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Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2JM<g 8u¢>6,,¢)+,ud>>d X 2LM<h @u;ﬁ@mﬁ—i—,uqﬁ)dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).



=L, €0

Introduction
We study a scalar field ¢ subject to the action

v
§=-2 JM (8" 0u0s6 +1°67) @’ x — < LM (W dustno +107) '

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).

















































Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2JM<g 8u¢>6,,¢)+,ud>>d X 2LM<h @u;ﬁ@mﬁ—i—,uqﬁ)dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S = —'yf \/|g|d2X— mf V| hldx.
= o=



Introduction
We study a scalar field ¢ subject to the action

,_1 v 2,2\ d+1 € v 2,2\ d
S= 2JM(g Bubiut + 147) d*ix 2LM<h 0ud0u + 1267 d'x

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:
S= —'yf \/|g|d2X—mJ V| hldx.
= o=

SMWJ lwsh g S @ \3%
TFluctuwkooms
| o plase ol rotud o
havt action

D;, 1)


























































































































































































































Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2jM(g 8u¢>6,,¢)+,ud>>d X 2LM<h 6#¢0u¢+u¢>dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S = —'yf \/|g\d2X— mf V| hldx.
= o=

» Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

1 1
_ R, — 12y 5y — _*_ h(©— LR, + 3)d*x.
s 167TGJM\/E( e B) g ], VRO iR+ ) '



Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2JM<g 8u¢>6,,¢+,ud>>d X 2LM<h 6#¢3u¢+u¢>dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S = —'yf \/|g|d2X— mf V| hldx.
= o=

» Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus{QQ]Z
/I/ULL Sigh

1 5 1 4
S=- J\/E(Rgf%)dxf— Vh(©OLRy + 2) d*x.
167G Jy N 87G Jom IR ¢
BU wkn ) \/E‘ﬁﬂw cc.
e Curv,

GAY

















































































































































Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2jM(g 8u¢>6,,¢)+,ud>>d X 2LM<h 6#¢0u¢+u¢>dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S = —'yf \/|g\d2X— mf V| hldx.
= o=

» Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

1 1
_ R, — 12y 5y — _*_ h(©— LR, + 3)d*x.
s 167TGJM\/E( e B) g ], VRO iR+ ) '

» Holographic renormalization [Skenderis et al]
1
S = 77] \/E (guyau¢av¢ + (% - 1) ¢2) dd+1X
2 p=e

- gj vh (% logeh"" 0,0, + (4 — 1) ¢2> dx.
oM.



Introduction
We study a scalar field ¢ subject to the action

,_1 pv 2,2\ d+1 € v 2,2\ d
S = 2JM<g 8u¢>6,,¢)+,ud>>d X 2LM<h @u;ﬁ@mﬁ—i—,uqﬁ)dx

Specifically, M = R x ¥ with ¥ = R~ x [=S, S] (but also general ¥ c R?).
This is similar to

» The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S = —'yf \/|g|d2X— mf V| hldx.
= o=

» Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

1 1
_ R, — 12y 5y — _*_ h(©— LR, + 3)d*x.
s 167TGJM\/E( e B) g ], VRO iR+ ) '

» Holographic renormalization [Skenderis et al]
1
S = 77] \/E (guVau¢ay¢ + (% - 1) ¢2) dd+1X
2 p=e

- gj vh (% logeh"" 0,0, + (4 — 1) ¢2> dx.
oM. L3 <o N





















Questions

» Is the classical system well-behaved, i.e., is the Cauchy problem
well-posed?

» Can one quantize the system? If yes, what is the interplay between bulk
and boundary fields?
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The wave equation



Variation of

_ 1 pv 2,2\ 1d+1 75] pv 2,2\ 1d
s= QfM (8 au00.0 + 1267) @ 5 | (0,00, + 176") '
yields the equations of motion
~Os¢+1'6=0 in M, (1)
— [ + p’p = —c'oL¢ in oM. (2)

Using (1), one may write (2) alternatively as
Rop=—croLe in oM. (3)

Such boundary conditions are known in the mathematical literature as
generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary
conditions.
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yields the equations of motion

—sp+1’¢ =0 in M, (1)
— ¢ + P = —c 019 in oM. (2)

Using (1), one may write (2) alternatively as

Ro=—cro¢ in oM. (3)

Such boundary conditions are known in the mathematical literature as
generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary
conditions.

