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Noncommutative space R3
λ

R3
λ = C [x1, x2, x3, x0] \ I [R1,R2]

• C [x1, x2, x3, x0] : free algebra generated by coordinates x1, x2, x3 and x0

• I [R1,R2] : two sided ideal generated by the relations

R1 : [xµ, xν ] = iλεµνρxρ R2 : x2
0 + λx0 =

3∑
µ=1

x2
µ

→ center Z
(
R3
λ

)
generated by x0

→ unital ∗ algebra (involution : complex conjugation)

Element on R3
λ =

(⊕
j∈ N

2

M2j+1 (C) , ·

)

φ =
∑
j∈ N

2

∑
−j≤m,n≤j

φj
mn v j

mn  orthogonal basis :
{

v j
mn, j ∈

N
2 ,−j ≤ m, n ≤ j

}
Scalar product 〈φ, ψ〉 = Tr

(
φ†ψ
)

Tr (φψ) = 8πλ3
∑
j∈ N

2

w(j) trj
(
φj ψj) = 8πλ3

∑
j∈ N

2

w(j)
∑

−j≤m,n≤j

φj
mn ψ

j
mn
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Differential calculus

• Lie algebra of real inner derivation

G =
{

Dµ· = i [θµ, ·] , θµ =
xµ
λ2

}
with [Dµ,Dν ] = − 1

λ
εµνρDρ, ∀µ, ν, ρ = 1, 2, 3

• Connection on right module M over R3
λ : ∇ : G ×M→ M

�

 particular choice : M = R3
λ

∇Dµ (a) := ∇µ(a) = Dµa + Aµa , Aµ = ∇µ(I) , A†µ = −Aµ

• Curvature

F (X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ]

F (Dµ,Dν) := Fµν = DµAν − DνAµ + [Aµ,Aν ] + 1
λ
εµνρAρ
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Gauge transformation

• group of unitary elements U
(
R3
λ

)
with left action

→ for any φ ∈ R3
λ and g ∈ U

(
R3
λ

)
g†g = 1 , φg = gφ , ∇g

µ = g†∇µ ◦ g

thus
Ag
µ = g†Aµ g + g†Dµ g , and F g

µν = g†Fµν g

• ∃ gauge invariant connection and curvature

∇inv
µ (a) = Dµa − iθµa = −iaθµ and F inv

µν = 0

• Covariant coordinates

∇µ −∇inv
µ := Aµ = Aµ + iθµ and A†µ = −Aµ

then
Fµν = [Aµ,Aν ] +

1
λ
εµνρAρ
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Family of gauge invariant classical action I

Convenient to work with hermitean fields

Aµ = iΦµ  Φ†µ = Φµ

gauge-invariant functional (classical) actions
→ trace of gauge-covariant polynomial in the covariant coordinates

Sinv (Φµ) = Tr (P(Φµ))

Natural requirement for the gauge-invariant functional are:

1. P(Φµ) is at most quartic in Φµ,
2. P(Φµ) does not involve linear term in Φµ
→ (no tadpole at the classical order)

3. the kinetic operator is positive

 gauge-invariant harmonic term ∼ Tr(x2ΦµΦµ)

x2 :=

3∑
µ=1

xµxµ ∈ Z(R3
λ)
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Family of gauge invariant classical action II

Requirements 1 and 2 give :

S(Φ) =
1
g2Tr (2(Ω + 1)ΦµΦνΦνΦµ + 2(Ω− 1)ΦµΦνΦµΦν

+iζεµνρΦµΦνΦρ + (M + µx2)ΦµΦµ
)

S(Φ) is positive when

Ω ≥ 0, µ > 0, ζ = 0, M > 0 or Ω ≥ 0, µ > 0, ζ = 4
λ
, M > 2

λ2

thus

SΩ =
1
g2Tr

(
(Fµν −

i
λ
εµνρΦρ)†(Fµν −

i
λ
εµνρΦρ) + Ω {Φµ,Φν}2 + (M +µx2)ΦµΦµ

)
Equation of motion

4(Ω + 1)(ΦρΦµΦµ + ΦµΦµΦρ) + 8(Ω− 1)ΦµΦρΦµ + 2(M + µx2)Φρ = 0

Φρ = 0 is the absolute minimum
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Kinetic operator of the classical action

We have

SΩ(Φ) = SKin(Φ) + 1
g2Tr

(
(Fµν − i

λ
εµνρΦρ)†(Fµν − i

λ
εµνρΦρ) + Ω {Φµ,Φν}2

)
Kinetic term of the classical action SΩ :

SKin(Φ) =
1
g2Tr

(
Φµ(M + µx2)Φµ

)
=

1
g2Tr (ΦµGΦµ)

with the positive self-adjoint operator written in the basis

G j1j2
mn;kl = 8πλ3

g2 w(j1)
(
M + λ2µj1(j1 + 1)

