## Non-linear facets of the electromagnetic quantum field

Giuseppe Ruzzi

Roma "Tor Vergata"

Munich 27.05.2016

### Outline

1 The linear e.m. quantum field

 $oxed{2}$  The universal  $C^*$ -algebra

3 Nonlinearity, topological charges and quantum currents

### Plan

- We review basic ideas leading to the universal C\*-algebras of the e.m. quantum field, and recall key properties.
- We show how non-linear deformations of the e.m. field leads to some interesting representations of the universal  $C^*$ -algebra in which non linearity is encoded in a violation of a form of regularity. In particular we construct representations with quantum currents and representations with topological charges.

The talk is based on a joint work with D.Buchholz, F.Ciolli and E.Vasselli [LMP 16] and on a work in progress with the same authors.

## n-Forms on Minkowski spacetime

- Minkowski spacetime:  $\mathbb{R}^4$  with signature (+,-,-,-).  $\perp$  spacelike separation.
- $\mathcal{D}_k$  set smooth k-forms with compact support in the Minkowski spacetime. f, h are spacelike separated,  $f \perp h$ , whenever

$$supp(f) \perp supp(h)$$
.

•  $d: \mathcal{D}_k \to \mathcal{D}_{k+1}$ ,  $d^2 = 0$ 

differential operator

 $\bullet \ \star : \mathcal{D}_k \to \mathcal{D}_{4-k} \ , \ \star \star = (-)^{k+1} \ \text{id}_k$ 

Hodge dual

 $\bullet \ \delta: \mathcal{D}_{k+1} \to \mathcal{D}_k \ , \ \delta:= - \star d \star$ 

co-differential (gen. divergence)

$$\delta^2 = 0$$
 ,  $\Box = \delta d + d\delta$ 

•  $C_k$  set of co-closed *k*-forms (divergence-free):  $\delta f = 0$ .



• Geometrical examples:  $f \in \mathcal{D}_0$  a test function with  $0 \in \operatorname{supp}(f)$  and a singular k-simplex  $\chi : [0,1]^k \to \mathbb{R}^4$ , let  $f_\chi$  be the k-form

$$f_{\chi}(x) := \int f(x-\chi)d\chi$$

then  $\operatorname{supp}(f_\chi) \subseteq \operatorname{supp}(f) + \chi$  and the Stokes theorem reads

$$\delta f_{\chi} = f_{\partial \chi}$$

We call these forms smearing chains. Note that if  $\chi$  is a cycle i.e.  $\partial \chi = 0$ , then  $\delta f_{\chi} = 0$ . We shall refer in this case as smearing cycles or divergece-free forms.

### Outline

1 The linear e.m. quantum field

 $^{f Q}$  The universal  ${
m C}^*$ -algebra

3 Nonlinearity, topological charges and quantum currents

## The e.m. quantum field and the intrinsic vector potential

The e.m. quantum field F linear mapping  $F: \mathcal{D}_2 \ni h \to F(h) \in \mathscr{A}$  to some \*-algebra  $\mathscr{A}$  s.t.

(i) Causality

$$h_1 \perp h_2 \Rightarrow [F(h_1), F(h_2)] = 0$$
,

(ii) 1st Maxwell equation

$$dF(\tau) := F(\delta \tau) = 0$$
,  $\tau \in \mathcal{D}_3$ .

From these the 2<sup>nd</sup> Maxwell equation

$$j(f) := F(df) = \delta F(f)$$
,  $f \in \mathcal{D}_1$ 

where j(f) is the conserved current:  $\delta j = 0$ .



#### Observation: the intrinsic vector potential satisfies

$$F(h) = dA(h) = A(\delta h)$$

and  $\delta h$  is a divergence-free 1-form  $\mathcal{C}_1$ . Local Poincaré lemma:

$$f \in \mathcal{C}_1 \ \Rightarrow \ \exists \widehat{f} \in \mathcal{D}_2 \ , \ \delta \widehat{f} = f \ .$$

The intrinsic vector potential is defined as

$$A(f) := F(\widehat{f}), \qquad f \in \mathcal{C}_1.$$

### Observation: the intrinsic vector potential satisfies

$$F(h) = dA(h) = A(\delta h)$$

and  $\delta h$  is a divergence-free 1-form  $\mathcal{C}_1$ . Local Poincaré lemma:

$$f \in \mathcal{C}_1 \implies \exists \widehat{f} \in \mathcal{D}_2 \ , \ \delta \widehat{f} = f \ .$$

The intrinsic vector potential is defined as

$$A(f) := F(\widehat{f}), \qquad f \in \mathcal{C}_1.$$

• By local Poincaré Lemma  $+ 1^{st}$  Maxwell Eq., A(f) independent of the choice of the co-primitive  $\hat{f}$ .

