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0. Introduction

Study systematically a massive scalar field on anti-de Sitter (AdS), namely the role
of the boundary conditions and the existence of extensions of the solutions to the
boundary as distributions.

Construct quantum states holographically from the boundary of AdS, analogously
with the asymptotically flat case [Dappiaggi et al], with the view of extending the
procedure to asymptotically AdS spacetimes.

Use this system as an example to study QFT on manifolds with boundaries and
theories with singular potentials.
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1. Massless, conformally coupled scalar field on AdS

1.1. Poincaré fundamental domain.

Anti-de Sitter AdSd+1 (d ≥ 2) is the maximally symmetric solution to Einstein’s
equations with a negative cosmological constant. It is defined by the relation

−X2
0 −X2

1 +
∑d+1

i=2 X
2
i = −`2 , ` > 0 ,

where (X0, . . . , Xd+1) are Cartesian coordinates of M2,d.

Poincaré patch (t, z, xi), t ∈ R, z ∈ R>0 and xi ∈ R, i = 1, . . . , d− 1,

ds2 =
`2

z2

(
−dt2 + dz2 + δijdxidxj

)
.

The region covered by this chart is the Poincaré fundamental domain, PAdSd+1.



1. Massless, conformally coupled scalar field on AdS

1.1. Poincaré fundamental domain.

PAdSd+1 can be mapped to H̊d+1 .
= R>0 × Rd ⊂M1,d via a conformal rescaling

ds2 7→ z2

`2
ds2 = −dt2 + dz2 + δijdxidxj .

We can attach a conformal boundary as the locus z = 0 and obtain
Hd+1 .

= R≥0 × Rd, the upper half-plane. This is the geometric setting of the
Casimir-Polder system.
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1.2. Massless, conformally coupled scalar field

Poincaré domain (PAdSd+1, g), scalar field φ : PAdSd+1 → R,

Pφ =

(
� +

d− 1

4d
R

)
φ = 0 .

For every solution φ ∈ C∞(PAdSd+1), the function Φ = ( z` )
1−d
2 φ is a smooth solution

of the same equation in H̊d+1.

Upper half-plane (Hd+1, η), scalar field Φ : Hd+1 → R,{
PHΦ = �HΦ = 0
Φ(0, xi) = 0

,

with Dirichlet boundary conditions at ∂Hd+1 (Casimir-Polder system).

The classical and quantum scalar field theory in Hd+1 was investigated in
[Dappiaggi, Nosari, Pinamonti (2014)].
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1.2. Massless, conformally coupled scalar field

Off-shell configurations. Define the isometry ιz : Rd+1 → Rd+1, (z, xi) 7→ (−z, xi), and
the natural action on functions, f(x) 7→ f(ιz(x)).

The space of kinematical or off-shell configurations of the CP system is

C CP(Hd+1)
.
=

{
φ ∈ C∞(Hd+1) : φ|∂Hd+1 = 0 , ∃ φ̃ ∈ C∞(Rd+1) : φ =

1√
2

(
φ̃− ιzφ̃

)∣∣∣
Hd+1

}
.

Classical observables. Functionals Ff : C CP(Hd+1)→ R,

φ 7→ Ff (φ) =

∫
Hd+1

dd+1xφ(x)f(x) , f ∈ C∞0 (Hd+1) .

Off-shell ∗-algebra of observables. A CP
off (Hd+1), endowed with complex conjugation

as the ∗-operation, is the algebra generated by Ff (φ).

On-shell ∗-algebra of observables. A CP
on (Hd+1) is the algebra generated by F[f ](φ),

[f ] ∈ C CP
0 (Hd+1)/PH

[
C CP

0 (Hd+1)
]
,

φ ∈ S CP(Hd+1), the space of solutions of the CP system.
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1.2. Massless, conformally coupled scalar field

States. ω : A CP(Hd+1)→ C s.t. ω(1) = 1 and ω(a∗a) ≥ 0, for all a ∈ A CP(Hd+1).

States ω̃ on A KG(Rd+1) for the Klein-Gordon system in Minkowski spacetime.

Guassian or quasi-free states: the n-point functions ω̃n ∈ D′((Rd+1)×n) are such that

ω̃2n+1(f1 ⊗ . . .⊗ fn) = 0 ,

ω̃2n(f1 ⊗ . . .⊗ fn) =
∑

π2n∈S′2n

n∏
i=0

ω̃2(fπ2n(i−1) ⊗ fπ2n(i)) ,

where S′2n is the set of ordered permutations of 2n-elements.

