(Aty, 2 )dz1 - - dzy,

k
_ eiU1ac H E(Atﬁ% Ufn) — ei(2§:1 Uj)'m—% Zf‘n:l(Atm)UEh (89)

)
m=1

k

where 5 is the Fourier transform of p, Uy, := ZJ _qnuj and Atg, = t5 —tym—1 to := 0. From this we read off
the mean m = (z,x,...,x). Now we read off the covariance:
k
Z Aty U2 = Z Atin(D - uj)?
m=1 j=m
k k k k
= Z Atﬁl Z Uj - Ujr = Z Atm Z X(j > T?L)X(jl > ﬁl)uj s Ut
m=1 J'=m m=1 Ji'=1
k min(j,j")
= Z Uj - g Z Aty = Z wj - uj(ts —to+ta —t1+ -+ tminG )
Jij'=1 m=1 Jj'=1
k
= Uj - Ujrtmin(s,i) Z wj - wymin(ty, tjr), (90)
Jy'=1 7y'=

where in the last step we used that the times are ordered t; <t < --- <t; <--- < #;. Thus, Ci0),G ) =
min(tj,tj/)ég,f/. O

Lecture 4

Theorem 2.11. {B;}icr, has independent increments, i.e.,
BtluBtQ - Btlv ... 7Btk - Btk_p (91)
are independent for all 0 < t1 < ty--- < ty. Moreover, (B; — Bs)' ~ N(O, |t — s|). (Upper index i in B}

denotes component, not power.)

14



Proof. By Theorem 2.8, it suffices to check that the variables are uncorrelated. By Theorem 2.10
E*(By, By,) = dmin(ty,t2), where By = By — x. Then,

E[(Btz - Btl)i(Bt:s - Bt2)i] = E[(Bt2 - Bh )i(Bt3 - BtQ)i]
= E[By, - B,] — E[By, - Bi,] — E[By, - Bi,] + E[B;, - B,]
:(tg—tg—t1—|—t1):0 (92)

and analogously for other pairs.
As for the last statement: By Theorem 2.7, (B; — Bs)?, i = 1,...,d, are Gaussian random variables. We
have E(B; — Bs)" = 0 and

E({(B: — Bs)'}?) = E((By)” — 2B, B, + (B,)?) = t + s — 2min(t, s) = [t — 5], (93)
which concludes the proof. [
Now we justify the continuity property (iii) of the Brownian motion:

Theorem 2.12. (Kolmogorov’s continuity theorem). Suppose that the process {X;}ier, satisfies the fol-
lowing condition: For all T > 0 there exist constants o, 3, D > 0 s.t.

E[|X; — X,|*] < D|t —s|'*?, 0<s,t<T. (94)
Then there exists a continuous version of X.
To verify the assumptions of Theorem 2.12 for X; = By, we prove the following lemma:

Lemma 2.13. There holds, that

E*[|B; - ByJ"] = E*[{(B: — B.)- (B — BJ)}*] < Djt — s[2. (95)
for some D > 0.
Remark 2.14. We could replace above E* with E*=C, since B — By = Bt — Bs, where Bt = B; — .
Proof. Let X! := B} — B! ~ N(0, |t — s|), cf. Theorem 2.11. Then Z' = WXZ' ~ N(0,1), cf. (38). We

have
d
E*[|B, — BJ|"] = E*[|X]"] = |t — sPE"[{ >_(Z")*}"). (96)
i=1
The last factor is finite, since
d . 2 1 2
B ;(21)2} = W/ d={ Z ~31e (97)

This concludes the proof. (Actually, (97) = d(d + 2) see HS3). O

We summarize our discussion of the Brownian motion with the following axiomatic definition of a particular
version of the Brownian motion:

Theorem 2.15. Let Q = C(R;RY) be equipped with the topology of uniform convergence on compact sets
and let B be the resulting Borel o-algebra. Let By(w) = w(t) be the coordinate processes. For any x € R?
there exists a unique probability measure P* on (2, B) such that

1. P(Bp=z)=1.

2. (Bi)ier, has independent increments.

3. For all0 <s<t, Bi— Bs~ N(0,(t —s)I), where I is the d x d identity matriz.
It is called the canonical Brownian motion.

For proof cf. [Pa, Chapter VII].
15



2.8 Brownian motion as a path integral

Recall the formula

E*(f(By,-. Btk))

/f By, (w), ..., By (w))dP*(w /f x1,...,2p)p(t, z, x1) - - p(ty — th—1, Tp—1, T )dxy - - - dg,,
where
[Tote tem = (1] N
— by, Ty, X0) = ex —ti1)).
g:1p £ — L—1,Te—1,%¢ P 2ty —to_1) d/2 p 2ty — to1) -1

Suppose tp — ty_1 = € and we consider the heuristic continuum limit ¢ — 0 and £ — oo for 0 < ¢ < 7T'. In
this limit:

e f depends on By for all ¢ € [0, 7], thus becomes a function of a path starting at =

By (W), By (W) = f(w(tr), -, w(tr) = FH{w() }eepor)) = (W) (99)

o oxp (= Sy gty e e — ten)) = oxp (= fi 5 (%) dn).