)
δj1j2δnkδml
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Gauge fixing I

• BRST operation δ0

δ0Φµ = i [C ,Φµ]

I C : the ghost field
I δ0 acts as antiderivation w.r.t. grading

• Fixing the gauge symmetry :

Φ3 = θ3 thus δ0C̄ = b δ0b = 0

I where C̄ : the antighost field
I and b : the Stückelberg field

• BRST invariant gauge-fixing term

Sfix = δ0Tr
(
C̄(Φ3 − θ3)

)
= Tr

(
b(Φ3 − θ3)− i C̄ [C ,Φ3]

)
Integration over the Stüeckelberg field b → constraint Φ3 = θ3
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Gauge fixing II

• Gauge-fixed action

S f
Ω = S2 + S4

with

S4 =
4
g2Tr

(
Ω(Φ2

1 + Φ2
2)2 + (Ω− 1)(Φ1Φ2Φ1Φ2 − Φ2

1Φ2
2)
)

S2 =
1
g2Tr

(
(Φ1,Φ2)

(
Q 0
0 Q

)(
Φ1
Φ2

))
Q = G + 8ΩL(θ23) + i4(Ω− 1)L(θ3)D3

where G = M + µx2 and L(X) is the left multiplication by X .

• Particular case : Ω = 1
I Kinetic operator : K = G + 8ΩL(θ23)

I Interaction term : S4 = 4
g2Tr

((
Φ2

1 + Φ2
2
)2)
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Gauge-fixed action at Ω = 1

S f
Ω=1 =

1
g2Tr

(
(Φ1,Φ2)

(
K 0
0 K

)(
Φ1
Φ2

))
+

4
g2Tr

((
Φ2

1 + Φ2
2
)2)

Kinetic operator

K = G + 8ΩL(θ23)

K j1j2
mn;kl =

8πλ3

g2 w(j1)
(

M + µλ2j1(j1 + 1) +
4
λ2

(k2 + l2)
)
δj1j2δmlδnk

It verifies
K j1j2

mn;kl = K j1j2
lk;nm = K j1j2

mn;lk

reflecting reality of the functional action and the self-adjointness of K .

Inverse of K∑
j2,k,l

K j1j2
mn;lkP j2j3

kl ;rs = δj1j3δmsδnr
∑
j2,n,m

P j1j2
rs;mnK j2j3

nm;kl = δj1j3δrlδsk

 P j1j2
mn;kl =

g2

8πλ3
1

w(j1)(M + λ2µj1(j1 + 1) + 4
λ2 (k2 + l2))

δj1j2δmlδnk
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One loop 2-point function

Contribution to the quadratic part at one-loop

Γ1
2(Φα) =

32πλ3

g2

∑
−j≤m,n,r,p≤j

(φα)jmn
(
σNP j
pr ;mn + σP j

pr ;nm
)

(φα)jkl

with

σNP j
pr ;mn = w(j)P j

pr ;mn ∼
1

(M + λ2µj(j + 1) + 4
λ2 (m2 + n2))

σP j
pr ;nm = 3δmp

j∑
m=−j

w(j)P j
rm;mn ∼

j∑
m=−j

1
(M + λ2µj(j + 1) + 4

λ2 (m2 + n2))

I σNP is finite for j = 0 and j →∞
I σP is also finite for j = 0 and j →∞

j∑
m=−j

w(j)Prm;mn ≤ 2j + 1
(M + λ2µj(j + 1))
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Finiteness – “Truncated model” I

I gauge choice : Φ3 = 0
I propagator of the truncated theory :

(G−1)j1j2mn;kl = δj1j2δmnδkl
Π(M, j1)

w(j1)

with

Π(M, j) :=
g2

8πλ3
1

(M + λ2µj(j + 1))

I Loop built from from any N-point sub-diagram

Am3,n3,...,mN ,nN =
∑

−j≤m1,n1,m2,n2≤j

Am1,n1,...,mN ,nN (G−1)jm1n1;m2n2

where

Am1,n1,...,mN ,nN = FN(j)
N∏

p=1

δmpnσ(p)

and
I σ ∈ SN is some permutation of {1, 2, ...,N}
I FN(j) is some function depending on j and the other parameters of the model
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Finiteness – “Truncated model” II

One obtains

Am3,n3,...,mN ,nN =
FN(j)Π(j,M)

w(j)
∑

−j≤n1,n2≤j

(
N∏

p=3

δmpnσ(p)

)
δnσ(1)n1δnσ(2)n2

If σ(1) = 1 and σ(2) = 2, then

Am3,n3,...,mN ,nN = (2j + 1)2
FN(j)Π(j,M)

w(j)