Hadamard states: ω̃2 ∈ D′(Rd+1 × Rd+1) has a wavefront set of the form

WF (ω̃2) =
{

(x, x′, kx,−kx′) ∈ T ∗(Rd+1 × Rd+1) \ {0} : (x, kx) ∼ (x′, kx′), kx . 0
}
,

(x, kx) ∼ (x′, kx′) : x is linked to x′ by a null geodesic,
kx′ is the parallel transport of kx along that geodesic;

kx . 0 : kx is future-directed.
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1.2. Massless, conformally coupled scalar field

States ω on A CP
on (Hd+1) for the CP system.

Hadamard states: requires a modified definition, inspired by the concept of F-locality
of [Kay (1992)].

Definition: A quasi-free state ω on A CP(Hd+1) is a Hadamard state if its
restriction to any globally hyperbolic subregion of Hd+1 is of Hadamard form.

Remarks:
(1) The CP algebra A CP(Hd+1) is injectively embedded in the KG algebra A KG(Rd+1),

hence a Hadamard state on A KG
on (Rd+1) for the KG system in Minkowski spacetime

can be pulled back to a state on A CP
on (Hd+1) for the CP system, preserving the

Hadamard property.

(2) (Method of images) If ω̃2 ∈ D′(Rd+1 × Rd+1) has an integral kernel such that

ω̃2(z, xi; z′, x′
i
) = ω̃2(−z, xi;−z′, x′i) ,

then the corresponding ω2 ∈ D′(Hd+1 ×Hd+1) is such that

ω2(z, xi; z′, x′
i
) = ω̃2(z, xi; z′, x′

i
)− ω̃2(−z, xi; z′, x′i) .
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1.2. Massless, conformally coupled scalar field

States ωPAdS on A KG
on (PAdSd+1) for the KG system in PAdSd+1.

Given a Hadamard, quasi-free state ω on A CP
on (Hd+1), then a Hadamard, quasi-free

state ωPAdS on A KG
on (PAdSd+1) is such that the integral kernel of its two-point

function is

ωPAdS
2 (z, xi; z′, x′

i
) = Ω

d−1
2 (z)ω2(z, xi; z′, x′

i
) Ω

d−1
2 (z′) ,

where Ω(z) = z
` is the conformal factor.
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2. Massive scalar field on AdS

2.1. Field equation

Poincaré domain (PAdS4, g), scalar field φ : PAdS4 → R,

Pφ =
(
�− m̃2 − ξR

)
φ = 0 .

Upper half-plane (H4, η), scalar field Φ = ( z` )
−1φ : H̊4 → R,

PHΦ =

(
�H −

m2

z2

)
Φ = 0 ,

with m2 .
= m̃2 − (ξ − 1

6)R ≥ 0.

The KG system in PAdS4 is equivalent to a scalar field system in H4 with a singular
potential at z = 0.



2. Massive scalar field on AdS

2.2. Distributional solutions

PHΦ =

(
�H −

m2

z2

)
Φ = 0

Case m2 = 0. The field equation, and hence the smooth solutions, can be trivially
extended to z = 0 to the whole of M1,3, regardless of the boundary conditions.

Case m2 > 0. There are no smooth extensions of solutions to z = 0. Instead, consider
distributional solutions in H4 for m2 > 0 in three steps:

(1) Construct distributional solutions in H̊4;

(2) Show they admit an extension to z = 0 using the notion of scaling limit;

(3) Exploit the z → −z symmetry to extend the solutions to M1,3.



2. Massive scalar field on AdS

2.2. Distributional solutions

Step 1. Fourier representation of Φ:

Φ =

∫
R3

d3k

(2π)
3
2

eik·x Φ̂k,

where Φ̂k are solutions of the ODE

Q Φ̂k
.
=

[
d2

dz2
+

(
ω2 − k2

x − k2
y −

m2

z2

)]
Φ̂k = 0 .

Generic solution:

Φ̂k(z) = c1(k)
√
z Jν

(
z
√
−k · k

)
+ c2(k)

√
z Yν

(
z
√
−k · k

)
,

ν
.
=

1

2

√
1 + 4m2 .

Solution is well-defined for z > 0 and z < 0 (with z → −z).

Remark: Imposing Dirichlet boundary conditions implies c2(k) = 0.



2. Massive scalar field on AdS

2.2. Distributional solutions

Step 2. Φ̂k(z) ∈ D′(R \ {0}). Is there an extension as a distribution at the origin and, if
so, is it still a solution of the equation?

We use the notion of scaling limit by [Steinmann (1971)] and the results of [Brunetti,
Fredenhagen (2000)] and [Bahns, Wrochna (2014)].

Definition: For a distribution u ∈ D′(R), let uλ ∈ D′(R), λ > 0, be such that

uλ(f)
.
= λ−1u(f(λ−1·)) , f ∈ D(R) .