° [H]ZIZI W} — %Dw, where Dw is (non-existent) infinite product of Lebesgue measures

and N is a normalization constant.

e Altogether,

[ 1) B @it - [ . rgon (- [ E (djf))dt) Do, (100)

which is an example of a path integral.

e Dw does not exist and the paths w are a.s. not differentiable. But the product % exp (fOT % (d"zlgt))zdt) Dw

makes sense as a Gaussian measure on the Banach space C([0, T]; R?).

Nz/exp(—/ 2<d“:i§)> dt) (101)

Thus (107) can be written as a quotient of two path integrals.

e Since [dP*(w) =1,

Connection to quantum mechanics:

o Let f(w) = dy(w(T)) so that it fixes the final value of the path to . Then, the quantity

Kp(T:y,a) = /Lut;jjxyi/,exp<—/o 2<d°;§>> dt)Dw (102)

is called the Euclidean (imaginary time) propagator (or Green function). It is a propagator of the heat
equation, i.e.:

(Or = 582)Kp(T;y, ) = 6(T)é(x — y). (103)

2
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e Let us change variables t = iT, T' = ¢T and interpret ¢(7) := w(it) as the position of the quantum
particle. Then the (real time) propagator is given by

a(T=y 1 T 1 (dg(r)\?
K(T;v, ::/ — (/ ( >d>D. 104
(Tsy,2) oee N exp i) 57 7 | Dq (104)

This is the propagator of the Schrédinger equation, i.e.:

(i0 + %AI)K(T; y,) = §(T)8(x — y). (105)

e Consider a free quantum mechanical particle described at 7 = 0 by a wave function R 3 z — Yo(x).
Then, the probability of finding the particle in the region A C R? is N [0 (z)[2d.

e Making use of (105), we obtain that at time 7 = 7 > 0 the quantum mechanical particle is described
by the wave function

br(y) = / K(T;y,2)o(x)dr. (106)

Then, the probability of finding the particle in the region A ¢ R? is N |7 (y)|?dy. (These quantum
probabilities do not come from the probability space (€2, B, P*). There is no generally accepted prob-
ability space for quantum mechanics, but there are some proposals, called hidden variables theories).

e More generally, for a quantum mechanical particle moving in an external potential V'

a(T)=y 1 ‘
Ky(Tia) = [ S exp (iSTa) Da, (107)

q(0)=z

where S[q] := fOT[%(d(é—(:))? — V(q(7))]dr is called action. The minimum of the action is given by the
trajectory of the classical particle in potential V. It satisfies the Newton equations

d?q(7)
dr?

= ~(VV)(a(n)). (108)

This is a special case of a certain paradigm in physics: Suppose we are given a theory which in the
regime of small fluctuations (i.e. variances) is described by a variational principle (like minimizing
g — S[q]). Then, using path integrals of schematic form (107), one can cover the case of larger
fluctuations. This applies to the step from classical mechanics to quantum mechanics. Similar relation
holds between thermodynamics and statistical physics.

3 Stochastic integral

Unless stated otherwise, in this section we consider Brownian motion with values in R starting at x = 0. We
will write P = P*=0, F = E*=0,

3.1 Motivation

Recall the risky investment equation from (9)

ds ds
17

dXs dBs
= (r—i—a )Xs, r,a > 0. (109)



As we suspect from (6) that s — Bs(w) is not differentiable in the usual sense, let us integrate both sides
w.r.t s € 0,t]:

t t
X, = Xo + / rXods +7 / aXdB,". (110)
0 0

This is a special case of a general class of equations

t t
Xt:XO—i—/ b(s,Xs)ds—ir”/ o(s, X )dBy". (111)
0 0

How to give meaning to the last integral?

Lecture 5

3.2

Riemann-Stieltjes (RS) integral

RS integral is the first possibility which comes to mind. It gives meaning to integrals of the form

b
/ f(s)dg(s) (112)

e.g. when f is continuous on [a,b] 4 and g has bounded total variation.

1.

Def. For a partition IT := {a = sop < $1 < -+ < 8, = b} write |II| = maxj<j<n|$ — si—1| and
Ag; = g(si) — g(si-1).

