Quantum states for a scalar field on AdS

Hugo Ferreira

Joint work with Claudio Dappiaggi

INFN / Università degli Studi di Pavia

28 May 2016, TUM

38th LQP Workshop "Foundations and Constructive Aspects of QFT"

0. Introduction

- Study systematically a massive scalar field on anti-de Sitter (AdS), namely the role of the boundary conditions and the existence of extensions of the solutions to the boundary as distributions.
- Construct quantum states holographically from the boundary of AdS, analogously with the asymptotically flat case [Dappiaggi et al], with the view of extending the procedure to asymptotically AdS spacetimes.
- Use this system as an example to study QFT on manifolds with boundaries and theories with singular potentials.

2 Massive scalar field on AdS

3 Conclusions

Outline

1 Massless, conformally coupled scalar field on AdS

2 Massive scalar field on AdS

3 Conclusions

1.1. Poincaré fundamental domain.

■ Anti-de Sitter AdS_{d+1} ($d \ge 2$) is the maximally symmetric solution to Einstein's equations with a negative cosmological constant. It is defined by the relation

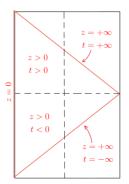
$$-X_0^2 - X_1^2 + \sum_{i=2}^{d+1} X_i^2 = -\ell^2, \qquad \ell > 0,$$

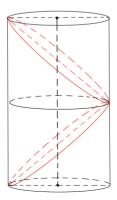
where (X_0, \ldots, X_{d+1}) are Cartesian coordinates of $\mathbb{M}^{2,d}$.

■ Poincaré patch (t, z, x_i) , $t \in \mathbb{R}$, $z \in \mathbb{R}_{>0}$ and $x_i \in \mathbb{R}$, $i = 1, \ldots, d - 1$,

$$ds^{2} = \frac{\ell^{2}}{z^{2}} \left(-dt^{2} + dz^{2} + \delta^{ij} dx_{i} dx_{j} \right).$$

The region covered by this chart is the *Poincaré fundamental domain*, $PAdS_{d+1}$.



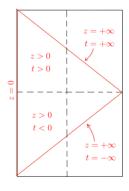


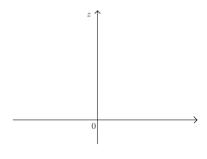
1.1. Poincaré fundamental domain.

■ PAdS_{d+1} can be mapped to $\mathring{\mathbb{H}}^{d+1} \doteq \mathbb{R}_{>0} \times \mathbb{R}^d \subset \mathbb{M}^{1,d}$ via a conformal rescaling

$$ds^2 \mapsto \frac{z^2}{\ell^2} ds^2 = -dt^2 + dz^2 + \delta^{ij} dx_i dx_j.$$

We can attach a conformal boundary as the locus z=0 and obtain $\mathbb{H}^{d+1} \doteq \mathbb{R}_{\geq 0} \times \mathbb{R}^d$, the *upper half-plane*. This is the geometric setting of the Casimir-Polder system.





1.2. Massless, conformally coupled scalar field

■ Poincaré domain (PAdS_{d+1}, g), scalar field ϕ : PAdS_{d+1} $\rightarrow \mathbb{R}$,

$$P\phi = \left(\Box + \frac{d-1}{4d}R\right)\phi = 0.$$

For every solution $\phi \in C^{\infty}(\mathrm{PAdS}_{d+1})$, the function $\Phi = (\frac{z}{\ell})^{\frac{1-d}{2}}\phi$ is a smooth solution of the same equation in $\mathring{\mathbb{H}}^{d+1}$.

1.2. Massless, conformally coupled scalar field

■ Poincaré domain (PAdS_{d+1}, g), scalar field ϕ : PAdS_{d+1} $\rightarrow \mathbb{R}$,

$$P\phi = \left(\Box + \frac{d-1}{4d}R\right)\phi = 0.$$

For every solution $\phi \in C^{\infty}(\mathrm{PAdS}_{d+1})$, the function $\Phi = (\frac{z}{\ell})^{\frac{1-d}{2}}\phi$ is a smooth solution of the same equation in $\mathring{\mathbb{H}}^{d+1}$.