The scaling degree of u, sd(u), is the infimum over all α ∈ R such that

lim
λ→0

λαuλ = 0 .

Theorem: Let u ∈ D′(R \ {0}) have scaling degree sd(u). Then, if sd(u) < 1, u admits a
unique extension to D′(R) with the same scaling degree, otherwise, if sd(u) ≥ 1, u admits
several extensions to D′(R) with the same scaling degree.
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2. Massive scalar field on AdS

2.2. Distributional solutions

Corollary: Let u1, u2 ∈ C∞(R \ {0}) be respectively defined so that, for x > 0,

u1(x) =
√
xJν(x) , u2(x) =

√
xYν(x) ,

and, for x < 0, u1(x) = u1(−x) and u2(x) = u2(−x). Then, u1 admits a unique extension
to a distribution u1,0 ∈ D′(R) with the same scaling degree of u1 for all m2 > 0, whereas
u2 admits multiple extensions to a distribution u2,0 ∈ D′(R) with the same scaling degree
of u2 for m2 ≥ 2, and a unique extension for 0 < m2 < 2.

Are these extensions still solutions of the field equation?

Proposition: Let

Q̃
.
= z2Q = z2 d

2

dz2
+ z2

(
ω2 − k2

x − k2
y

)
−m2 ,

and u ∈ D′(R \ {0}) s.t. Q̃u = 0. Then, u admits an on-shell extension to D′(R) of the
same scaling degree, which is unique whenever m2 6= (j+ 1)(j+ 2), j = 0, . . . , bsd(u) + 1c.
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2. Massive scalar field on AdS

2.2. Distributional solutions

Remark: Even though unique on-shell extensions as distributions generally exist, one
cannot restrict these distributions to z = 0. Instead one encode the information of the
c1(k) and c2(k) modes in

Φ̂k(z) = c1(k)
√
z Jν

(
z
√
−k · k

)
+ c2(k)

√
z Yν

(
z
√
−k · k

)
, z > 0 .

though a suitable rescaling:

ΓY

[
Φ̂k(z)

]
.
= lim

z→0

[
2−ν Γ(−ν + 1) zν−

1
2 Φ̂k(z)

]
= c2(k);

ΓJ

[
Φ̂k(z)

]
.
= lim

z→0

[
2ν Γ(ν + 1) z−ν−

1
2 Φ̂k(z)

]
= c1(k), if c2(k) = 0.

This can be applied at the level of the whole field and obtain at z = 0 a generalised free
field [Duetsch, Rehren (2003)].



2. Massive scalar field on AdS

2.2. Distributional solutions

Example. Scalar field in PAdS4 with Dirichlet boundary conditions:

Φ(z, x) = z3/2

∫
d3k Jν

(
z
√
−k · k

) [
c1(k) e−ik·x + c†1(k) eik·x

]
.

Applying the rescaling,

Γ̂J [Φ(z, x)] = lim
z→0

[
2ν Γ(ν + 1) z−3/2−νΦ(z, x)

]
=

∫
d3k

(√
−k · k

)ν [
c1(k) e−ik·x + c†1(k) eik·x

]
= ϕ∂(x) ,

is a generalised free field, the boundary limit of the scalar field. The field can be written as

Φ(z, x) = z3/2+νjν
(
z2�M

)
ϕ∂(x) ,

where
jν(u2) = u−νJν(u)

is a polynomially bounded, convergent power series in u2.

This provides an explicit expression for the scalar field Φ in AdS in terms of the
generalised free field ϕ∂ on the boundary.



2. Massive scalar field on AdS

2.2. Distributional solutions

Step 3. By means of a method of images, we extend the solutions to the whole
Minkowski spacetime, exploiting the z → −z symmetry of the spacetime and of the field
equation.

The procedure follows exactly as in [Dappiaggi, Nosari, Pinamonti (2014)].

Next steps:

construct the algebra of observables for the massive scalar field;

construct Green operators and study their extensions to the boundary as
bi-distributions;

construct Hadamard states.
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3. Conclusions

We constructed quantum states for a massless, conformally coupled scalar field in
the Poincaré domain of AdS from quantum states of the Casimir-Polder system.

We constructed distributional solutions for a massive scalar field in the Poincaré
domain of AdS and studied the existence of on-shell extensions to the boundary as
distributions. This system is equivalent to a scalar field system in the upper
half-plane with a singular potential.

Next steps:

construct observables and understand the notion of Green operators for the massive
scalar field and if they can be extended to the boundary;

extend the procedure to asymptotically AdS spacetimes.
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