. Def. The variation of g on [a, b] over II is

V2 (9,10 ==Y |Agi| € [0, 00). (113)
i=1

. Def. The total variation of g on [a, b] is

Vo(g) = sup V(9,10 € [0, o). (114)

We say that g has bounded total variation if V,*(g) < oc.

. Examples:

e Any monotone function (continuous or not) is of bounded total variation. E.g. suppose g is
increasing. Then, for any II

n n

D 1Ag =) (Agi) = g(b) — g(a). (115)

i=1 =1

e Fact. (Jordan decomposition) A function g of bounded total variation can be decomposed g =
g+ — g—, where g1 are increasing. Recall that any monotonous function is differentiable almost
everywhere w.r.t. the Lebesgue measure. This is the first indication that RS-integral may not
be a good stochastic integral, since we don’t expect s — Bs(w) to be differentiable in the usual
sense, cf. (6).

4That is, f is continuous in (a,b), the limits limg}, f(s) resp. limgy, f(5) exist and equal f(a) resp. f(b).
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e A continuous function may have an unbounded total variation: E.g.

SSln(l) , s#0,
g(s) = (116)
0, s=0.

on the interval [—1,1]. (Homework)

o If g € C1(R) then V(g f |’ (s)|ds < oo. (Homework). In this case

/ £(5)dg(s / 7(s (117)

so RS integral is reduced to a Riemann integral.

5. A tagged partition of [a, b] is a pair (II, ) consisting of a partition II together with a choice of tags

& € [si_l,si], 1=1,...,n. (118)

6. Def. Given two tagged partitions II,II' we define their common refinement II that is the union of all
the points in increasing order {a = 89 < §1 < --- < §, = b} (Picture).

Each interval I = [8,_1, 3] of II lies inside exactly one interval of I € II resp I’ € IT'. We define £(I)
resp. &'(1 [) to be the corresponding tags &; € I resp. § € I'. (Note that {(1), £'(I) may not belong to
I and we don’t consider IT a tagged partition).

Suppose that si, € [si_1,s;]. Then

F&)(g(si) = g(si-1)) = £(&)(g(si) — g(siy) + 9(siy) — g(si-1)
= fE(1)Ag(Ih) + f(E(12) Ag(D), (119)

where Ag(I) = g(s;) — g(si_1). Consequently

D &) glsi) —glsin)) = > f&d (120)

=1 e
Y € g(si) = glse1)) = D f(& (121)
¥=1 fef

Theorem 3.1. Suppose that f is continuous on [a,b] and g has bounded total variation. Then the following
limit exists and defines the RS integral:

b
| #)dgts) = lim Zf& 5) — glsi1)). (122)

I —

The limit is over a sequence of (finer and finer) tagged partitions (I1,£) and is independent of the choice of
the tags within the partitions. (For stochastic integrals tags will matter).

Proof.

1. For a tagged partition (II, &) with tags & € [si—1, S|, define the RS sum

S(f.g; 1) : Zf (&) Agi, M| := max (s; — si-1). (123)

1<i<n
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2. Let wy(9) := sup{|f(s1) — f(s2)] : [s1 — s2] < 6, s1,52 € [a,b]} be the modulus of continuity of f.
Since f is continuous on [a,b], w¢(6) — 0 as 0 | 0.

3. If (I, €) and (I, ¢') are two tagged partitions with max{[II|, [I'|} <, let II be a common refinement.
Then, by (120), (121),

S(f,g:1L,8) = S(f, 10, &) =D (F(6D)) = £(£(1))) Ag(D), (124)
fefi
hence
1S(f,9:T1,€) = S(f, T, €)| <wp(8) > |Ag(D)] < wp(8) VI(g). (125)
fell

4. Given ¢ > 0, choose § > 0 so that ws(5) V2(g) < e. Then any two sums with mesh at most § differ by
less than . The net S(f, g; 11, €) is Cauchy as |II| — 0 and therefore convergent. Define

b
/a fdgi= lim S(f.giTLE) (126)

which is independent of the choice of tags. (To see this last point choose in (125) II = II' but ¢ different
from & and observe that the difference goes to zero in the limit |[II| — 0.)
3.3 Why Riemann-Stjeltjes integral is not a good stochastic integral?

Short answer: Because the Brownian motion has unbounded total variation.

Theorem 3.2. Let (Bs)sejo,r) be the variant of Brownian motion with continuous paths. Then

I'(B) := sup E |Bs;, — Bs,_,| =00 P-almost surely. (127)
n -
(2

Remark 3 3. If g is of unbounded total variation, there exist continuous f for which the RS integral
f f(s ) does not exist. (We skip the proof of this fact). Thus, Q@ > w — [ f(s)dBs(w), understood
as a famzly of RS integrals, is not a well defined random variable. In fact, even if f can be integrated against
dBs(w1), it may not be possible to integrate it against dBs(wsz) for some we # w1 forming a set of non-zero
P-measure.