Different interpretations possible:

» (3) as boundary condition for wave equation (1).
» (1), (2) as wave equations for the bulk and the boundary field, coupled by

> The bulk field providing a source for the boundary field;
> The boundary field providing the boundary value of the bulk field.



Strategy

v

Write full system as
—0; = AD
with A a self-adjoint operator on some Hilbert space H.

Using A, rewrite the full system as a first order equation on suitable
energy Hilbert spaces for the Cauchy data. This yields well-posedness for
smooth initial data with suitable fall-off and global energy estimates.

Derive causal propagation by local energy estimates.

By glueing, this yields global well-posedness for smooth initial data.
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> The following symplectic form is conserved:

(6, 8), (1,1)) = L o — g+ CL): 1 — .
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> The following symplectic form is conserved:
o((6,9), (0,00 = | ob v+ c | ob—dv.
b %
» It is thus natural to consider the Hilbert space
H=L*Z)®cl’(%)
with scalar product

(Db, Pba), (Ybk, Yba)) = {Pbk; Yo r2(x) + {Pbd; Ybd)i2(ox)

so that

(¢, ), (,9)) = (&, Blox), (W, Plox)) — (P, Dlox), (, $lox))-

» We may write the wave equation as

—%0 = A® = <‘Af e 0 ) (¢"“) ,

ctoL - lox —Dox + 1) \Pba

where the boundary condition ¢uk|ox = @na is encoded in the domain

dom(A) = {(d)blm dva) € H | poi € H (L), pva € H*(0X), poi|ox = ¢bd}.



Proposition
A is self-adjoint with spectrum contained in 1%, 0).

Proof.
For ® € dom(A), we compute (with p = 0):

(P, AD) = — L P As Poi + Lz BbadLPr| — chpalor Pua

= f Oipor0idrk + ¢ | OiPpadipa = 0.
> ox
This entails the bound on the spectrum. The claim on self-adjointness follows
similarly by integration by parts: One shows that also on dom(A™*) the
boundary condition ¢uk|sr = ¢Pba has to be satisfied. O



Strategy

» Write full system as
—020 = Ad \/
with A a self-adjoint operator on some Hilbert space H.
» Using A, rewrite the full system as a first order equation on suitable

energy Hilbert spaces for the Cauchy data. This yields well-posedness for
smooth initial data with suitable fall-off and global energy estimates.






Proposition o <
For smooth Cauchy data H = H
S

(o, 1) € HP(X) x H(X)

such that
2k+2 —1 A2k+1
M hiloxr = —c 1Y oilox, Vk e N,

for i = 0,1, there is a unique smooth solution ¢(t) to the wave equation with
> 0. The properties of the Cauchy data are conserved under time evolution.
Furthermore, denoting ®(t) = (¢(t), ¢(t)|sx), we have

m 2 m 2
||0t ¢(t)‘|k+1 + ||0t +1¢(t)||k = ||¢0||i+m+1 + H¢1HI2<+m'













































Proposition
For smooth Cauchy data
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such that
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for i = 0,1, there is a unique smooth solution ¢(t) to the wave equation with
> 0. The properties of the Cauchy data are conserved under time evolution.
Furthermore, denoting ®(t) = (¢(t), ¢(t)|sx), we have
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Strategy

» Write full system as
—0; = AD Ve
with A a self-adjoint operator on some Hilbert space H.

» Using A, rewrite the full system as a first order equation on suitable
energy Hilbert spaces for the Cauchy data. This yields well-posedness for V
smooth initial data with suitable fall-off and global energy estimates.

» Derive causal propagation by local energy estimates.









» We consider the bulk and boundary stress-energy tensors
Tuw = 040006 — g (3000 + 1767 |

Tlop = C [8a¢6b¢ — Lh,, <6C¢6C¢ + ,f&)} .



» We consider the bulk and boundary stress-energy tensors
Tow = 0,00,6 — L8 (6@8% + u2¢2) ;
Tlas = ¢ [020066 — Lhas (2c60°6 + 1267 |
» Tuu is conserved on-shell. For the boundary stress-energy tensor one finds

(3"’T\ab = Tlip.



» We consider the bulk and boundary stress-energy tensors
Tow = 0,00,6 — L8 (6@8% + u2¢2) ;
Tlas = ¢ [020066 — Lhas (2c60°6 + 1267 |
» Tuu is conserved on-shell. For the boundary stress-energy tensor one finds
O Tlab = Tip-

» Both T, and T|.s fulfill the dominant energy condition.