• Upper half-plane (\mathbb{H}^{d+1}, η) , scalar field $\Phi : \mathbb{H}^{d+1} \to \mathbb{R}$,

$$\begin{cases} P_{\mathbb{H}}\Phi = \square_{\mathbb{H}}\Phi = 0\\ \Phi(0, x_i) = 0 \end{cases},$$

with Dirichlet boundary conditions at $\partial \mathbb{H}^{d+1}$ (Casimir-Polder system).

The classical and quantum scalar field theory in \mathbb{H}^{d+1} was investigated in [Dappiaggi, Nosari, Pinamonti (2014)].

1.2. Massless, conformally coupled scalar field

Off-shell configurations. Define the isometry $\iota_z : \mathbb{R}^{d+1} \to \mathbb{R}^{d+1}$, $(z, x^i) \mapsto (-z, x^i)$, and the natural action on functions, $f(x) \mapsto f(\iota_z(x))$.

The space of kinematical or off-shell configurations of the CP system is

$$\mathscr{C}^{\mathrm{CP}}(\mathbb{H}^{d+1}) \doteq \left\{ \phi \in C^{\infty}(\mathbb{H}^{d+1}) : \phi|_{\partial \mathbb{H}^{d+1}} = 0 \,, \, \exists \, \tilde{\phi} \in C^{\infty}(\mathbb{R}^{d+1}) : \phi = \frac{1}{\sqrt{2}} \left(\tilde{\phi} - \iota_z \tilde{\phi} \right) \Big|_{\mathbb{H}^{d+1}} \right\} \,.$$

Classical observables. Functionals $F_f: \mathscr{C}^{\mathrm{CP}}(\mathbb{H}^{d+1}) \to \mathbb{R}$,

$$\phi \mapsto F_f(\phi) = \int_{\mathbb{H}^{d+1}} \mathrm{d}^{d+1} x \, \phi(x) f(x) \,, \qquad f \in C_0^{\infty}(\mathbb{H}^{d+1}) \,.$$

1.2. Massless, conformally coupled scalar field

Off-shell configurations. Define the isometry $\iota_z : \mathbb{R}^{d+1} \to \mathbb{R}^{d+1}$, $(z, x^i) \mapsto (-z, x^i)$, and the natural action on functions, $f(x) \mapsto f(\iota_z(x))$.

The space of kinematical or off-shell configurations of the CP system is

$$\mathscr{C}^{\mathrm{CP}}(\mathbb{H}^{d+1}) \doteq \left\{ \phi \in C^{\infty}(\mathbb{H}^{d+1}) : \phi|_{\partial \mathbb{H}^{d+1}} = 0 \,, \, \exists \, \tilde{\phi} \in C^{\infty}(\mathbb{R}^{d+1}) : \phi = \frac{1}{\sqrt{2}} \left(\tilde{\phi} - \iota_z \tilde{\phi} \right) \Big|_{\mathbb{H}^{d+1}} \right\} \,.$$

Classical observables. Functionals $F_f: \mathscr{C}^{\mathrm{CP}}(\mathbb{H}^{d+1}) \to \mathbb{R}$,

$$\phi \mapsto F_f(\phi) = \int_{\mathbb{H}^{d+1}} d^{d+1}x \, \phi(x) f(x), \qquad f \in C_0^{\infty}(\mathbb{H}^{d+1}).$$

Off-shell *-algebra of observables. $\mathscr{A}_{\text{off}}^{\text{CP}}(\mathbb{H}^{d+1})$, endowed with complex conjugation as the *-operation, is the algebra generated by $F_f(\phi)$.

On-shell *-algebra of observables. $\mathscr{A}_{\mathrm{on}}^{\mathrm{CP}}(\mathbb{H}^{d+1})$ is the algebra generated by $F_{[f]}(\phi)$,

$$[f] \in \mathscr{C}_0^{\mathrm{CP}}(\mathbb{H}^{d+1})/P_{\mathbb{H}}\left[\mathscr{C}_0^{\mathrm{CP}}(\mathbb{H}^{d+1})\right],$$

 $\phi \in \mathscr{S}^{\mathrm{CP}}(\mathbb{H}^{d+1})$, the space of solutions of the CP system.