To prove Theorem 3.2 we need some preparatory results:

Lemma 3.4. Let g:[0,7] — R be continuous and s.t. Vi (g) < oo. Then,
n

lim 3~ (g(si) = g(si-1))" = 0. (128)

Il
=0 =

Proof. For any partition Il = {0 = s9 < s1 < -+ < s, = T'},
n

> (gs) = g(si-1)* < max Jg(s:) - szl)Z\g 1) — g(si-1)|- (129)

- 1<i<n
i=1

Since g is continuous, max; [g(s;) — g(si—1)| — 0 as |II| — 0, while >_,]g(s;) — g(si—1)| < Vi (g). Hence,
(128) holds. O
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Theorem 3.5. (Kolmogorov’s Strong Law of Large Numbers) Let (Xp)n>1 be independent and identically

distributed (i.i.d) real-valued random variables such that

E[X?] < oo
Define the average
_ 1 <&
X =~ ;Xk

Then
X, — E[X1] P-almost surely.

(130)

(131)

(132)

That is, X, (w) — E[X1] for w € Q\N, where P(N) = 0. In other words, P(w €  : X,(w) = E[X;]) = 1.

We skip the proof of SLLN. It can be proven, e.g., using Borel-Cantelli Lemma from HS1, Problem 7.

Proof of Theorem 3.2.
1. Let II,, = {kT/2" : k =0,...,2"} and define

2’)1
Sp 1= Z (Byrjon — B(kfl)T/Z”)Q'
k=1

(133)

The increments (BkT/Qn —B(k_l)T/Qn) are independent and distributed as N (0,7/2") by Theorem 2.11.

Write Z :— \/¥ (Buryjan — Be—tyrjon) ~ N(0,1), cf. (38). Then
L, I
TS”_;Z’“ = Sy=T [%;Zk]
By the SLLN (Theorem 3.5),
o

1
o Z 7} — E[Z}] =1 P-almost surely,
k=1

and therefore
Sp — T # 0. P-almost surely.

By comparing this with (128), we will now try to obtain a contradiction.

(134)

(135)

(136)

2. Suppose there exists a set A C Q of positive probability s.t. for all w € A we have V! (B(w)) < oo.

Lemma 3.4 applied to the continuous path s +— Bg(w) gives
on )
Jim Z (Brry2r (W) = Be—1yr/2n (W)™ = 0.
k=1

(137)

But by (136) this limit equals 7' > 0 almost surely, a contradiction. Hence P(A) = 0. It follows that

P(W (B) =) =1,
which proves (127). O

For future reference, we note the following lemma:
Lemma 3.6. S, — T in L*(Q, P).
See HS6 for a proof.
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3.4 Ito6 integral. Introduction
Suppose 0 < S < T and Ry x Q3 (t,w) — f(t,w) is given.
1. We want to define fg f(t,w)dBi(w) as a random variable.

2. First assume that f has the form:

p(t,w) = Zej(w)X[jQ*”,(j—i—l)Q*n] (t), (139)

Jj=0
that is, it is a step function in ¢ with some unspecified dependence on w.

3. For such functions we define

T
[ et)iBi) = 3 e By, ~ By lGw), (140)

j=>0
where
j27m it S <2< T,
tp=t"=05 if j2"<S, (141)
T if  j27" > T.

4. Example: Let us approximate f(t,w) = By(w) by step functions in two different ways:

- ZBtj (W)X[tjytj+1](t)’ (142)

>0
ZBtJ+1 X[t] t]+1]( ) (143)
3>0
Then
T
E[/ ©1(t,w)dByi(w ] ZE By;(Bt;,, — Bt;)] =0 (144)
0
7>0

by independence of increments (Theorem 2.11) and E(B;) = 0. But

E T@Q(f7w)d3t(w) = > E[By,,(By,, — By)]
J |

§>0

= ZE[Btj (Btj+1 - Btj)]
7>0

2
+ ZE[(Btj-H - Btj) ] =T, (145)
7>0
also by Theorem 2.11. So two reasonable approximations to f remain far apart, also for large n. We

see that variations of the paths are too large to define the integral in the RS sense. This example
corroborates Theorem 3.2.