We integrate V* T, and V2T |, over D = D*(So) n J~(X1) and 0D:

VT = J Tloo + J p°Tla0 — f Tloo
oD Jsinom SynoM Jspnom

+J Too +J éuTuo +j Tio —j Too.
Sy - : Sy oD So





































































We integrate V# T,,0 and VT |, over D = D*(So) N J’( 1) and 0D:

=0
YTl = J T oo +J p°Tla0 — Tloo
oD Jsinom — Js,nom ngaM

+J Too-‘r o~ Tuo +w j Too.
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We integrate V* T, and V2T |, over D = D*(So) n J~(X1) and 0D:

VT |0 = J Tloo + J p°Tla0 — f Tloo
oD S1noM SynoM SonaM

+J Too +J é”Tuo +j Tio —j Too.
51 So oD So

Proposition
Causal propagation is implied by the local energy estimate

f (@09) + g10r035 + 126% + cj (@09)? + Koo + 112
S1

S1noM

< f (000)* + 87060 + 16> + ¢ f (008)° + W 0i0;6 + 1°¢°.
So So

noM
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Strategy

» Write full system as
—0; = AD
\/

with A a self-adjoint operator on some Hilbert space H.

» Using A, rewrite the full system as a first order equation on suitable
energy Hilbert spaces for the Cauchy data. This yields well-posedness for L~
smooth initial data with suitable fall-off and global energy estimates.

» Derive causal propagation by local energy estimates. L~
» By glueing, this yields global well-posedness for smooth initial data. L~

Some comments:

» That L?(X) @ L?(0%) is the appropriate space of Cauchy data has been
observed by several authors [Feller 57; Ueno 73; Gal, Goldstein & Goldstein 03; ...].

» The global energy estimates for m = k = 0 were already known |vitillaro 15].

» Local energy estimates and thus causal propagation seem to be new.















An example

Consider ¥ = RY and a singularity §(t + z) infalling to the boundary from the
right. The full solution is given by

t—z

p=06(t+z)—d6(t—z)+2c e © O(t—z).



An example

Consider ¥ = RY and a singularity §(t + z) infalling to the boundary from the
right. The full solution is given by

t—z

p=0(t+z)—6(t—2z)+2c ‘e © O(t—2z).
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An example

Consider ¥ = RY and a singularity §(t + z) infalling to the boundary from the
right. The full solution is given by

t—z

p=06(t+z)—d6(t—z)+2c e © O(t—z).

» The singularity is reflected

» Boundary picks up energy and radiates it off on time-scale c.



An example

Consider ¥ = RY and a singularity §(t + z) infalling to the boundary from the
right. The full solution is given by

t—z

p=06(t+z)—d6(t—z)+2c e © O(t—z).

» The singularity is reflected
» Boundary picks up energy and radiates it off on time-scale c.

Open issue: Propagation of singularities.
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Quantization



The eigenfunctions
» We consider & = R? x [—S, S]. A basis of eigenfunctions of A is

d—1 1 cosgmz m even
Pk,m = Cm(27 )772577261kx . q
SIhgmZ m Odd

with k € R%"!, m e N and the eigenvalue

Wem = kK + Gy + 112



The eigenfunctions
» We consider & = R? x [—S, S]. A basis of eigenfunctions of A is

d—1 1 cosgmz m even
Pk,m = Cm(27 )77257726”0< . q
SIhgmZ m Odd

with k € R%"!, m e N and the eigenvalue
Wie,m = K+ g + 1.

» {gm} is an increasing sequence of non-negative reals with go = 0 and

T 2¢7!
T (m—-1
(m )+ -

dm = 55 erO((mfl)%).
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with k € R%"!, m e N and the eigenvalue
Wie,m = K+ g + 1.

» {gm} is an increasing sequence of non-negative reals with go = 0 and
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The eigenfunctions
» We consider & = R? x [—S, S]. A basis of eigenfunctions of A is

d—1 1 cosgmz m even
Pk,m = Cm(27 )77257726”0< . q
SIhgmZ m Odd

with ke R9™!, me N and the eigenvalue
Wie,m = K+ g + 1.