1.2. Massless, conformally coupled scalar field

States. $\omega : \mathscr{A}^{\mathrm{CP}}(\mathbb{H}^{d+1}) \to \mathbb{C}$ s.t. $\omega(1) = 1$ and $\omega(a^*a) \geq 0$, for all $a \in \mathscr{A}^{\mathrm{CP}}(\mathbb{H}^{d+1})$.

■ States $\tilde{\omega}$ on $\mathscr{A}^{\mathrm{KG}}(\mathbb{R}^{d+1})$ for the Klein-Gordon system in Minkowski spacetime.

Guassian or quasi-free states: the n-point functions $\tilde{\omega}_n \in \mathcal{D}'((\mathbb{R}^{d+1})^{\times n})$ are such that

$$\tilde{\omega}_{2n+1}(f_1 \otimes \ldots \otimes f_n) = 0,$$

$$\tilde{\omega}_{2n}(f_1 \otimes \ldots \otimes f_n) = \sum_{\pi_{2n} \in S'_{2n}} \prod_{i=0}^n \tilde{\omega}_2(f_{\pi_{2n}(i-1)} \otimes f_{\pi_{2n}(i)}),$$

where S'_{2n} is the set of ordered permutations of 2n-elements.

Hadamard states: $\tilde{\omega}_2 \in \mathcal{D}'(\mathbb{R}^{d+1} \times \mathbb{R}^{d+1})$ has a wavefront set of the form

$$WF(\tilde{\omega}_2) = \left\{ (x, x', k_x, -k_{x'}) \in T^*(\mathbb{R}^{d+1} \times \mathbb{R}^{d+1}) \setminus \{0\} : (x, k_x) \sim (x', k_{x'}), \ k_x \triangleright 0 \right\},$$

$$(x, k_x) \sim (x', k_{x'}) : x \text{ is linked to } x' \text{ by a null geodesic,}$$

$$k_{x'} \text{ is the parallel transport of } k_x \text{ along that geodesic;}$$

$$k_x \triangleright 0 : k_x \text{ is future-directed.}$$

1.2. Massless, conformally coupled scalar field

■ States ω on $\mathscr{A}_{\mathrm{on}}^{\mathrm{CP}}(\mathbb{H}^{d+1})$ for the CP system.

 $Hadamard\ states$: requires a modified definition, inspired by the concept of F-locality of [Kay (1992)].

Definition: A quasi-free state ω on $\mathscr{A}^{\operatorname{CP}}(\mathbb{H}^{d+1})$ is a *Hadamard state* if its restriction to any globally hyperbolic subregion of \mathbb{H}^{d+1} is of Hadamard form.

1.2. Massless, conformally coupled scalar field

• States ω on $\mathscr{A}_{\mathrm{on}}^{\mathrm{CP}}(\mathbb{H}^{d+1})$ for the CP system.

Hadamard states: requires a modified definition, inspired by the concept of F-locality of [Kay (1992)].

Definition: A quasi-free state ω on $\mathscr{A}^{\mathrm{CP}}(\mathbb{H}^{d+1})$ is a *Hadamard state* if its restriction to any globally hyperbolic subregion of \mathbb{H}^{d+1} is of Hadamard form.

Remarks:

- (1) The CP algebra $\mathscr{A}^{\operatorname{CP}}(\mathbb{H}^{d+1})$ is injectively embedded in the KG algebra $\mathscr{A}^{\operatorname{KG}}(\mathbb{R}^{d+1})$, hence a Hadamard state on $\mathscr{A}^{\operatorname{KG}}_{\operatorname{on}}(\mathbb{R}^{d+1})$ for the KG system in Minkowski spacetime can be pulled back to a state on $\mathscr{A}^{\operatorname{CP}}_{\operatorname{on}}(\mathbb{H}^{d+1})$ for the CP system, preserving the Hadamard property.
- (2) (Method of images) If $\tilde{\omega}_2 \in \mathcal{D}'(\mathbb{R}^{d+1} \times \mathbb{R}^{d+1})$ has an integral kernel such that

$$\tilde{\omega}_2(z, x^i; z', x'^i) = \tilde{\omega}_2(-z, x^i; -z', x'^i),$$

then the corresponding $\omega_2 \in \mathcal{D}'(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1})$ is such that

$$\omega_2(z, x^i; z', x'^i) = \tilde{\omega}_2(z, x^i; z', x'^i) - \tilde{\omega}_2(-z, x^i; z', x'^i).$$

1.2. Massless, conformally coupled scalar field

■ States ω^{PAdS} on $\mathscr{A}_{\text{on}}^{\text{KG}}(\text{PAdS}_{d+1})$ for the KG system in PAdS_{d+1} .