Observation: the intrinsic vector potential satisfies

$$F(h) = dA(h) = A(\delta h)$$

and  $\delta h$  is a divergence-free 1-form  $C_1$ . Local Poincaré lemma:

$$f \in \mathcal{C}_1 \implies \exists \widehat{f} \in \mathcal{D}_2 \ , \ \delta \widehat{f} = f \ .$$

The intrinsic vector potential is defined as

$$A(f) := F(\widehat{f}), \qquad f \in \mathcal{C}_1.$$

- By local Poincaré Lemma  $+ 1^{st}$  Maxwell Eq., A(f) independent of the choice of the co-primitive  $\hat{f}$ .
- ullet The vector potential induces a (strong) causality  $f_1,f_2\in\mathcal{C}_1$

$$|\mathbf{f_1} \times \mathbf{f_2}|$$
,  $\exists \widehat{\mathbf{f_1}}, \widehat{\mathbf{f_2}} \in \mathcal{D}_2$ ,  $\delta \widehat{\mathbf{f_1}} = \mathbf{f_1}$ ,  $\delta \widehat{\mathbf{f_2}} = \mathbf{f_2}$ ,  $\widehat{\mathbf{f_1}} \perp \widehat{\mathbf{f_2}}$ 



The intrinsic vector potential is a linear mapping  $C_1 \ni f \mapsto A(f) \in \mathcal{A}$  s.t.

(i) (strong) Causality

$$f_1 \times f_2 \Rightarrow [A(f_1), A(f_2)] = 0$$

- The e.m. field F = dA
- The 1<sup>st</sup> Maxwell equation  $dF = d^2A = 0$
- The conserved current:  $j = \delta F = \delta dA$ .
- Covariance:  $\alpha_P: \mathcal{C}_1 \to \mathcal{C}_1$  with  $(\alpha_P f)^{\mu} := (Pf)^{\mu} \circ P^{-1}$  then

$$\alpha_P \circ A = A \circ \alpha_P , \qquad P \in \mathcal{P}_+^{\uparrow} .$$

9 / 24

The intrinsic vector potential is a linear mapping  $C_1 \ni f \mapsto A(f) \in A$  s.t.

(i) (strong) Causality

$$f_1 \times f_2 \Rightarrow [A(f_1), A(f_2)] = 0$$

- The e.m. field F = dA
- The 1<sup>st</sup> Maxwell equation  $dF = d^2A = 0$
- The conserved current:  $j = \delta F = \delta dA$ .
- Covariance:  $\alpha_P: \mathcal{C}_1 \to \mathcal{C}_1$  with  $(\alpha_P f)^{\mu}:= (Pf)^{\mu} \circ P^{-1}$  then

$$\alpha_P \circ A = A \circ \alpha_P , \qquad P \in \mathcal{P}_+^{\uparrow} .$$

Basic question: understand strong causality

$$f_1 \perp f_2 \stackrel{\longleftarrow}{\Longrightarrow} f_1 \times f_2$$



### Stronger (easier to hadle) condition

- (i) for any  $f \in C_1$  and any open  $U \supset \operatorname{supp}(f)$  there exists a coprimitive  $\widehat{f}$  of f with  $\operatorname{supp}(\widehat{f}) \subset U$ .
- (ii)  $\perp \Rightarrow \times$

Then  $(i) \Rightarrow (ii)$ .

### Stronger (easier to hadle) condition

- (i) for any  $f \in C_1$  and any open  $U \supset \operatorname{supp}(f)$  there exists a coprimitive  $\widehat{f}$  of f with  $\operatorname{supp}(\widehat{f}) \subset U$ .
- (ii)  $\perp \Rightarrow \times$

Then  $(i) \Rightarrow (ii)$ .

Counterexample to (i):  $g \in \mathcal{D}_0$  with  $\int g \neq 0$  and a closed curve  $\gamma$ 

$$g^\mu_\gamma(x) := \int_0^1 g(x-\gamma(t)) \dot{\gamma}(t) \;\;,\;\; g^\mu_\gamma \in \mathcal{C}_1$$

### Stronger (easier to hadle) condition

- (i) for any  $f \in C_1$  and any open  $U \supset \operatorname{supp}(f)$  there exists a coprimitive  $\widehat{f}$  of f with  $\operatorname{supp}(\widehat{f}) \subset U$ .
- (ii)  $\perp \Rightarrow \times$

Then  $(i) \Rightarrow (ii)$ .

