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Motivation

Question: Is it possible to derive Maxwell’s equations from
Quantum electrodynamics?

Physicists look at Heisenberg equations of the field operators.
More rigorous: find a physical situation which gives Maxwell’s
equations in some limit.

|α〉〈α| N→∞←−−−− γ
(0,1)
N ←−−−− ΨN −−−−→ γ

(1,0)
N

N→∞−−−−→ |ϕ〉〈ϕ|

eff .

y y y y yeff .

|αt〉〈αt | ←−−−−
N→∞

γ
(0,1)
N,t ←−−−− ΨN,t −−−−→ γ

(1,0)
N,t −−−−→

N→∞
|ϕt〉〈ϕt |
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spinless Pauli-Fierz Hamiltonian

HPF
N :=

N∑
j=1

(
−i∇j −

Âκ(xj )√
N

)2

+
1

N

∑
1≤j<k≤N

v(xj − xk ) + Hf ,

Âκ(x) =
∑
λ=1,2

∫
d3k

κ̃(k)√
2|k |

ελ(k)
(
e ikxa(k , λ) + e−ikxa∗(k, λ)

)
.

two types of particles: (non-relativistic) charged bosons and
photons,

photons have two polarizations ε1(k), ε2(k) (∇ · Âκ = 0),

H = L2(R3N)⊗Fp = L2(R3N)⊗ [⊕∞n=0(L2(R3)⊗ C2)⊗
n
s ],

scaling: kinetic and potential energy are of the same order.
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Regime

The scaling can be motivated by the Ehrenfest equations of the
field operators:

dt〈〈ΨN ,
Âκ(y)√

N
ΨN〉〉 = −〈〈ΨN ,

Êκ(y)√
N

ΨN〉〉,

dt〈〈ΨN ,
Êκ(y)√

N
ΨN〉〉 = − 2

N

N∑
j=1

〈〈ΨN , e
iδΛ

il (y − xj )

(
−i∇l

j −
Â

l

κ(xj )√
N

)
ΨN〉〉+ . . .

Emergence of the effective description:

ΨN ≈
∏N

i=1 ϕ(xi )⊗ |b〉F ,

〈b, Âκ(x)√
N

b〉F , 〈b, Â2
κ(x)
N b〉F → Aκ(x , t),A2

κ(x , t).
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Hartree-Maxwell system of equations


i∂tϕ(t) = HHMϕ(t),

∇ · Aκ(t) = 0,

∂tAκ(t) = −Eκ(t),

∂tEκ(t) = − (∆Aκ) (t)− ei
(
δΛ

il ? j l
)

(t),

where

HHM = (−i∇− Aκ)2 +
(
v ? |ϕ|2

)
,

j = 2
(
Im(ϕ∗∇ϕ)− |ϕ|2Aκ

)
.

Aκ(x , t) =
∑
λ=1,2

∫
d3k κ̂(k)√

2|k|
ελ(k)

(
e ikxα(k , λ, t) + e−ikx ᾱ(k, λ, t)

)
.

i∂tϕ(t) =
[
(−i∇− Aκ)2 +

(
v ? |ϕ|2

)]
ϕ(t),

i∂tα(k , λ, t) = |k|α(k , λ, t)− (2π)
3
2
κ̃(k)√

2|k|
εl
λ(k)j̃

l
(k).
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Main theorem

Reduced one-particle density matrices:

γ
(1,0)
N := Tr2,...,N ⊗ TrF |ΨN〉〈ΨN |,

γ
(0,1)
N (k, λ; k ′, λ′) := N−1〈〈ΨN , a

∗(k ′, λ′)a(k , λ)ΨN〉〉.