» {gm} is an increasing sequence of non-negative reals with go = 0 and

G = 22(m—1) + ﬂ(ch +O((m—1)%).

m—1)

» The restriction to the boundary is given by

d—1 .
Pk,mloyx(x) = (H)"(27)” 7 dne™
where the d,, are real, non-zero and fulfill
2¢7!

dm = Y T +O((m—1)73).



The eigenfunctions
» We consider & = R? x [—S, S]. A basis of eigenfunctions of A is

d—1 1 cosgmz m even
Pk,m = Cm(27 )77257726”0< . q
SIhgmZ m Odd

with k € R%"!, m e N and the eigenvalue
Wie,m = K+ g + 1.

» {gm} is an increasing sequence of non-negative reals with go = 0 and

G = 22(m—1) + ﬂ(ch +O((m—1)%).

m—1)
» The restriction to the boundary is given by
m —d=t ikx

Gkomloyx(x) = (£)7(2m)” 2 dme

where the d,, are real, non-zero and fulfill
















Time-zero fields
» Corresponding to {q)k’m}keRd—l,meN, define the one-particle Hilbert space
H = PR @ (),
the corresponding Fock space F, and am(k), am(k)* fulfilling
[am(k), am (K)*] = Omm 6 (k — K').



Time-zero fields

» Corresponding to {®k m}iepd—1, men, define the one-particle Hilbert space
Hi = LR @ F(N),
the corresponding Fock space F, and am(k), am(k)* fulfilling

[am(k), am (K)*] = Omm 6 (k — K').
» For F = (fok, foa) € dom(A™ ) Ge dom(A4) define time zero fields

291k ((F,o . o F o
ij (F, Dimyam(k) + {Pu,m, Fam(k)*),

70(G) = —iZJdd_lkivx/gm ((G, ®i.myam(k) — (Py,m, Gram(k)*).

These fulfill the canonical equal time commutation relations, i.e.,

[¢o(F),¢o(F')] =0, [m0(G),m0(G)] =0, [¢o(F),m0(G)] = i(F,G).



Time-zero fields
» Corresponding to {q)k’m}keRd—l,meN, define the one-particle Hilbert space
H = PR @ (),
the corresponding Fock space F, and am(k), am(k)* fulfilling
[am(k), am (K)*] = Omm 6 (k — K').

(
» For F = (fok, foa) € dom(A™ ) Ge dom(A4) define time zero fields

291k ((F,o . o F o
ij (F, Dimyam(k) + {Pu,m, Fam(k)*),

m0(G) = —iZJdd_lkivx/gm ((G, Ok myam(k) — (Dk,m, Gham(k)¥) .

These fulfill the canonical equal time commutation relations, i.e.,

[¢o(F),¢o(F')] =0, [m0(G),m0(G)] =0, [¢o(F),m0(G)] = i(F,G).

> Inserting F = (0, f,q), one obtains

o0.50) = 3 [ Tl ha(—H)am(6) + Ratan()*).

which is well defined on a dense domain for fi,q € L?(0%).









Space-time fields

For space-time fields, we admit F = (fix, foa) € S(M) @ S(OM) and define

d—1 ) ‘
ZJ jﬁ F (), Qumye ™5 an(K) + (D, F(£))e 57 an(K)*)

Proposition

Let > 0. The map F — ¢(F) defines an operator valued distribution on a
dense invariant linear domain © < F and with F real ¢(F) is essentially
self-adjoint. The field ¢ is causal, i.e.,

supp(F) X supp(G) = [4(F),¢(G)] = 0.

There is a unitary representation U of the proper orthochronous Poincaré group
P! (d), under which the domain D is invariant and such that

U(a,/\)gb(F)U(a, A)* = ¢(F(a,/\))

The vacuum vector Q) € ® is invariant under U, cyclic w.r.t. polynomials of the
fields ¢(fok, fox|ox) or ¢(0, fua), and the spectrum of P|q1 is contained in H,,.



Proof.

» Causality from causal propagation and equal time commutation relations.
» Map to generalized free field ¥ on R with ladder operators a,,,(k)<*) and
masses ,u?n = ,u2 + q,%,,:
o(F) = ¥(f).
Have to define fr € S such that fr takes prescribed values on the mass

shells. Then use standard results on generalized free fields [Jost 65] to obtain
self-adjointness, continuity, cyclicity.

» Construction of U trivial.