Counterexample to (i):  $g \in \mathcal{D}_0$  with  $\int g \neq 0$  and a closed curve  $\gamma$ 

$$g^{\mu}_{\gamma}(x) := \int_0^1 g(x-\gamma(t))\dot{\gamma}(t) \;\;,\;\; g^{\mu}_{\gamma} \in \mathcal{C}_1$$

#### Cohomological obstruction:

$$H^2(\mathbb{R}^4 \setminus \operatorname{supp}(f)) \stackrel{\text{de }Rham}{\cong} H_2(\mathbb{R}^4 \setminus \operatorname{supp}(f)) \stackrel{Alexander}{\cong} H^1(\operatorname{supp}(f)) \ .$$

So what can be said about the above relation?



Causal Poincaré Lemma: given a double cone  $\mathcal O$  and  $f \in \mathcal C_1$  with  $\mathrm{supp}(f) \perp \mathcal O$ , there is  $\widehat f \in \mathcal D_2$  with  $\delta \widehat f = f$  and  $\mathrm{supp}(\widehat f) \perp \mathcal O$ .

Strongest invariance result



Causal Poincaré Lemma: given a double cone  $\mathcal{O}$  and  $f \in \mathcal{C}_1$  with  $\mathrm{supp}(f) \perp \mathcal{O}$ , there is  $\widehat{f} \in \mathcal{D}_2$  with  $\delta \widehat{f} = f$  and  $\mathrm{supp}(\widehat{f}) \perp \mathcal{O}$ .

### Strongest invariance result

Cohomological invariance: if  $f_1 \perp f_2$  then  $[A(f_1), A(f_2)]$  is independent of co-cohomology class of  $f_1$  w.r.t.the causal complement of  $\operatorname{supp}(f_2)$  i.e.

$$h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$$

Causal Poincaré Lemma: given a double cone  $\mathcal{O}$  and  $f \in \mathcal{C}_1$  with  $\mathrm{supp}(f) \perp \mathcal{O}$ , there is  $\widehat{f} \in \mathcal{D}_2$  with  $\delta \widehat{f} = f$  and  $\mathrm{supp}(\widehat{f}) \perp \mathcal{O}$ .

### Strongest invariance result

Cohomological invariance: if  $f_1 \perp f_2$  then  $[A(f_1), A(f_2)]$  is independent of co-cohomology class of  $f_1$  w.r.t.the causal complement of  $supp(f_2)$  i.e.

$$h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$$

Translation invariance

$$f_1 \perp f_2 \Rightarrow [A(f_{1,x}), A(f_{2,x})] = [A(f_1), A(f_2)], \quad \forall x \in \mathbb{R}^4$$

Dilation invariance

$$f_1 \perp f_2 \ \Rightarrow \ [A(\tau_{\lambda}(f_1)), A(\tau_{\lambda}(f_2))] = \lambda^{-6} [A(f_1), A(f_2)] \ , \qquad \forall \lambda > 0$$

Causal Poincaré Lemma: given a double cone  $\mathcal{O}$  and  $f \in \mathcal{C}_1$  with  $\mathrm{supp}(f) \perp \mathcal{O}$ , there is  $\widehat{f} \in \mathcal{D}_2$  with  $\delta \widehat{f} = f$  and  $\mathrm{supp}(\widehat{f}) \perp \mathcal{O}$ .

### Strongest invariance result

Cohomological invariance: if  $f_1 \perp f_2$  then  $[A(f_1), A(f_2)]$  is independent of co-cohomology class of  $f_1$  w.r.t.the causal complement of  $\operatorname{supp}(f_2)$  i.e.

$$h \in \mathcal{D}_2, \ \delta h = f_1 - f \ , \operatorname{supp}(h) \perp \operatorname{supp}(f_2) \ \Rightarrow \ [A(f_1), A(f_2)] = [A(f), A(f_2)]$$

Translation invariance

$$f_1 \perp f_2 \Rightarrow [A(f_{1,x}), A(f_{2,x})] = [A(f_1), A(f_2)], \quad \forall x \in \mathbb{R}^4$$

Dilation invariance

$$f_1 \perp f_2 \ \Rightarrow \ [A(\tau_{\lambda}(f_1)), A(\tau_{\lambda}(f_2))] = \lambda^{-6} [A(f_1), A(f_2)] \ , \qquad \forall \lambda > 0$$

• Centrality (topological charges ?) by translation invariance

$$f_1 \perp f_2 \Rightarrow [[A(f_1), A(f_2)], A(f)] = 0, \quad \forall f \in C_1$$



### Outline

1 The linear e.m. quantum field

 $oxed{2}$  The universal  $\mathrm{C}^*$ -algebra

Nonlinearity, topological charges and quantum currents

# The universal C\*-algebra of the e.m. quantum field

Let  $\mathcal{U}$  be the group generated by  $U: \mathbb{R} \times \mathcal{C}_1 \ni (a,f) \to U(a,f)$  s.t.