Theorem

Let ϕ(x , 0) ∈ H3(R3), α(k , λ, 0) = 0, ΨN(0) =
∏N

i=1 ϕ(xi )⊗ |0〉F ,
and v(x) = 1

|x | . Then, for any t > 0 there exists a constant

C (t,Λ) such that

TrL2(R3)|γ
(1,0)
N,t − |ϕt〉〈ϕt || ≤

C√
N
,

TrL2(R3)⊗C2 |γ(0,1)
N,t − |αt〉〈αt || ≤

C√
N
.

Remark: In general, this holds for a larger class of potentials and
initial states.
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Idea of the proof

Introduce the functional: β(t) = βa(t) + βb(t) + βc (t) + βd (t).

βa measures if the charged bosons are in a condensate,

βb and βc measure if the photons are close to a coherent
state,

βd restricts the class of Many-body initial states.

Initially: β(0) ≈ 0
Show: dtβ(t) ≤ C (β(t) + 1

N )

Grönwall: β(t) ≤ eCt
(
β(0) + Ct

N

)
Tasks of β(t):

β(0) ≈ 0 defines conditions on the initial states:
(ΨN(0), ϕ(0), α(0)).

β(t) is a measure of condensation at later times.
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βa

Let ϕ ∈ L2(R3) and pj : L2(R3N)→ L2(R3N) be given by

f (x1, . . . , xN) 7→ ϕ(xj )

∫
d3xj ϕ

∗(xj )f (x1, . . . , xN).

Define qj := 1− pj and the functional

βa[ΨN , ϕ] := N−1
N∑

j=1

〈〈ΨN , qj ⊗ 1FΨN〉〉.

βa measures the relative number of particles which are not in the
state ϕ:

βa ≤ TrL2(R3)|γ
(1,0)
N − |ϕ〉〈ϕ|| ≤ C

√
βa,

ΨN =
∏N

j=1 ϕ(xj , t)⊗ |0〉F ⇒ βa[ΨN , ϕ] = 0.
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βb and βc

βb[ΨN , α] :=

∫
d3y〈〈ΨN ,

(
Â
−
κ (y)√
N
− A−κ (y , t)

)(
Â

+

κ (y)√
N
− A+

κ (y , t)

)
ΨN〉〉,

βc [ΨN , α] :=

∫
d3y〈〈ΨN ,

(
Ê
−
κ (y)√
N
− E−κ (y , t)

)(
Ê

+

κ (y)√
N
− E+

κ (y , t)

)
ΨN〉〉.

βb and βc measure the fluctuations of Âκ and Êκ around Aκ and Eκ:

TrL2(R3)⊗C2 |γ(0,1)
N − |α〉〈α|| ≤ C

√
βb + βc ,

ΨN =
∏N

j=1 ϕ(xj , t)⊗ |0〉F ∧ α = 0⇒ βb = βc = 0.

Nikolai Leopold, Peter Pickl Derivation of Maxwell’s equations from non-relativistic QED



βb and βc

βb[ΨN , α] :=

∫
d3y〈〈ΨN ,

(
Â
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βd

βd [ΨN , ϕ, α] := 〈〈ΨN ,

(
HPF

N

N
− EHM [ϕ, α]

)2

ΨN〉〉,

where

EHM [ϕ, α] := 〈ϕ, (−i∇− Aκ(t))2 ϕ〉+
1

2
〈ϕ,
(
v ? |ϕ|2

)
ϕ〉

+
1

2

∫
d3y E 2

κ(y , t) +
(
∇× Âκ

)2
(y , t).

βd restricts our consideration to Many-body states, whose energy
per particle only fluctuates little around the energy of the effective
system:

dtβ
d = 0,

ΨN =
∏N

j=1 ϕ(xj , t)⊗ |0〉F ∧ α = 0⇒ βd ≤ C
N .
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Conclusions and Outlook

Remarks:

unpublished but soon on the arXiv,

method can be used to derive the Schrödinger-Klein-Gordon
system from the Nelson model,

UV-cutoff is essential, but can be chosen N-dependent.

Outlook:

Nelson model with electrons,

Renormalized Nelson model,

model for gravitons.
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Thank you for listening!
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