Entanglement Entropy and Algebraic Holography

Bernard S. Kay

Department of Mathematics, University of York

LQP Munich 28 May 2016

The AdS/CFT correspondence (Maldacena et al 1998-)

is a relation between quantum gravity (string theory) in d + 2 dimensional AdS and a CFT on the d + 1 dimensional conformal boundary.

Picture (d = 1)

Algebraic holograpy (Rehren 2000)

[Note that this is unrelated to quantum gravity and note that it is a theorem!]

A CFT on the conformal boundary is equivalent to a QFT on a fixed AdS background.

Key idea: double cone on boundary ↔ wedge in AdS bulk

The Arnsdorf-Smolin puzzle (2001)

- see discussion in BS Kay and L Ortiz: Brick Walls and AdS/CFT (2014)

If CFT \equiv Quantum Gravity and CFT \equiv QFTCST,

then Quantum Gravity \equiv QFTCST.

Not reasonable!

A way out?

(I'm not aware of any counter-evidence and am aware of evidence from several statements in the string-theory literature also I have my own arguments based on my (1998-2016) matter gravity entanglement hypothesis):

 $CFT \equiv Just the matter sector of Quantum Gravity.$

Also: The physical interpretation of the Rehren bulk QFT is that¹ it's an approximate description of the matter sector of quantum gravity.

The purpose of the rest of the talk is to give a further piece of evidence for this based on consideration of Rehren's algebraic holography combined with the Ryu-Takayanagi entanglement equality.

¹(say in d = 1, assuming the Brown-Henneaux relation $c = 3/2G\sqrt{-\Lambda}$ holds)

The Ryu-Takayanagi (RT) Entanglement Equality (2006)

[Note: The statement below only really makes sense in the presence of a suitable cut-off, otherwise both sides of the equality are infinite! See RT.]

The entanglement entropy between two complementary intervals (in d > 1, complementary balls) on a fixed-time circle (in d > 1, sphere) of the conformal boundary is (see Footnote on previous page) equal to 1/4G times the length of the geodesic (in d > 1, area of the minimal surface) which reaches the conformal boundary at the junction of the intervals.

An entanglement equality for the Rehren bulk theory

Easy geometry theorem

The RT-geodesic (in d > 1, RT-minimal surface) is the shared ridge of the complementary Rehren wedges which are Rehren duals to the boundary double-cones whose bases are the Ryu-Takayanagi complementary intervals.

Corollary

Assuming the RT equality (and – say in d=1 – assuming $c=3/2G\sqrt{-\Lambda}$) the entanglement entropy of the Rehren bulk QFT between a pair of Rehren wedges is 1/4G times the length (in d>1, area) of their shared ridge.

This strongly suggests that the conventional belief [this is actually a near quote from Bianchi and Myers (2012)]

In a theory of quantum gravity, for any sufficiently large region in a smooth background spacetime, the entanglement entropy between the degrees of freedom describing the given region with those describing its complement is finite and to leading order, takes the form S = A/4G (plus lower order terms).

should be replaced by ...

. . .

In a theory of quantum gravity, for any sufficiently large region in a smooth background spacetime, the entanglement entropy between the **matter** degrees of freedom describing the given region with those describing its complement is finite and to leading order, takes the form S = A/4G (plus lower order terms).

- and this is clearly nicely consistent with our proposed resolution to the Arnsdorf-Smolin puzzle, thus fulfilling our promise to give a further piece of evidence for that!