(
N∏

p=3

δmpnσ(p)

)
Contribution from summations over the indices of any loop give

(2j + 1)ε with ε ≤ 2
�

loop summations decouple from the propagators in the computation of
diagram amplitudes
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General ribbon diagram

General ribbon diagram D

m1 n1
m2 n2

I a ribbon carries 4 bounded indices
I conservation of the indices along each line
I characterized by a set of positive integer (V , I,F ,B)

I V : number of vertices
I I : number of internal ribbons
I F : number of faces
I B : number of boundaries, equal to the number of closed lines with external legs

I L : number of ribbon loops, given by

L = F − B
I g ∈ N : genus of the Riemann surface on which D can be drawn

2− 2g = V − I + F
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Finiteness – “Truncated model” III

Amplitude AD for a general ribbon diagram :
I V vertex factors
→ each vertex contributing to w(j)

I I propagators
→ each propagator contribute to

G−1 ∼ Π(M, j)
w(j)

I summations over indices corresponding to F − B loops which give an overall
factor bounded by

(2j + 1)2(F−B)

AD ≤ Kw(j)V−IΠ(M, j)I(2j + 1)2(F−B) = K ′w(j)V−I(2j + 1)2(F−B)

(j2 + ρ2)I

where
I K and K ′ are finite constants and ρ2 = M

λµ2

I w(j) = j + 1
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Finiteness – “Truncated model” IV

AD ≤ K ′w(j)V−I(2j + 1)2(F−B)

(j2 + ρ2)I

It is a (positive) function of j, finite and non singular for j = 0

we set w(j) ∼ j, for j →∞
Thus we have the condition

ω(D) = I + 2B + 2(2g − 2) + V ≥ 0

I For g ≥ 1, one has ω(D) > 0.
I For g = 0

ω(D) = I + 2B + V − 4 ≥ 0
I V ≥ 2 : ω(D) > 0
I V = 1 : 2-point function for the truncated model → finite

the truncated model is finite to all orders in perturbation.
17 / 21



Finiteness to all orders I

Back to our gauge model
I differs from the truncated model only through the propagator

P j1j2
mn;kl =

g2

8πλ3
1

w(j1)
(

M + λ2µj1(j1 + 1) + 4
λ2 (k2 + l2)

)δj1j2δmlδnk

I generic structure of Aj
D

Aj
D =

∑
I

∏
λ

P j
mλ(I)nλ(I);kλ(I)lλ(I) F j(δ)mλ(I)nλ(I);kλ(I)lλ(I)

where
I I : set of (internal) indices ⊂ {−j, ...j} so that all sums

∑
I are finite

I λ : labels the internal lines of D
I P j

mn;kl : (positive) propagator
I F j (δ)mn;kl collects all the delta’s plus vertex weights depending only on j
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Finiteness to all orders II

I One has the following estimate

|Aj
D| ≤

∑
I

∏
λ

∣∣∣(G−1)jmλ(I)nλ(I);kλ(I)lλ(I)

∣∣∣ ∣∣F j(δ)mλ(I)nλ(I);kλ(I)lλ(I)

∣∣
I From the previous condition

ω(D) = αI + 2B + V (2− α)− 4 ≥ 0
we have

|Aj
D| ≤ K ′w(j)V−I(2j + 1)2(F−B)

(j2 + ρ2)I
<∞

Finiteness to all orders
All ribbon amplitudes in our gauge theory (Ω = 1) are finite so that S f

Ω=1 is
perturbatively finite to all orders.  generalized to Ω 6= 1

1. a sufficient rapid decay of the propagator at large indices (large j) so that
correlations at large separation indices disappear

2. the special role played by j, the radius of the fuzzy sphere components act as a
cut-off

3. the existence of an upper bound for the propagator that depends only of the
cut-off
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Solvability

We rewrite the action

S f
Ω =

2
g2Tr

(
ΦQΦ† + Φ†QΦ

)
+

16
g2Tr

(
(Ω + 1)ΦΦ†ΦΦ† + (3Ω− 1)ΦΦΦ†Φ†

)
with the complex fields

Φ =
1
2 (Φ1 + iΦ2) Φ† =

1
2 (Φ1 − iΦ2)

• Particular case : Ω = 1/3 (Nucl.Phys.B 2016, [arxiv:1603.05045])
I Kinetic operator :

Q = K − 8i
3 L(θ3)D3

I Interaction term :
S4 =

64
3g2Tr

(
ΦΦ†ΦΦ†

)
→ depends only on ΦΦ†

I action is formally similar to the action describing an exactly solvable LSZ-type
model

I partition function for S f
Ω= 1

3
can be related to τ -functions of integrable

hierarchies
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Thank you.