(i) 
$$U(a,f)^* = U(-a,f)$$
,  $U(0,f) = 1$ ,  $U(a,f)U(b,f) = U(a+b,f)$ ;

(ii) 
$$f_1 \times f_2 \Rightarrow U(a_1, f_1) U(a_2, f_2) = U(1, a_1 f_1 + a_2 f_2);$$

(iii) 
$$f_1 \perp f_2 \Rightarrow \lfloor U(a,f), \lfloor U(a_1,f_1), U(a_2,f_2) \rfloor \rfloor = 1$$

where  $\lfloor, \rfloor$  is the group commutator. The Poincaré group acts on  $\mathcal{U}$ : P(a, f) := (a, Pf) for any  $P \in \mathcal{P}_+^{\uparrow}$ . The universal C\*-algebra of the e.m. field  $\mathfrak{U}$  is the full group C\*-algebra of  $\mathcal{U}$ .

# The universal C\*-algebra of the e.m. quantum field

Let  $\mathcal{U}$  be the group generated by  $U: \mathbb{R} \times \mathcal{C}_1 \ni (a,f) \to U(a,f)$  s.t.

(i) 
$$U(a,f)^* = U(-a,f)$$
,  $U(0,f) = 1$ ,  $U(a,f)U(b,f) = U(a+b,f)$ ;

(ii) 
$$f_1 \times f_2 \Rightarrow U(a_1, f_1) U(a_2, f_2) = U(1, a_1 f_1 + a_2 f_2);$$

(iii) 
$$f_1 \perp f_2 \Rightarrow \lfloor U(a,f), \lfloor U(a_1,f_1), U(a_2,f_2) \rfloor \rfloor = 1$$

where  $\lfloor, \rfloor$  is the group commutator. The Poincaré group acts on  $\mathcal{U}$ : P(a, f) := (a, Pf) for any  $P \in \mathcal{P}_+^{\uparrow}$ . The universal C\*-algebra of the e.m. field  $\mathfrak{U}$  is the full group C\*-algebra of  $\mathcal{U}$ .

The correspondence  $\mathcal{O} \mapsto \mathfrak{U}(\mathcal{O})$  where  $\mathcal{O}$  double cone and

$$\mathfrak{U}(\mathcal{O}) := \mathrm{C}^*\{\mathit{U}(a,f) \;,\; \mathrm{supp}(f) \subset \mathcal{O}\} \subset \mathfrak{U}$$

is a net of  $C^*$ -algebras which satisfying the Haag-Kastler axioms

• 
$$\mathcal{O}_1 \subset \mathcal{O}_2 \Rightarrow \mathfrak{U}(\mathcal{O}_1) \subseteq \mathfrak{U}(\mathcal{O}_2)$$

(Isotony)

• 
$$\mathcal{O}_1 \perp \mathcal{O}_2 \Rightarrow [\mathfrak{U}(\mathcal{O}_1), \mathfrak{U}(\mathcal{O}_2)] = 0$$

(Causality)

• 
$$\alpha_P(\mathfrak{U}(\mathcal{O})) = \mathfrak{U}(P\mathcal{O}), P \in \mathcal{P}^{\uparrow}_{\perp}$$

(Covariance)

excepts Primitivity: there is a non-trivial center.

# Meaningful states and representations

### A state $\omega$ of the algebra $\mathfrak U$ is

• regular (strongly regular) if

$$a_1,\ldots,a_n\mapsto\omega(U(a_1,g_1)\cdots U(a_n,g_n))$$

are continuous (smoooth with tempered derivatives at 0)

verifies condition L if it is strongly regular and

$$\frac{d}{da}\omega(V\ U(a,g_1)\ U(a,g_2)\ U(a,-g_1-g_2)\ W)\upharpoonright_{a=0}=0$$

#### Note that

- $\omega$  strongly regular,  $(\Omega, \pi, \mathcal{H})$  GNS of  $\omega$ , There exist selfadjoint operators  $A_{\pi}(f)$  with common stable core  $\mathcal{D} \subseteq \mathcal{H}$  such that  $\pi(U(a, f)) = e^{iaA_{\pi}(f)}$ .
- property L,  $a_1A_{\pi}(f_1) + a_2A_{\pi}(f_2) = A_{\pi}(a_1f_1 + a_2f_2)$  on  $\mathcal{D}$



Vacuum state  $\omega$ : pure Poincaré invariant state of  $\mathfrak U$  s.t.