Given a Hadamard, quasi-free state ω on $\mathscr{A}_{\mathrm{on}}^{\mathrm{CP}}(\mathbb{H}^{d+1})$, then a Hadamard, quasi-free state ω^{PAdS} on $\mathscr{A}_{\mathrm{on}}^{\mathrm{KG}}(\mathrm{PAdS}^{d+1})$ is such that the integral kernel of its two-point function is

$$\omega_2^{\text{PAdS}}(z, x^i; z', {x'}^i) = \Omega^{\frac{d-1}{2}}(z) \, \omega_2(z, x^i; z', {x'}^i) \, \Omega^{\frac{d-1}{2}}(z') \,,$$

where $\Omega(z) = \frac{z}{\ell}$ is the conformal factor.

Outline

1 Massless, conformally coupled scalar field on AdS

2 Massive scalar field on AdS

3 Conclusions

2.1. Field equation

■ Poincaré domain (PAdS₄, g), scalar field ϕ : PAdS₄ $\rightarrow \mathbb{R}$,

$$P\phi = \left(\Box - \widetilde{m}^2 - \xi R\right)\phi = 0.$$

■ Upper half-plane (\mathbb{H}^4, η), scalar field $\Phi = (\frac{z}{\ell})^{-1} \phi : \mathring{\mathbb{H}}^4 \to \mathbb{R}$,

$$P_{\mathbb{H}}\Phi = \left(\Box_{\mathbb{H}} - \frac{m^2}{z^2}\right)\Phi = 0,$$

with $m^2 \doteq \tilde{m}^2 - (\xi - \frac{1}{6})R \ge 0$.

The KG system in PAdS₄ is equivalent to a scalar field system in \mathbb{H}^4 with a singular potential at z = 0.

2.2. Distributional solutions

$$P_{\mathbb{H}}\Phi = \left(\Box_{\mathbb{H}} - \frac{m^2}{z^2}\right)\Phi = 0$$

Case $m^2 = 0$. The field equation, and hence the smooth solutions, can be trivially extended to z = 0 to the whole of $\mathbb{M}^{1,3}$, regardless of the boundary conditions.

Case $m^2 > 0$. There are no smooth extensions of solutions to z = 0. Instead, consider distributional solutions in \mathbb{H}^4 for $m^2 > 0$ in three steps:

- (1) Construct distributional solutions in $\mathring{\mathbb{H}}^4$;
- (2) Show they admit an extension to z = 0 using the notion of scaling limit;
- (3) Exploit the $z \to -z$ symmetry to extend the solutions to $\mathbb{M}^{1,3}$.

2.2. Distributional solutions

Step 1. Fourier representation of Φ :

$$\Phi = \int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \underline{k}}{(2\pi)^{\frac{3}{2}}} e^{i\underline{k}\cdot\underline{x}} \,\widehat{\Phi}_{\underline{k}},$$

where $\widehat{\Phi}_k$ are solutions of the ODE

$$Q\,\widehat{\Phi}_{\underline{k}} \doteq \left[\frac{d^2}{dz^2} + \left(\omega^2 - k_x^2 - k_y^2 - \frac{m^2}{z^2}\right)\right]\widehat{\Phi}_{\underline{k}} = 0.$$

Generic solution:

$$\widehat{\Phi}_{\underline{k}}(z) = c_1(\underline{k})\sqrt{z} J_{\nu} \left(z\sqrt{-\underline{k}\cdot\underline{k}}\right) + c_2(\underline{k})\sqrt{z} Y_{\nu} \left(z\sqrt{-\underline{k}\cdot\underline{k}}\right),$$

$$\nu \doteq \frac{1}{2}\sqrt{1+4m^2}.$$

Solution is well-defined for z>0 and z<0 (with $z\to -z$).