O



The boundary field
For f € S(0M), we define the boundary field as

dva(f) = $(0, ¢ ).

Restriction to the two boundaries separately yields

oti(x) = (2n) T > (£) " dm A"k (e*“wk«mf*ki)am(k) +h.c,)
bd i eom ,

i.e., a generalized free field with two-point function

A (x) = Y ldnP A% ().



The boundary field
For f € S(0M), we define the boundary field as
bwa(f) = $(0,c ).
Restriction to the two boundaries separately yields
—d=1 m ddilk —i(w —kx
(bgd(x) = (27T) ? Z(i) dm W (e homt kﬁ)am(k) + hC) ’

m

i.e., a generalized free field with two-point function

A (x) = Y ldnP A% ().

Proposition

Let 4y > 0 ord > 2. Then A, is a tempered distribution. lIts singular support
is contained in {x € RY|x* < 0} and the projection of its analytic wave front set
to the cotangent space is given by {k € R|k* < 0,k° > 0}. For d > 2, the
scaling degree of A at coinciding points is d — 2.



The boundary field
For f € S(0M), we define the boundary field as
bwa(f) = $(0,c ).
Restriction to the two boundaries separately yields
—d=1 m ddilk —i(w —kx
(bgd(x) = (27T) ? Z(i) dm W (e homt kﬁ)am(k) + hC) ’

m

i.e., a generalized free field with two-point function

A (x) = Y ldnP A% ().

m

Proposition

Let 4y > 0 ord > 2. Then A, is a tempered distribution. lIts singular support
is contained in {x € RY|x* < 0} and the projection of its analytic wave front set
to the cotangent space is given by {k € R|k* < 0,k° > 0}. For d > 2, the
scaling degree of A at coinciding points is d — 2.

» Time-slice property does not hold for ¢q. For time-slices larger than 257

> The bound on the analytic wave front set implies that d)gd satisfies the
Reeh-Schlieder property [Strohmaier, Verch, Wollenberg 02].



The bulk-to-boundary map

Bulk fields ¢k may be defined as
dui(f) = ¢(f,0)
We then have

diea(F) = on(f3(z T S)),
O (—0Oh + 12)F) = T on(F8' (2 T S)).



The bulk-to-boundary map

Bulk fields ¢k may be defined as
Pk (f) = o(f,0)
We then have
$ra(F) = doi(F3(z F S)),
$oa (0 + 1°)f) = Fc ou(F3' (2 F 5)).

Proposition
Let 1> > 0. To each f € S(M) there exists f' € S(0+M) s.t. pri(f) = &7 ().



The bulk-to-boundary map

Bulk fields ¢k may be defined as
dox(f) = ¢(f,0)
We then have
$Ea(f) = du(f3(z 7 S)),
¢y (=0 + 1)) = Fc " on(FO' (2 F 5)).
Proposition
Let 1> > 0. To each f € S(M) there exists f' € S(0+M) s.t. pri(f) = &7 ().

» f' € D(0+ M) is in general not possible. Maybe for d = 17

» Also works for Wick powers (but locality is lost).



Comparison with other boundary conditions

» Restriction to boundary also possible for Neumann boundary condition.
» Boundary two-point function inherits degree of singularity from the bulk.

» For Dirichlet boundary conditions, one may restrict ¢, ¢ to the boundary.
Singularity of boundary two-point function is then even stronger than that
of the bulk.



Comparison with other boundary conditions

v

v

v

Restriction to boundary also possible for Neumann boundary condition.
Boundary two-point function inherits degree of singularity from the bulk.

For Dirichlet boundary conditions, one may restrict 0, ¢ to the boundary.
Singularity of boundary two-point function is then even stronger than that
of the bulk.

In the AdS/CFT correspondence for scalar fields, the boundary fields also
have anomalous dimensions.

Holographic image of a bulk observable contained in a local algebra 2((O)
[Rehren 00].



Outline

Conclusion



Summary & Outlook

Summary:
» Well-posedness of the wave equation with Wentzell boundary conditions.
» Canonical quantization of the free field.

» Holographic relation between bulk and boundary field.



Summary & Outlook

Summary:
» Well-posedness of the wave equation with Wentzell boundary conditions.
» Canonical quantization of the free field.
» Holographic relation between bulk and boundary field.
Outlook:
> Propagation of singularities.
> Interacting fields.

» Fermions.
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