- $\mathcal{P}_+^{\uparrow} \ni P \to \omega(A\alpha_P(B))$  continuous ;
- $\mathbb{R}^4 \ni p \to \int e^{ipx} \omega(A\alpha_x(B)) d^4x \in \overline{V}_+$  (spectral codition)

### Consequences:

(i) Any vacuum state  $\omega$  is determined by the generating functional

$$f \mapsto \omega(U(1,f))$$
,  $f \in C_1$ ,

(analyticity and EOW theorem)

(ii) Any vacuum state that satisfies property L, fixes the correlation functions of F satisfying all the Wightman axioms.



Vacuum state  $\omega$ : pure Poincaré invariant state of  $\mathfrak U$  s.t.

- $\mathcal{P}_+^{\uparrow} \ni P \to \omega(A\alpha_P(B))$  continuous ;
- $\mathbb{R}^4 \ni p \to \int e^{ipx} \omega(A\alpha_x(B)) \, d^4x \in \overline{V}_+$  (spectral codition)

### Consequences:

(i) Any vacuum state  $\omega$  is determined by the generating functional

$$f \mapsto \omega(U(1,f))$$
,  $f \in C_1$ ,

(analyticity and EOW theorem)

(ii) Any vacuum state that satisfies property L, fixes the correlation functions of *F* satisfying all the Wightman axioms.

Applications:  $\omega$  vacuum state satisfying the property L.

• Zero current, j = 0 (recall  $j_{\pi}(f) = A_{\pi}(\delta df)$ ), then

$$\omega_0(U(1,f)) = e^{-c\langle f,f\rangle}, \qquad f \in \mathcal{C}_1$$

the free electromagnetic field in Fock representation with c > 0

• Classical current (central current), then

$$\omega(U(1,f)) = e^{ij_{\pi}(G_0(f))}\omega_0(U(1,f))$$

where  $G_0$  Green's function of  $\square$ .



### Outline

1 The linear e.m. quantum field

 $^{ extstyle 2 extstyle 2}$  The universal  $extstyle C^*$ -algebra

3 Nonlinearity, topological charges and quantum currents

# Topological charges

Aim: we have seen that

$$f_1 \perp f_2 \Rightarrow \lfloor U(1, f_1), U(1, f_2) \rfloor$$
 is central

we want to construct representations of  $\ensuremath{\mathfrak{U}}$  where these central elements are not trivial.



One could try to find a causal symplectic form which is not trivial on on some pair  $f_1, f_2 \in C_1$  with  $f_1 \perp f_2$ .

# Topological charges

Aim: we have seen that

$$f_1 \perp f_2 \ \Rightarrow \ \lfloor \textit{U}(1,f_1),\textit{U}(1,f_2) \rfloor$$
 is central

we want to construct representations of  $\mathfrak U$  where these central elements are not trivial.



One could try to find a causal symplectic form which is not trivial on on some pair  $f_1, f_2 \in C_1$  with  $f_1 \perp f_2$ .

#### CONJECTURE: we believe that

$$f_1 \perp f_2 \Rightarrow [A(f_1), A(f_2)] = 0$$

This clearly would imply there does not exists any causal linear symplectic form which is not trivial on pair  $f_1$ ,  $f_2$  with  $f_1 \perp f_2$ .

# Results supporting the conjecture

The conjecture is verified in a vacuum representation (by K-L representation).

# Results supporting the conjecture

The conjecture is verified in a vacuum representation (by K-L representation).

General case: partial results from Cohomological invariance.

**①** Consider a smearing cycle  $g_{\gamma}$ . i.e.  $g \in \mathcal{D}_0$ ,  $\gamma$  closed curve, and  $g_{\gamma}(x) = \int_0^1 g(x - \gamma(t)) \dot{\gamma}(t) dt$ . The Poincaré group has a geometrical action on smearing cycles

$$(P,g_{\gamma})\mapsto g_{P\gamma}\;,\;P\in\mathcal{P}_{+}^{\uparrow}$$

which, by cohomological invariance, leaves invariant

$$[A(g_{P\gamma}),A(g'_{P\gamma'})]=[A(g_{\gamma}),A(g'_{\gamma'})] \ , \ g_{\gamma}\perp g'_{\gamma'}$$

②  $\gamma$  the circumference  $(y+1)^2+z^2=4$  and  $\beta$  the circumference  $x^2+(y-1)^2=4$  there is  $P\in\mathcal{P}_+^\uparrow$  s.t.

$$P\gamma=\beta$$
 ,  $P\beta=\gamma$  .

So for g s.t.  $g_{\gamma} \perp g_{\beta}$  we have

$$[A(g_{\gamma}),A(g_{\beta})]=[A(g_{\beta}),A(g_{\gamma})] \ \Rightarrow \ [A(g_{\beta}),A(g_{\gamma})]=0$$



Main result: Given  $f, \tilde{f} \in C_1$ . Let  $\mathcal{O}$  be a double cone and  $\gamma$  a closed simple curve s.t.