5. In order to define | ST f(s,w)dBs(w) we approximate f by step functions:

w) ~ Z F(&5 @)Xt 1) (), (146)

where &; € [t;,t;41]. The following choices proved useful:
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e {; =t; (the left end point). If the limit n — oo exists (in the sense to be specified below), it is
called the [to integral, from now on denoted by

T
/S £t w)dBi(w). (147)

o { = (tj +tj41)/2 (the mid point), which leads to the Stratonovich integral denoted by

T
/S f(t,w) o dB(w). (148)

Remark 3.7. As mentioned in the first lecture, the heuristic equation

X, _ (., dBi
dt

ﬁ = + Cl>Xt, r, o> 0 (149)

can be given meaning in two different ways with solutions
Xt — Xoe(’r‘—%oﬂ)t—i-aBt’ Xt — X(]erH_aBt. (150)
They correspond to the choice of the Ité and Stratonovich integral, respectively.

Lecture 6

3.5 Ito6 integral. Preparations

Our goal now is to specify the class of functions, which we want to integrate. The first step is to prevent
certain pathologies, cf. Remark 3.9 below.

3.5.1 Completeness of probability spaces
1. Def. A probability space (€2, F, P) is called complete®, if F contains all subsets of P-null sets®.

2. Fact: Any probability space can be made complete by adding to JF all subsets of sets of measure 0 and
by demanding that P is zero on these subsets (see HS6).

3. Remark: We assume that the probability space (€2, F, P) of the Brownian motion has been completed.
This does not change the properties (i),(ii),(iii) of Section 2.5, as all of them are reduced to computing
expectations (cf. Theorem 2.12 for (iii)). Integrals w.r.t. dP do not change by adding sets of measure
ZEro.

4. Warning: ([0, 1], B([0,1]), dx) is not complete. Its completion is called the Lebesgue probability space.
The Cantor set C' is to blame for this, see HS6. It has Lebesgue measure zero but cardinality ¢
(continuum). Thus the set of all subsets of C' has cardinality 2°. But B([0, 1]) has only cardinality c,
equal to the cardinality of the set O of open sets in [0,1]. Some ideas behind the latter statement:

e The set Z of open intervals with rational endpoints has cardinality of natural numbers Ry. Any
open set is a union of such intervals. So the cardinality of O is equal to the cardinality of the set
of subsets of Z which is 2% = ¢.

e There is a countable algorithm of generating Borel sets from open sets (iterate countable sums,
countable intersections and complements). Thus the cardinality stays .

5This has nothing to do with the functional analytic concept of complete spaces, i.e. s.t. all Cauchy sequences converge.
N C Qisa P-null set if N € F and P(N) = 0.
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3.5.2

For similar reasons the canonical Brownian motion of Theorem 2.15 does not have a complete proba-
bility space.

. Remark: In the context of Itd integration it is important to complete the probability space (2, F, P)

containing the domain € of the relevant random variables (e.g. Q 3> w — By € R) c¢f. Remark 3.9
below. It is not necessary to complete their range, which is usually (R, B(R), ). That’s why we can
live with Borel sigma algebras.

o-algebras generated by families of sets and random variables

Let us start with some motivating remarks:

e Heuristically, the idea of the It6 integral ("the left end point") is to keep the random variable w

f(t,w) independent of the increment AB; by which it is multiplied.

e But, assuming just this, would be too weak. Abstractly, the problem is the following: Even if random

variables X and Y are, separately, independent of Z, their product XY may not be independent of Z.
This would undermine the proof of a crucial It6 isometry property (Lemma 3.11 below) which is an L?

property.

e Therefore, we will formulate a condition on f which is slightly stronger than independence of ABy,

but stable under taking products. Heuristically, this condition will say that f is a function of Bs(w),
0<s<t.

Now we move on to formulating this condition precisely:

1.

Def. Let A C Q be some collection of sets. Then, o[A] denotes the smallest o-algebra containing A.
It is called the o-algebra generated by A.

Def. Let X : © — R be a random variable on (2, F, P). Then o(X) denotes the smallest o-algebra
w.r.t. which X is measurable. It is called the o-algebra generated by X.
In other words, it is the smallest o-algebra on €2 containing

X 1A):={weQ: X(w)ec A}, AcBR). (151)
Equivalently, o(X) = o[X1(A), A € B(R)].
Fact: (Doob-Dynkin lemma). If X, Y : Q — R are two given functions then Y is o(X)-measurable iff

there exists a Borel measurable function g : R — R s.t. Y = g(X). (Thus measurability w.r.t. o(X)
is a rather restrictive condition).

Fact. A collection of random variables {X; : i € T} is independent if the collection of generated
o-algebras { o(X;) : i € T}, is independent. That is, for any A;, € o(X;,),... 4, € 0(X;,), where
i1,...,% is a finite collection of distinct indices,

. Def. Let {Xi}iej0,r), be a family of random variables (stochastic process)”. The o-algebra generated

by { Xt }iejo,r), denoted o({ X }iepo,77), is the smallest o-algebra w.r.t. which all these random variables
are measurable.

