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Noncommutative space R3
]Ri =C [X15X2>X37X0] \I[R17R2]
e C[x1,x2, x3,x0] : free algebra generated by coordinates xi, x2, x3 and xo
e 7[R1,R2] : two sided ideal generated by the relations

3

. 2 2

Rt [Xu, xv] = iXepwpXp R2: x5+ Ao = E X,
p=1

— center Z (Ri) generated by xg

— unital * algebra (involution : complex conjugation)
Element on R} = (@ Mj41 (C), )
s

¢=Z Z @'n Vian ~> orthogonal basis : {vﬁnn,_/ea,—jgm,ngj}

jed —is<m,n<j

Scalar product (¢, 1) = Tr (¢T1/)>

Tr(gw) =87X° > w(i) tr (¢/ ¢/) =8N Y " w(i) Y Shon U

jell jell —j<m,n<j



Differential calculus

e Lie algebra of real inner derivation
. X,
G={Dp =il 0.=%}

with [DLM DV] = _iqﬂ’PDﬂa V/J’a v,p= 17233

e Connection on right module M over RS : V:GxM—M

@ ~»  particular choice : M = R}

Vp,(a) :=Vu(a) =Dua+Aua, Au=Vu(l) , AL =—Au

e Curvature
F(X, Y) = [VX7VY] — V[Xﬂy]

F(Du,Dy) = Fu = DA, — DLA, +[Au, Al + iequAp



Gauge transformation

e group of unitary elements I/ (R}) with left action
— forany ¢ € RS and g € U (Ri)
g'lg=1, ¢ =gp, Vi=g'V,og

thus
A =g'A,g+g'Dyg, and F5, =g'Fu g

e I gauge invariant connection and curvature

vim/(a) — D}La — ieua = —iaG,L and F;T; =0

n

e Covariant coordinates

vu*vifvf: A=A, +i0, and AL:-AM

then 1
Frv = [Ap, Al + Xeprp



Family of gauge invariant classical action |

Convenient to work with hermitean fields

Ay =id, ~ ol =0,

gauge-invariant functional (classical) actions
— trace of gauge-covariant polynomial in the covariant coordinates

Sin(®p) = Tr (P(®,))
Natural requirement for the gauge-invariant functional are:

1. P(®,) is at most quartic in &,

2. P(®,) does not involve linear term in ¢,
— (no tadpole at the classical order)

3. the kinetic operator is positive

~ gauge-invariant harmonic term ~ Tr(x*®,®,,)

3
x? = ZXHXM € Z(Ri)
p=1



Family of gauge invariant classical action Il

Requirements 1 and 2 give :
S(e) = éTr(2(Q +1),0,,0, +2(Q — 1), b, 0,5,
+iCenp®u Py, + (M + px®) 0, 0,,)
S5(®) is positive when
Q>0,1>0,(=0,M>0 o Q>0,p>0 (=% M>%
thus

1 i i
Sa = ?Tr((,:w - Xeuupcbp)f(':uv - XEHVP(DP) +Q{o,, ¢V}2 =+ (M+NX2)¢u¢u)

Equation of motion
42+ 1) (PP Py + PP ®,) +8(2 — 1)P, PP, + 2(M + NX2)¢p =0

®, = 0 is the absolute minimum



Kinetic operator of the classical action

We have

Kinetic term of the classical action Sq :

1
Skin(®) ETr (®u(M + px?)o,,)

1
= T (9,69,

with the positive self-adjoint operator written in the basis
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Gauge fixing |

e BRST operation §
50¢u = i[Ca ¢u]

» C : the ghost field

» Jo acts as antiderivation w.r.t. grading
e Fixing the gauge symmetry :
®3=0; thus 6oC=b Gb=0

» where C : the antighost field
» and b : the Stiickelberg field

e BRST invariant gauge-fixing term

Shix = 60Tr((_:(¢3 - 93)) = Tr(b(¢3 —6;) —iC[C, ¢3])

Integration over the Stileckelberg field b — constraint ®3 = 63
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Gauge fixing Il

e Gauge-fixed action

Sb=%+%
with
4
Si = En(n(qﬁw%)%(n—1)(¢1¢2¢1¢2—¢§¢§))
1 Q 0 P,
s - dn(een(d 9)(2)
Q@ = G+8QL(63)+i4(Q—1)L(6:)Ds

where G = M 4 pux? and L(X) is the left multiplication by X.

e Particular case : Q=1
» Kinetic operator : K = G + 8QL(63)
> Interaction term : S; = gizTr ((be + ¢§)2>



Gauge-fixed action at Q =1

f 1 K 0 ‘-bl 4 2 2\ 2
Sha = 5 Tr <(¢1,¢2) (0 K) <¢2)) T ((<1>1 +@3) )

Kinetic operator

K = G + 8QL(63)
U 8mA® . 4 y
K = o w(i) (M + mXGr 1) + 5506 + 7)) 820
It verifies

K2 gl ek

mn;kl — lk;nm mn;lk

reflecting reality of the functional action and the self-adjointness of K.