- (i)  $H_1(\mathcal{O} + \gamma) \cong H_1(\gamma) = \mathbb{Z}$
- (ii) supp( $\tilde{f}$ )  $\subset \mathcal{O} + \gamma$

If  $\operatorname{supp}(f) \perp (\mathcal{O} + \gamma)$  then  $[A(f), A(\tilde{f})] = 0$ .

Main result: Given  $f, \tilde{f} \in \mathcal{C}_1$ . Let  $\mathcal{O}$  be a double cone and  $\gamma$  a closed simple curve s.t.

- (i)  $H_1(\mathcal{O} + \gamma) \cong H_1(\gamma) = \mathbb{Z}$
- (ii) supp( $\tilde{f}$ )  $\subset \mathcal{O} + \gamma$

If  $supp(f) \perp (\mathcal{O} + \gamma)$  then  $[A(f), A(\tilde{f})] = 0$ .

ullet This clearly does not prove the conjecture, because of the restriction given by  $\mathcal{O}+\gamma$ .

Main result: Given  $f, \tilde{f} \in C_1$ . Let O be a double cone and  $\gamma$  a closed simple curve s.t.

- (i)  $H_1(\mathcal{O} + \gamma) \cong H_1(\gamma) = \mathbb{Z}$
- (ii) supp( $\tilde{f}$ )  $\subset \mathcal{O} + \gamma$

If  $supp(f) \perp (\mathcal{O} + \gamma)$  then  $[A(f), A(\tilde{f})] = 0$ .

- ullet This clearly does not prove the conjecture, because of the restriction given by  $\mathcal{O}+\gamma$ .
- Anyway, the conjecture, if verified, implies that the non-triviality of  $[A(f_1), A(f_2)]$  for  $f_1 \perp f_2$  is in contradiction with linearity.

## The example from non-linearity

Given a 2-form h define

$$H^{\mu\nu} := \int h^{\mu\nu}(x) d^4x \ , \ H^2 := H^{\mu\nu} H_{\mu\nu} \ .$$

 $H^2$  in an invariant and we say that h is of Electric type whenever  $H^2 > 0$  and of Magnetic type if  $H^2 < 0$ .

# The example from non-linearity

Given a 2-form h define

$$H^{\mu\nu} := \int h^{\mu\nu}(x) d^4x$$
 ,  $H^2 := H^{\mu\nu} H_{\mu\nu}$  .

 $H^2$  in an invariant and we say that h is of Electric type whenever  $H^2>0$  and of Magnetic type if  $H^2<0$ .

• Let  $F_0$  be the free e.m. quantum field. If  $h \in \mathcal{D}_2$  has connected support we define

$$F(h) := \theta_{+}(H^{2})F_{0}(h) + \theta_{-}(H^{2})F_{0}(\star h)$$

and 0 whenever  $H^2 = 0$ .  $\theta_+$  step function and  $\theta_- = 1 - \theta_+$ .

## The example from non-linearity

Given a 2-form h define

$$H^{\mu\nu} := \int h^{\mu\nu}(x) d^4x \ , \ H^2 := H^{\mu\nu} H_{\mu\nu} \ .$$

 $H^2$  in an invariant and we say that h is of Electric type whenever  $H^2>0$  and of Magnetic type if  $H^2<0$ .

• Let  $F_0$  be the free e.m. quantum field. If  $h \in \mathcal{D}_2$  has connected support we define

$$F(h) := \theta_{+}(H^{2})F_{0}(h) + \theta_{-}(H^{2})F_{0}(\star h)$$

and 0 whenever  $H^2=0$ .  $\theta_+$  step function and  $\theta_-=1-\theta_+$ .

• for any  $h_1, h_2 \in \mathcal{D}_2$  with connected support

$$[F(h_1), F(h_2)] = \left(\theta_+(H_1^2)\theta_+(H_2^2) - \theta_-(H_1^2)\theta_-(H_2^2)\right) \cdot [h_0(h_1), h_0(h_2)] +$$

$$- \left(\theta_+(H_1^2)\theta_-(H_2^2) - \theta_-(H_1^2)\theta_+(H_2^2)\right) [h_0(h_1), h_0(\star h_2)]$$

• If  $h_1 \perp h_2$  then

$$[F(h_1), F(h_2)] = -\left(\theta_+(H_1^2)\theta_-(H_2^2) - \theta_-(H_1^2)\theta_+(H_2^2)\right)[F_0(h_1), F_0(\star h_2)]$$

