
A crash course in functional analysis

Wojciech Dybalski

May 3, 2017

Contents

1 Measure theory 1

2 Spectral theorem 2

3 Stone theorem 4

1 Measure theory

The theory of self-adjoint operators relies heavily on measure theory. Here we recall
several basic concepts and facts which will be useful in these lectures. Proofs can
be found in the first two chapters of [3].

1. Let X be a topological space (a set with topology). A family M of subsets
of X is a σ-algebra in X if it has the following properties:

• X ∈M,

• A ∈M⇒ Ac ∈M,

• An ∈M, n ∈ N, ⇒ A :=
⋃∞
n=1 An ∈M.

If M is a σ-algebra in X then X is called a measurable space and elements
of M are called measurable sets.

Remark 1.1. The Borel σ-algebra is the smallest σ-algebra containing all
open sets of X. Its elements are called Borel sets.

2. Let X be a measure space and Y a topological space. Then a map f : X → Y
is called measurable if for any open V ⊂ Y the inverse image f−1(V ) is a
measurable set.

3. A (positive) measure is a function µ : M → [0,∞] s.t. for any countable
family of disjoint sets Ai ∈M we have

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai). (1.1)
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Also, we assume that µ(A) <∞ for at least one A ∈ M. Moreover, we say
that a measure space is a measurable space whose σ-algebra of measurable
sets carries a positive measure.

4. We denote by Lp(X,µ), 1 ≤ p < ∞ the space of measurable functions
f : X → C s.t.

‖f‖p :=

(∫
X

|f(x)|pdµ(x)

)1/p

<∞. (1.2)

We denote by Lp(X,µ) the space of equivalence classes of functions from
Lp(X,µ) which are equal almost everywhere w.r.t. µ. Space Lp(X,µ) is a
Banach space with the norm (1.2) (Riesz-Fisher theorem).

Theorem 1.2. (Riesz-Markov-Kakutani). Let X be a locally compact Hausdorff
space1 and Cc(X) the space of continuous compactly supported functions on X.
Let Λ : Cc(X)→ C be a positive linear functional2. Then there exists a σ-algebra
M in X and a positive measure on M s.t.

Λ(f) =

∫
X

f(x)dµ(x) for any f ∈ Cc(X). (1.3)

Theorem 1.3. (Dominated convergence). Let fn be a sequence of complex, mea-
surable functions on X s.t.

f(x) = lim
n→∞

fn(x) (1.4)

exists for any x. If there exists a function g ∈ L1(X,µ) s.t.

|fn(x)| ≤ g(x) for all n ∈ N, x ∈ X, (1.5)

then f ∈ L1(X,µ). Moreover,

lim
n→∞

∫
X

fn(x)dµ(x) =

∫
X

f(x)dµ(x). (1.6)

2 Spectral theorem

Definition 2.1. Let X be a measurable space with a σ-algebra M. We say that
M3 ∆→ E(∆) ∈ B(H) is a spectral measure if:

• Each E(∆) is an orthogonal projection.

• E(∅) = 0, E(X) = 1.

1i.e. a topological space s.t. any two distinct points have disjoint neighbourhoods and any
point has a compact neighbourhood.

2i.e. if f takes values in [0,∞] then Λ(f) ≥ 0.
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• If ∆ =
⋃N
n=1 ∆n, with ∆n ∩∆m = ∅ for n 6= m, then

E(∆) =
N∑
n=1

E(∆n). (2.7)

For N = ∞ this reads s− limN→∞
∑N

n=1E(∆n) , where strong limit means
limit on any fixed vector.

• E(∆1)E(∆2) = E(∆1 ∩∆2).

For any ψ ∈ H the expression ∆ → 〈ψ,E(∆)ψ〉 is a positive measure and the
formula

〈ψ,Aψ〉 =

∫
x 〈ψ, dE(x)ψ〉 (2.8)

defines a self-adjoint operator A on the domain

D(A) = {ψ ∈ H |
∫
|x|2〈ψ, dE(x)ψ〉 <∞}. (2.9)

It turns out that also the converse is true:

Theorem 2.2. (Spectral theorem, spectral measure variant). For any self-adjoint
operator (A,D(A)) there exists a spectral measure E on a σ-algebra of (Borel-
)measurable sets on R s.t.

A =

∫
xdE(x), (2.10)

where the last relation means that (2.8), (2.9) hold. Furthermore Sp(A) = supp dE
i.e. the spectrum of A equals the support of the spectral measure.

Idea of proof: Let A be bounded, for simplicity. Consider a map g → 〈ψ, g(A)ψ〉
defined first for polynomials and then extended, using the Stone-Weierstrass theo-
rem to continuous functions. Then we get by the Riesz-Markov-Kakutani theorem
a measure space (Xψ, µψ) s.t.

〈ψ, g(A)ψ〉 =

∫
Xψ

g(x)dµψ(x) (2.11)

and we can extend this expression to measurable functions g. In particular, we set
E(∆) := χ∆(A) and it is easy to check that this gives a spectral measure. �

In this outline of a proof we also learned how to form functions of operators

g(A) =

∫
g(x)dE(x) (2.12)
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Example: A = diag(λ1, λ2). For the corresponding eigenvectors |e1〉 = (1, 0) and
|e2〉 = (0, 1) we have

A = λ1|e1〉〈e1|+ λ2|e2〉〈e2| =
∫
λdE(λ) (2.13)

with dE(λ) = (|e1〉〈e1|δ(λ − λ1) + |e2〉〈e2|δ(λ − λ1))dλ. Then clearly g(A) =
diag(g(λ1), g(λ2)) i.e.

g(A) = g(λ1)|e1〉〈e1|+ g(λ2)|e2〉〈e2| =
∫
g(λ)dE(λ) (2.14)

Fact. If s.a. A /∈ CI then there is a Borel set ∆ s.t. 0 6= χ∆(A) 6= I. (This was
used in the proof of equivalence of two notions of irreducibility).
Proof. Recall that χ∆(A) =: E(∆). Take λ ∈ Sp(A). Sp(A) equals the support
of dE. This means that for any ball B(λ, r) of radius r > 0 centered at λ we
have E(B(λ, r)) 6= 0. Suppose E(B(λ, r)) = I for all r > 0. Then I = E(R) =
E(B(λ, r)∪(R\B(λ, r))) = I+E(R\B(λ, r))) by definition of the spectral measure
. That is E(R\B(λ, r)) = 0 so Sp(A) = {λ} i.e. A = λI. �

3 Stone theorem

Definition 3.1. R 3 t 7→ U(t) ∈ B(H) is called a (one parameter) strongly
continuous group of unitaries if all the U(t) are unitary operators and

1. U(t1 + t2) = U(t1)U(t2) for all t1, t2 ∈ R.

2. U(0) = I.

3. t→ U(t)ψ is continuous for any ψ ∈ H (i.e. strongly continuous).

Example: Given a s.a. operator A, one can use the spectral theorem to define

U(t) = eitA (3.15)

This is a strongly continuous group of unitaries. As for continuity, the key obser-
vation is that for tn → 0

lim
n→∞
〈ψ, (U(tn)− I)ψ〉 = lim

n→∞

∫
(eitnλ − 1)〈ψ, dE(λ)ψ〉 = 0 (3.16)

by the dominated convergence theorem. It turns out that this example character-
izes all strongly continuous groups of unitaries:

Theorem 3.2. (Stone) Given a strongly continuous group of unitaries U there
exists a self-adjoint operator A s.t.

U(t) = eitA. (3.17)

Furthermore D(A) = {ψ ∈ H | limt→0
(U(t)−I)

t
ψ exists. }.
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