Remark: Imposing Dirichlet boundary conditions implies $c_2(\underline{k}) = 0$.

2.2. Distributional solutions

Step 2. $\widehat{\Phi}_{\underline{k}}(z) \in \mathcal{D}'(\mathbb{R} \setminus \{0\})$. Is there an extension as a distribution at the origin and, if so, is it still a solution of the equation?

We use the notion of scaling limit by [Steinmann (1971)] and the results of [Brunetti, Fredenhagen (2000)] and [Bahns, Wrochna (2014)].

2.2. Distributional solutions

Step 2. $\widehat{\Phi}_{\underline{k}}(z) \in \mathcal{D}'(\mathbb{R} \setminus \{0\})$. Is there an extension as a distribution at the origin and, if so, is it still a solution of the equation?

We use the notion of scaling limit by [Steinmann (1971)] and the results of [Brunetti, Fredenhagen (2000)] and [Bahns, Wrochna (2014)].

Definition: For a distribution $u \in \mathcal{D}'(\mathbb{R})$, let $u_{\lambda} \in \mathcal{D}'(\mathbb{R})$, $\lambda > 0$, be such that

$$u_{\lambda}(f) \doteq \lambda^{-1} u(f(\lambda^{-1} \cdot)), \qquad f \in \mathcal{D}(\mathbb{R}).$$

The scaling degree of u, sd(u), is the infimum over all $\alpha \in \mathbb{R}$ such that

$$\lim_{\lambda \to 0} \lambda^{\alpha} u_{\lambda} = 0.$$

Theorem: Let $u \in \mathcal{D}'(\mathbb{R} \setminus \{0\})$ have scaling degree $\operatorname{sd}(u)$. Then, if $\operatorname{sd}(u) < 1$, u admits a unique extension to $\mathcal{D}'(\mathbb{R})$ with the same scaling degree, otherwise, if $\operatorname{sd}(u) \geq 1$, u admits several extensions to $\mathcal{D}'(\mathbb{R})$ with the same scaling degree.

2.2. Distributional solutions

Corollary: Let $u_1, u_2 \in C^{\infty}(\mathbb{R} \setminus \{0\})$ be respectively defined so that, for x > 0,

$$u_1(x) = \sqrt{x} J_{\nu}(x), \qquad u_2(x) = \sqrt{x} Y_{\nu}(x),$$

and, for x < 0, $u_1(x) = u_1(-x)$ and $u_2(x) = u_2(-x)$. Then, u_1 admits a unique extension to a distribution $u_{1,0} \in \mathcal{D}'(\mathbb{R})$ with the same scaling degree of u_1 for all $m^2 > 0$, whereas u_2 admits multiple extensions to a distribution $u_{2,0} \in \mathcal{D}'(\mathbb{R})$ with the same scaling degree of u_2 for $m^2 \ge 2$, and a unique extension for $0 < m^2 < 2$.

Are these extensions still solutions of the field equation?

2.2. Distributional solutions

Corollary: Let $u_1, u_2 \in C^{\infty}(\mathbb{R} \setminus \{0\})$ be respectively defined so that, for x > 0,

$$u_1(x) = \sqrt{x} J_{\nu}(x), \qquad u_2(x) = \sqrt{x} Y_{\nu}(x),$$

and, for x < 0, $u_1(x) = u_1(-x)$ and $u_2(x) = u_2(-x)$. Then, u_1 admits a unique extension to a distribution $u_{1,0} \in \mathcal{D}'(\mathbb{R})$ with the same scaling degree of u_1 for all $m^2 > 0$, whereas u_2 admits multiple extensions to a distribution $u_{2,0} \in \mathcal{D}'(\mathbb{R})$ with the same scaling degree of u_2 for $m^2 \ge 2$, and a unique extension for $0 < m^2 < 2$.

Are these extensions still solutions of the field equation?