• If  $h_1 \perp h_2$  then

$$[F(h_1),F(h_2)] = -\left(\theta_+(H_1^2)\theta_-(H_2^2) - \theta_-(H_1^2)\theta_+(H_2^2)\right)[F_0(h_1),F_0(\star h_2)]$$

Roberts shown that

$$[F_0(g_{\sigma_1}), F_0(\star g_{\sigma_1})] = c \cdot 1 \quad , \quad c \neq 0$$

for smearing chains where  $\sigma_1, \sigma_2$  surfaces with spacelike separated linked boundaries  $\partial \sigma_1$  and  $\partial \sigma_2$  and laying in the subspace t=0. So they are all of magnetic type and  $[F(g_{\sigma_1}), F(g_{\sigma_2})] = 0$ 

• If  $h_1 \perp h_2$  then

$$[F(h_1), F(h_2)] = -\left(\theta_+(H_1^2)\theta_-(H_2^2) - \theta_-(H_1^2)\theta_+(H_2^2)\right)[F_0(h_1), F_0(\star h_2)]$$

Roberts shown that

$$[F_0(g_{\sigma_1}),F_0(\star g_{\sigma_1})]=c\cdot \mathbb{1} \quad , \quad c\neq 0$$

for smearing chains where  $\sigma_1, \sigma_2$  surfaces with spacelike separated linked boundaries  $\partial \sigma_1$  and  $\partial \sigma_2$  and laying in the subspace t=0. So they are all of magnetic type and  $[F(g_{\sigma_1}), F(g_{\sigma_2})] = 0$ 

• However we can take  $h \in \mathcal{D}_2$  of electric type such that  $h + g_{\sigma_2}$  is of electric type and  $h \perp g_{\sigma_1}$ . Then

$$[F(g_{\sigma_1}), F(h+g_{\sigma_2})] = -[F_0(g_{\sigma_1}), F_0(\star h + \star g_{\sigma_2})] = [F_0(g_{\sigma_1}), F_0(\star g_{\sigma_2})] = c\mathbb{1}.$$

and we have central elements.

• If h has an (infinite) countable connected components  $\{h_k\}$  we have

$$h^{\sharp} = \left(\sum_{k=1}^{\infty} \sharp h_k\right) \in \mathcal{D}_2 \ , \ \ \sharp := \left\{ egin{array}{ll} id \ , & H^2 > 0 \ \star \ , & H^2 < 0 \end{array} 
ight.$$

and note that  $(h_1+h_2)^{\sharp}=h_1^{\sharp}+h_2^{\sharp}$  if  $h_1,h_2$  have disjoint supports. Setting

$$F(h) := F_0(h^{\sharp}) , \qquad \forall h \in \mathcal{D}_2 -$$

Clearly F is not linear but  $F(h_1 + h_2) = F(h_1) + F(h_1)$  if  $h_1, h_2$  have disjoint supports.

Thm. Let

$$U(a, f) := \exp(iF(a\widehat{f})) = \exp(iaA(f))$$
,  $f \in C_1$ ,  $\delta \widehat{f} = f$ 

Then U(a, f) is covariant, homogeneous U(a, f) = U(1, af), and

- (i)  $U(a, f_1) U(b, f_2) = U(1, af_1 + bf_2)$  if whenever  $f_1 \times f_2$
- (ii)  $|U(1, f_1), U(1, f_2)|$ , with  $f_1 \perp f_2$ , is central and not trivial.

However property L is violated. The local algebras are the same as those generated by the free theory:  $U_0(a, f) := \exp(iF_0(a\widehat{f}))$ .

• Let  $\mathcal{B}_2 := d(\mathcal{D}_1) \subset \mathcal{D}_2$ , the set of 2-boundaries.

- Let  $\mathcal{B}_2 := d(\mathcal{D}_1) \subset \mathcal{D}_2$ , the set of 2-boundaries.
- Let  $f \mapsto j(f)$ ,  $f \in \mathcal{D}_1$ , be a conserved current:  $\delta j(g) = j(dg) = 0$  for any  $g \in \mathcal{D}_0$ . If  $h \in \mathcal{D}_2$  has connected support define

$$F(h) := \left\{ \begin{array}{ll} j(f) \ , & h = df \\ j(\delta h) \ , & otherwise \end{array} \right.$$

• Definition independent of the choice of primitive: if  $df_1=h$ , the  $d(f-f_1)=0$ . Local Poincaré Lemma

$$\exists g \in \mathcal{D}_0 \ , \ dg = f - f_1 \ \Rightarrow \ j(f) = j(f_1 - dg) = j(f_1) - \delta j(g) \overset{conservation \ law}{=} j(f_1)$$

Moreover if h is localized in a double cone  $\mathcal{O}$  we can find a primitive localized in  $\mathcal{O}$ .