In other words, it is the smallest o-algebra on €2 containing

U o(x). (153)

t€[0,T]

Equivalently, o({X¢}icj0,17) = o[ Uyepo.r) (X))

"We admit T' = oo in which case [0, 7] stands for [0, c0).
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10.

11.

12.

. Def. FX = o({Xs}seo,q), t € [0,T7], is called the natural filtration of the stochastic process { X },(0,77-

Def. More abstractly, a filtration is a family of o-algebras {Gi}sc(0,77, Gt C F, s.t. Gs C Gy for s < t.

. Def. A process {Yi}iecpo,r) is called {Gi}ie(o,m-adapted if for each s € [0,7] the function Y is G-

measurable.

For example, Y, := X, 5 is ]-"tX -adapted, but Y, := X not necessarily.

Def. Suppose (2, F, P) is complete and N := {N € F : P(N) = 0}. The completion of the filtration
{Gt}iejo,m 1s a new filtration defined by

G =0 (G: UN). (154)
Def. The completion of the natural filtration of the Brownian motion will be denoted {F; },¢(o,77. (Com-
pleting the filtration helps avoiding pathologies in the construction of the It6 integral, cf Remark 3.9).

Fact: A function f : Q — R is F;-measurable iff it can be written as the pointwise limit (for a.a. w) of
sums of functions of the form

91(Bt,) - -+ gk(Bty,)s (155)

where g1, ... gi are bounded continuous and ¢; < ¢ for j < k. Can be proven using the Doob-Dynkin
lemma. Intuitively, values of f(w) can be computed from values of Bs(w) for s < t. Therefore, we
think of F; as "the history of {Bs}scr, up to time ¢".

Fact: If Y; is Fi-measurable then it is independent of By — By, s > t. (Follows from the previous item
and independence of increments.)

3.5.3 Admissible functions f

General strategy to identify f for which |, ST f(t,w)dBy(w) makes sense:

o {B;}icr, determines the filtration {F;}ier, -

e We admit only f which are adapted to this filtration, i.e., f(¢, -) is Fy-measurable.

e We also require that the resulting random variable has finite variance. (Recall that the quadratic

variation of the Brownian motion (133) has a finite limit in expectation, cf. Lemma 3.6. This will
stabilize the variance.)

Now formally:

Definition 3.8. Let V(S,T) be the class of functions

(t,w)— f(t,w): Ry x Q=R (156)

such that

(i) f is B(Ry) x F-measurable.
(it) f is {Fi}ier, -adapted.

(iii) E[ [4 f(t, -)%dt] < oo.

Remark 3.9. If (2, F, P) and {Fi}ier, were not complete, by changing the process { f(t, -)}ier, on a set
of measure zero we could escape from the class V(S,T):
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e Let us start with a process fo = 0, which is certainly in V(S,T).
o Choose a P-null set N € F with A C N such that A ¢ F, hence A ¢ F; for any t.

o Set fi(w,t) = XA(W)X[O,I](t)'

e Fort =0 the inverse image of 1 is A which is not in F. Thus fi is not measurable, although f1 = fy
except on the set N of P-measure zero. Thus equality of two functions ‘almost everywhere’ does not
guarantee that they are both measurable. This is one pathology of probability spaces (2, F, P) which
are not complete. (We note, however, that fi is not a version® of fy, since a version is by definition
measurable).

o [fwe completed (2, F, P), the process f1 would become measurable, but still it could happen that A ¢ Fy,
in which case f1 is not adapted. To ensure that fi is adapted, we have to complete also the filtration.
In other words, one pathology of incomplete filtrations is that we can destroy adaptedness by changing
a version of the process.

Lecture 7.

3.6 Ito integral. Definition

1. Def. A function ¢ € V(S5,T) is called elementary if it has the form

ot w) =) ej (W)Xt t;10) (1) (157)

J=0

In particular, since ¢ is adapted, e; must be F; -measurable. For elementary functions, we set

T
/ o(t,w)dBy(w) = 3 e5(w) By, — Bu](w). (158)

S 7>0

2. Def. Let f € V(S,T). Then the It6 integral of f is defined by

T T
/ f(t,w)dBy(w) = lim on(t,w)dB(w), (limit in L*(Q, P)), (159)
S n—oo S
where {p,, }nen is a sequence of elementary functions s.t.
T
E[/ () — on(t, -)|2dt} 0 asn— . (160)
S

Theorem 3.10. (Approxzimation theorem). For any f € V(S,T), a sequence {¢n}nen satisfying
(159), (160) exists.

We will prove this theorem in Subsection 3.8 below.