Inverse of K

E Jii2 oj3 __ §i3 E jle pei2is 5.
Kmn;lk P{(/;rs =4 6”756’7’ HS;""” Knm;k/ - 61113 6”65k

J2skil J2,n,m

2
L 1 j1j
piz — _& 128,100
T Tk T BN (i) (M + NG+ 1) + 2 (K2 + ) o




One loop 2-point function

Contribution to the quadratic part at one-loop

32703 . . . .
M(@a)= =25 D0 (Galm (onih + opn) (9 )l
—j<m,n,r,p<j

with

- - 1
NP — NP~
N O R O R )
j |

1

agr;{m = 30mp Z W(./.)P{m;mn

m=—j

J
m;j (M +Xpj(j + 1) + 35 (m? + n?))
» o"F is finite for j = 0 and j — oo
» o is also finite for j = 0 and j — oo

J

_ 2j+1
> wi)Pommn < M+ 225G +1)

m=—j



Finiteness — “Truncated model” |

» gauge choice : &3 =10
» propagator of the truncated theory :

—1\jij j1j2 (M j)
(G Vmur = 0" 5mndua w(i)
with
g 1
8 /\3 (M +XNpj(j + 1))
» Loop built from from any N-point sub-diagram

_ § : —1yj
Am3,n3,,.,,mN,nN - Amla”la“‘avanN(G )mlnl;man

—j<mi,ni,mp,m<j

nM,j) =

where

p=1
and

> o € Gy is some permutation of {1,2,..., N}
> Fn(j) is some function depending on j and the other parameters of the model



Finiteness — “Truncated model” 1l

One obtains

N
Fv()NG, M)
Am37"37~~-7’"N:"N = W—(J) Z H‘Smp"a(p) 5"6(1)"16’70(2)”2

—j<n,m<j \p=3

If 0(1) =1 and o(2) = 2, then

Contribution from summations over the indices of any Ioop give

(2j+1)° with <2

@ loop summations decouple from the propagators in the computation of
diagram amplitudes
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General ribbon diagram

General ribbon diagram D

v

a ribbon carries 4 bounded indices

conservation of the indices along each line

characterized by a set of positive integer (V, I, F, B)

>

vYyy

L

V : number of vertices

I : number of internal ribbons

F : number of faces

B : number of boundaries, equal to the number of closed lines with external legs

number of ribbon loops, given by

L=F-B

g € N : genus of the Riemann surface on which D can be drawn

2-2g=V—I+F



Finiteness — “Truncated model” 11l

Amplitude AP for a general ribbon diagram :

> V vertex factors
— each vertex contributing to w(j)

» | propagators
— each propagator contribute to

(M, Jj)
w(j)

» summations over indices corresponding to F — B loops which give an overall
factor bounded by

Gt~

(2 + 172

, WU)V71(2j + 1)2(F78)

AP < Kw(j)V'N(M, j)!(2j +1)2FB) = k
< Kw()" MM, ) (2] + 1) s
where
» K and K’ are finite constants and p2 = %
I

> w(j)=j+1

16
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Finiteness — “Truncated model” IV

/W(j)V—l(zj 4 1)2(F—B)
(J'Z +p2)l

AP < K

It is a (positive) function of j, finite and non singular for j = 0

we set  w(j) ~j, forj— o0
Thus we have the condition
wDP)=1+2B+2(2g-2)+V >0
» For g > 1, one has w(D) > 0.
» Forg=0
w(@D)=1+2B+V —-4>0

>2:w(D)>0
= 1: 2-point function for the truncated model — finite

the truncated model is finite to all orders in perturbation.
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Finiteness to all orders |

Back to our gauge model

» differs from the truncated model only through the propagator

Pjr#rz;k/ = 8g>\3 - "2 Smi bk
™ wii) (M+ G+ 1) + G0EER)])

> generic structure of Qljb
QVD = Z H anA(I)nA(I);k)\(I)IA(I) FJ(5)mx(I)nx(I);kx(I)/x(I)
F RPN

where

v

T : set of (internal) indices C {—J,...j} so that all sums ZI are finite
A : labels the internal lines of D

ijn;k/ . (positive) propagator

FI(8)mn; ki collects all the delta’s plus vertex weights depending only on j

v Vvyy



Finiteness to all orders Il
» One has the following estimate

el < > ]I

PPN

» From the previous condition

IO ENEINC NG

—1,j
(G Yoy @ (@rkr (D (D)

w@P)=al+2B+V(2—-a)—4>0
we have
)V_I(2j+ 1)2(F—B)
(2 + p?)

. W h
120, < K’ U < oo
Finiteness to all orders

All ribbon amplitudes in our gauge theory (Q = 1) are finite so that S5_; is
perturbatively finite to all orders. ~~ generalized to Q2 # 1

1. a sufficient rapid decay of the propagator at large indices (large j) so that
correlations at large separation indices disappear
2. the special role played by j, the radius of the fuzzy sphere components act as a

cut-off
3. the existence of an upper bound for the propagator that depends only of the

cut-off
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Solvability

We rewrite the action

Sh= %Tr (®Qo" + o'Qd) + gTr (Q+ 1o 00 + (32— 1)000 o)

with the complex fields

1

e Particular case : Q =1/3 (Nucl.Phys.B 2016, [arxiv:1603.05045])

b 4 idy) b = %(qa1 — i®,)

» Kinetic operator : ]
Q=K-— %L(03)D3

» Interaction term : 64
_ T 1
S4= 3" (PoTdoT)
— depends only on ¢&f

> action is formally similar to the action describing an exactly solvable LSZ-type
model

> partition function for 5;;71 can be related to 7-functions of integrable
-3

hierarchies



Thank you.