- Let  $\mathcal{B}_2 := d(\mathcal{D}_1) \subset \mathcal{D}_2$ , the set of 2-boundaries.
- Let  $f \mapsto j(f)$ ,  $f \in \mathcal{D}_1$ , be a conserved current:  $\delta j(g) = j(dg) = 0$  for any  $g \in \mathcal{D}_0$ . If  $h \in \mathcal{D}_2$  has connected support define

$$F(h) := \left\{ egin{array}{ll} j(f) \; , & h = df \ j(\delta h) \; , & otherwise \end{array} 
ight.$$

• Definition independent of the choice of primitive: if  $df_1 = h$ , the  $d(f - f_1) = 0$ . Local Poincaré Lemma

$$\exists g \in \mathcal{D}_0 \ , \ dg = f - f_1 \ \Rightarrow \ j(f) = j(f_1 - dg) = j(f_1) - \delta j(g) \overset{conservation \ law}{=} j(f_1)$$

Moreover if h is localized in a double cone  $\mathcal{O}$  we can find a primitive localized in  $\mathcal{O}$ .

• 1<sup>st</sup> Maxwell equation: let  $\tau \in \mathcal{D}_3$ , note that  $\delta \tau \notin \mathcal{B}_2$  otherwise  $\Box \delta \tau = 0$  impossible since  $\delta \tau$  has compact support. Hence

$$dF(\tau) = F(\delta \tau) = j(\delta^2 \tau) = 0$$



- Let  $\mathcal{B}_2 := d(\mathcal{D}_1) \subset \mathcal{D}_2$ , the set of 2-boundaries.
- Let  $f \mapsto j(f)$ ,  $f \in \mathcal{D}_1$ , be a conserved current:  $\delta j(g) = j(dg) = 0$  for any  $g \in \mathcal{D}_0$ . If  $h \in \mathcal{D}_2$  has connected support define

$$F(h) := \left\{ egin{array}{ll} j(f) \;, & h = df \ j(\delta h) \;, & otherwise \end{array} 
ight.$$

• Definition independent of the choice of primitive: if  $df_1 = h$ , the  $d(f - f_1) = 0$ . Local Poincaré Lemma

$$\exists g \in \mathcal{D}_0 \ , \ dg = f - f_1 \ \Rightarrow \ j(f) = j(f_1 - dg) = j(f_1) - \delta j(g) \stackrel{conservation \ law}{=} j(f_1)$$

Moreover if h is localized in a double cone  $\mathcal{O}$  we can find a primitive localized in  $\mathcal{O}$ .

• 1<sup>st</sup> Maxwell equation: let  $\tau \in \mathcal{D}_3$ , note that  $\delta \tau \notin \mathcal{B}_2$  otherwise  $\Box \delta \tau = 0$  impossible since  $\delta \tau$  has compact support. Hence

$$dF(\tau) = F(\delta \tau) = j(\delta^2 \tau) = 0$$

• 2<sup>nd</sup> Maxwell equation:

$$\delta F(f) = F(df) = j(f)$$
  $f \in \mathcal{D}_1$ 



• If h is a sum of finitely many 2-forms  $h_k$  having disjoint connected supports

$$F(h) := \sum_k F(h_k)$$

• If h is a sum of finitely many 2-forms  $h_k$  having disjoint connected supports

$$F(h) := \sum_k F(h_k)$$

Defining

$$U(a, f) := \exp(iaF(\widehat{f})), \qquad \delta \widehat{f} = f$$

then U is covariant, homogeneous and

$$\textit{U}(\textit{a},\textit{f}_1)\;\textit{U}(\textit{b},\textit{f}_2) = \textit{U}(1,\textit{af}_1 + \textit{bf}_2)\;, \qquad \mathrm{supp}(\textit{f}_1) \subset \mathcal{O}_1,\; \mathrm{supp}(\textit{f}_2) \subset \mathcal{O}_2\;,\; \textit{O}_1 \perp \textit{O}_2$$

Property L is violated in general.

• If h is a sum of finitely many 2-forms  $h_k$  having disjoint connected supports

$$F(h) := \sum_k F(h_k)$$

Defining

$$U(a, f) := \exp(iaF(\widehat{f})), \qquad \delta \widehat{f} = f$$

then U is covariant, homogeneous and

$$U(a, f_1) U(b, f_2) = U(1, af_1 + bf_2) , \quad \sup(f_1) \subset \mathcal{O}_1, \sup(f_2) \subset \mathcal{O}_2 , O_1 \perp O_2$$

Property L is violated in general.

#### THANK YOU!!