3. Recall example above, where we approximated f(¢,w) = B;(w) by step functions in two different ways:

(pl(tvw) = ZBtj (w)X[tj,tj+1)(t)7 (161)
j=0

902(tvw) = ZBtj+1(w)X[tj7tj+1)(t)' (162)
j=0

We note that ¢; is elementary whereas 2 may not be elementary because By, , may not be (actually
is not) F,-measurable.

8Versions were defined in Section 2.4.
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3.7 The Ito6 isometry

On the one hand, this subsection can be seen as Step 0 of the proof of Theorem 3.10. On the other hand we
will see here how different ingredients of the intricate definition of the space V(S,T') operate in practice.

Lemma 3.11. (The It6 isometry) If ¢ € V(S,T) is elementary, then

E[(/STgo(t, -)dBt(-)ﬂ :E[/ST@(@ -)th} (163)

Remark 3.12. Suppose the limit (160) exists. Then the sequence {optnen is Cauchy in the norm
fS | - |2dt])Y/2. Hence, by (163), the sequence of random variables fST on(t, - )dB(-) is Cauchy in
L2 Q, P). Thus the limit (159) exists.

Remark 3.13. After we prove Theorem 3.10, the It6 isometry will extend to V(S,T).
We start with some preparatory facts.

Lemma 3.14. AB; := By, — By, is independent of any function f, which is F;-measurable. The same is
true if ABj above is replaced with g(ABj) for some Borel function g : R — R.

Proof. By Theorem 2.11, we have that B, — By, is independent of Bs, 0 < s < t;. By definition of
independence in terms of o-algebras, we have that o(AB;) is independent of o({Bs}scpo,r,)) =t Ft;- Since f
is Fi;-measurable, inverse images of Borel sets w.r.t. f are in F¢;, which gives the first claim.

Regarding the second statement, by the Doob-Dynkin lemma, o(g(ABj)) C 0(AB;) and we know already
that o(AB;) is independent of 7. Actually, one can also give an elementary argument here: For any two
random variables X, Y, if P(X € F1,Y € Fy) = P(X € F1)P(Y € F3), then

PgX)e F,Y e F,) = P(X eg ()Y € Fy)
= P(X e g '(F))P(Y € Fy) = P(9(X) € F1)P(Y € Fy). (164)

This concludes the proof. [J

Lemma 3.15. e;e;AB; and AB; are independent for i < j.

Remark 3.16. If we only knew that e;, e; and AB; are (separately) independent of AB; we could not
conclude that the product e;e; AB; is independent of ABj. Here we need the stronger assumption of adaptation
to a filtration.

Proof. Since e; is F3,-measurable and F;, C Ft;, we observe that e; is J;,-measurable. Considering that
ABy; = By, — By, and i+1 < j, we see that ABy; is F;; measurable. (By definition of Fijyall Bs, 0 < s <,
are measurable w.r.t. this o-algebra, hence so is By, , — By,.) Since a product of functions measurable w.r.t.
Fi ;s also measurable w.r.t. F; iy we obtain that e;e;ABy, is F; j—measurable. Now the claim follows from
Lemma 3.14. [

Proof of Lemma 3.11. Put AB; = By, , — By;. Then, by Lemma 3.15,

Ele3|(tjt1 —t;) if i=].

Here in the first line we used Lemma 3.15, the fact that independent random variables are uncorrelated:
Ele;e;AB;ABj| = E(e;e;AB;)E(ABj) and E(AB;) = 0. In the second line we use Lemma 3.14 to obtain
independence of €7 and (ABj)?. Hence, E[e3(AB;)?] = E[e5|E[(AB;)?] = Elef](tj41 —t;), where in the last
step we used Theorem 2.11. By (165),

E[(/Tcde>T:ZE[eiejAB¢AB ZE (tjs1 —t;). (166)

o irj
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On the other hand

E[/ST ot -)th} = E[/ST|ej\2X[tj7tj+l)(t)dt}

- E[Z . m] = S Bt — 1), (167)

Jj=0

which completes the proof. [J

3.8 Ito integral. Proof of Theorem 3.10

We will approximate as follows:
{feV(S,T)} ~{heV(S,T),bd.} ~{g€V(S,T),bd., cont. in ¢ for any fixed w} ~ {¢ elementary. }(168)

Lemma 3.17. Let f € V(S,T). Then there exists a sequence {hp}nen C V(S,T) s.t. hy is bounded for each
n and

T
E[/ (fhn)Zdt} — 0. (169)
S n—oo
Proof. Put
—n it f(t,w)<—n
ha(tw) = f(tw) i —n < ftw) <n (170)
n if  f(t,w) >n.