Proposition: Let

$$\tilde{Q} \doteq z^2 Q = z^2 \frac{d^2}{dz^2} + z^2 \left(\omega^2 - k_x^2 - k_y^2\right) - m^2,$$

and $u \in \mathcal{D}'(\mathbb{R} \setminus \{0\})$ s.t. $\tilde{Q}u = 0$. Then, u admits an *on-shell extension* to $\mathcal{D}'(\mathbb{R})$ of the same scaling degree, which is unique whenever $m^2 \neq (j+1)(j+2), j=0,\ldots, |\operatorname{sd}(u)+1|$.

2.2. Distributional solutions

Remark: Even though unique on-shell extensions as distributions generally exist, one cannot restrict these distributions to z = 0. Instead one encode the information of the $c_1(\underline{k})$ and $c_2(\underline{k})$ modes in

$$\widehat{\Phi}_{\underline{k}}(z) = c_1(\underline{k})\sqrt{z} J_{\nu} \left(z\sqrt{-\underline{k}\cdot\underline{k}}\right) + c_2(\underline{k})\sqrt{z} Y_{\nu} \left(z\sqrt{-\underline{k}\cdot\underline{k}}\right), \quad z > 0.$$

though a suitable rescaling:

This can be applied at the level of the whole field and obtain at z = 0 a generalised free field [Duetsch, Rehren (2003)].

2.2. Distributional solutions

Example. Scalar field in PAdS₄ with Dirichlet boundary conditions:

$$\Phi(z,x) = z^{3/2} \int d^3 \underline{k} J_{\nu} \left(z \sqrt{-\underline{k} \cdot \underline{k}} \right) \left[c_1(\underline{k}) e^{-i\underline{k} \cdot \underline{x}} + c_1^{\dagger}(\underline{k}) e^{i\underline{k} \cdot \underline{x}} \right].$$

Applying the rescaling,

$$\hat{\Gamma}_{J} \left[\Phi(z, x) \right] = \lim_{z \to 0} \left[2^{\nu} \Gamma(\nu + 1) z^{-3/2 - \nu} \Phi(z, x) \right]$$

$$= \int d^{3}\underline{k} \left(\sqrt{-\underline{k} \cdot \underline{k}} \right)^{\nu} \left[c_{1}(\underline{k}) e^{-i\underline{k} \cdot \underline{x}} + c_{1}^{\dagger}(\underline{k}) e^{i\underline{k} \cdot \underline{x}} \right]$$

$$= \varphi^{\partial}(x),$$

is a generalised free field, the boundary limit of the scalar field. The field can be written as

$$\Phi(z,x) = z^{3/2+\nu} j_{\nu} \left(z^2 \square_{\mathbb{M}} \right) \varphi^{\partial}(x) ,$$

where

$$j_{\nu}(u^2) = u^{-\nu} J_{\nu}(u)$$

is a polynomially bounded, convergent power series in u^2 .

This provides an explicit expression for the scalar field Φ in AdS in terms of the generalised free field φ^{∂} on the boundary.

2.2. Distributional solutions

Step 3. By means of a method of images, we extend the solutions to the whole Minkowski spacetime, exploiting the $z \to -z$ symmetry of the spacetime and of the field equation.

The procedure follows exactly as in [Dappiaggi, Nosari, Pinamonti (2014)].

2.2. Distributional solutions

Step 3. By means of a method of images, we extend the solutions to the whole Minkowski spacetime, exploiting the $z \to -z$ symmetry of the spacetime and of the field equation.

The procedure follows exactly as in [Dappiaggi, Nosari, Pinamonti (2014)].

Next steps:

- construct the algebra of observables for the massive scalar field;
- construct Green operators and study their extensions to the boundary as bi-distributions;
- construct Hadamard states.

Outline

1 Massless, conformally coupled scalar field on AdS

2 Massive scalar field on AdS

3 Conclusions

3. Conclusions

- We constructed quantum states for a massless, conformally coupled scalar field in the Poincaré domain of AdS from quantum states of the Casimir-Polder system.
- We constructed distributional solutions for a massive scalar field in the Poincaré domain of AdS and studied the existence of on-shell extensions to the boundary as distributions. This system is equivalent to a scalar field system in the upper half-plane with a singular potential.
- Next steps:
 - construct observables and understand the notion of Green operators for the massive scalar field and if they can be extended to the boundary;
 - extend the procedure to asymptotically AdS spacetimes.

THANK YOU FOR YOUR ATTENTION!