Since f € V(S,T), by Definition 3.8 we have

T
E[/ f2dt] < co. (171)
S
By definition (170), |h,(t,w)| < |f(t,w)|. Thus the claim follows by dominated convergence. [J

Lemma 3.18. Let h € V(S,T) be bounded. Then there exist bounded functions g, € V(S,T) such that
gn(+,w) is continuous for all w and n, and

E[/ST(h - gn)zdt} = 0. (172)

Proof. Suppose |h(t,w)| < M for all (¢,w). For each n let ¢, be a non-negative, continuous function on R
s.t.

(i) tn(z) =0for x < —% and 2 >0,
(ii) ffooo Yp(x)dr =1,
i.e. a certain Dirac delta approximating sequence. The functions
n(t,w) /¢ns—t swds-/ U (s —t)h(s,w)ds (173)

have the following properties:
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(a) gn are bounded uniformly in n:

gt w)] < /0 " (s — B)lh(s,w)lds < sup |h(s,w)] < M. (174)

seRy

(b) gn are continuous for each fixed w and n. In fact, suppose t, £_> t. Then, by boundedness of h,
— 00

continuity of 1, and dominated convergence

lim g (£, w) = / lim oy (5 — £)h(s,w)ds = gn(t,w). (175)
{—o0 g f—

We also made use of the fact that, since ty is a bounded sequence, we can replace the upper boundary
of integration in (173) by a sufficiently large constant.

(c) Since h € V(S,T), one can show that g,(t, -) is Fi-measurable for all ¢. In fact, we note that
Yn(s — t)h(s,w) is non-zero only for s < ¢ and h(s,w) is, by assumption, Fs-measurable. Hence,
it is Fy-measurable as Fy; C F;. Since sums of measurable functions are measurable, also Riemann
sums gp (t,w) = Zf‘:l Yn(si — t)h(s;,w)As; are Fi-measurable. The pointwise limit g, (t,w) =
limyrg 0 gn,11(f, w) of Fi-measurable functions is F;-measurable.

(d) There holds (HS7, Problem 2)

/T(gn(t,w) — h(t,w))?dt — 0 for each w. (176)

S n—oo

Finally, by the uniform boundedness of g, (see (a)), boundedness of h and dominated convergence, we
have

E[/ST dt (h — gn)th] = 0. (177)

This concludes the proof. [J

Lemma 3.19. Let g € V(S,T) be bounded and g( - ,w) be continuous for each w. Then, there exist elementary
functions ¢, € V(S,T) s.t.
T
EU (9 — gpn)2dt] — 0. (178)

S n—oo

Proof. Set ¢,(t,w) = >, 9(tj,w)Xt;t;,,)(t). Then ¢, is elementary since g € V(S,T). (In fact, for
tj <t <tjy1 we have ¢, (t,w) = g(t;,w) which is F; -measurable. Since F; C J, it is also Fi-measurable).
Moreover,

T
/S (g — @n)?dt 2 0 for each w (179)

since g is continuous. In fact, g(t,w) — pn(t,w) = > _;[g(t,w) — g(tj, W)Xt 1,0 (8), for S <t < T, hence

T
[latte) = enttar = | D lot) = ol O

IN

We (. o) (2 /ZX 1) = wy(. (27T = 9), (180)

where the modulus of continuity
Wo(-w)(0) := sup{|g(t1, w) — g(ta,w)| : [t1 —t2 <6, t1,t2 € [S,T]} (181)

satisfies limy, 00 Wy(. ,,)(27") = 0 for any fixed w. This gives (179). Finally, by the boundedness of g and
dominated convergence we obtain the claim. [
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3.9 Ito6 integral. Example
Lemma 3.20. Assume By =0. Then

T 1, 1
BydB; = —-B3 — - T. (182)
0 2 2

Proof. Put ¢, (t,w) = >_; Bj(w) - X[t t;,1)(t), where B; := By;. Then
T ti+1
E[/ (on — Bt)%@ = E[Z/ (B; — Bt)th}
0 T4
ti+1 1
SD ) RN D SONEINY (183)
j b

J

Recall from (141) that t; = j27" < T. Then

1 1 _ 1
(183) < 3 § (tj41 —tj)? = 5 § 27 = 52 2n(Tom) = 0. (184)
72— <T 3<12"

Thus we checked (160). Consequently, by (159),

T T
BydB; = lim ondB; = lim Y B;AB, (185)
J, Beame= i, [ ondes = iy 3B,

in L2(€2, P). Note that

ABY) = B4y — B} = (Byos — By + 2B,(Bys — B)

= (AB;)*+2B;AB;. (186)
Since By = 0,
B} =Y A(B})=) (AB;)>+2) B;AB;. (187)
j j j

By Lemma 3.6, we have that Ej(ABj)Q — T in L*(Q, P) as n — oo, thus the result follows. O
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