
The Bivariant Cuntz Semigroup and

Classification of Stably Finite C∗-algebras

Gabriele N. Tornetta
joint with J. Bosa and J. Zacharias

School of Mathematics and Statistics

May 27, 2016



Outline

Introduction

The Cuntz Semigroup

The Bivariant Cuntz Semigroup

Classification



Introduction

A von Neumann algebra is generated, as a Banach space, by the
set of its projections.

Part of the structure of a von Neumann algebra M can then be
inferred by comparing its projections.

For p, q ∈ M projections, we say that p and q are Murray-von
Neumann equivalent (in symbols p ∼ q) if there is a partial
isometry v ∈ M such that p = v∗v and q = vv∗.
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Introduction

Let M∞(M) denote the infinite matrix algebra with entries in the
von Neumann algebra M and let P(M∞(M)) denote the set of its
projections.

The Murray-von Neumann semigroup of M is defined as

V (M) := P(M∞(M))/ ∼ .

A von Neumann algebra is a special type of C∗-algebra. It is easy
to see that the definition of Murray-von Neumann equivalence can
be extended to the latter. For a C∗-algebra A one can then set

V (A) := P(M∞(A))/ ∼ .
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Introduction

The Murray-von Neumann semigroup is the starting point of
K-theory for operator algebras. For a unital C∗-algebra A one
defines

K0(A) := Γ(V (A)).

Examples.

V (C) ∼= V (Mn) ∼= V (K ) ∼= N0

More generally V (A ⊗ K ) ∼= V (A), i.e. V is a stable functor.

K0(C) ∼= K0(Mn) ∼= K0(K ) ∼= Z and K0(A ⊗ K ) ∼= K0(A).

V (B(ℓ2(N))) ∼= N0 ⊔ {∞}

However K0(B(ℓ2(N))) ∼= {0}.
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The Cuntz Semigroup

Contrary to a von Neumann algebra, a C∗-algebra need not have
any projections.

Example. V (C0(X )) ∼= {0} for a connected, locally compact,
non-compact Hausdorff space X .

Instead of comparing projections one can then compare positive
elements.

Let A be a C∗-algebra and a, b ∈ A+ be positive elements. Say
that a is Cuntz-below (in symbols a - b) if there exists
{xn}

n∈N
⊂ A such that

lim
n→∞

‖x∗

n bxn − a‖ = 0.

Say that a ∼ b if both a - b and b - a hold. In this case a and b

are said to be Cuntz equivalent.
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The Cuntz Semigroup

Cuntz originally defined the Cuntz semigroup as the set of classes

W (A) := M∞(A)+/ ∼

endowed with the binary operation + coming from direct sum

[a] + [b] := [a ⊕ b].

However the functor W is not stable nor continuous under
inductive limits.

Coward, Elliott and Ivanescu proposed a new definition of the
Cuntz semigroup that is stable and preserves sequential inductive
limits

Cu(A) := W (A ⊗ K ) ∼= (A ⊗ K )+/ ∼ .
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The Bivariant Cuntz Semigroup

Kasparov found a way to “unite” K-theory and K-homology into a
unique bifunctor: KK-theory. Indeed, KK (C,B) ∼= K0(B) for any
(graded) C∗-algebra B.

The Bivariant Cuntz Semigroup is an attempt to provide an
analogue of the above relation for the the Cuntz theory of
comparison of positive elements.

The starting point is the key observation of Winter and Zacharias
that every c.p. order zero map (i.e. orthogonality preserving,
completely positive and linear) induces a map at the level of the
Cuntz semigroups by functoriality.
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The Bivariant Cuntz Semigroup

For any two c.p.c. order zero maps φ,ψ : A → B, we say that φ is
Cuntz-below ψ (in symbols φ - ψ) if there exists {xn}

n∈N
⊂ B

such that

lim
n→∞

‖x∗

nψ(a)xn − φ(a)‖ = 0, ∀a ∈ A.

We say that φ and ψ are Cuntz equivalent (in symbols φ ∼ ψ) if
both φ - ψ and ψ - φ hold.

We then define the bivariant Cuntz semigroup Cu(A,B) of a pair
of C∗-algebras A and B as the set of equivalence classes of c.p.c.
order zero maps φ : A ⊗ K → B ⊗ K . The binary operation is
given by “direct sum” of maps

[φ] + [ψ] := [φ ⊕̂ψ]

where (φ ⊕̂ψ)(a) := φ(a) ⊕ ψ(a) for any a ∈ A ⊗ K .
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The Bivariant Cuntz Semigroup

Theorem. Cu(A ⊗ K ,B ⊗ K ) ∼= Cu(A,B) for any pair of
C∗-algebras A and B.

Claim. Cu(C,B) ∼= Cu(B) for any C∗-algebra B.

Proof. Any class Φ ∈ Cu(A,B) has a representative of the form
φ⊗ idK , where φ : A → B ⊗ K c.p.c. order zero. When A = C we
have φ(z) = zh for any z ∈ C, where h = φ(1) ∈ (B ⊗ K )+.
Hence Φ can be identified with [h] inside Cu(B).
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The Bivariant Cuntz Semigroup

The bivariant Cuntz semigroup and KK-theory share the following
properties.

◮ Additivity in both arguments

◮ Countable additivity in the first argument

◮ Functoriality

◮ Stability in both arguments

◮ No general continuity under C∗-inductive limits

◮ Composition product
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Classification

There is an analogue of Kasparov’s product for the bivariant Cuntz
semigroup

· : Cu(A,B) × Cu(B,C) → Cu(A,C)

[φ] · [ψ] := [ψ ◦ φ].

This is well-defined, since composition of c.p.c. order zero maps
yields a c.p.c. order zero map and · is “compatible” with -.

For any C∗-algebra A, Cu(A,A) is a semiring with unit
ιA := [idA⊗K ].

Definition. An element Φ ∈ Cu(A,B) is invertible if there exists
Ψ ∈ Cu(B,A) such that

Φ · Ψ = ιA and Ψ · Φ = ιB .
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Classification

Definition. Two C∗-algebras A and B are Cu-equivalent if there
exists an invertible element in Cu(A,B).

Cu-equivalence is not strong enough to capture isomorphism
between C∗-algebras.

Example. Consider Cu(Mn,Mm) ∼= N0 ⊔ {∞} for any n,m ∈ N.
Clearly 1 ∈ N0 ⊔ {∞} is an invertible element, but Mn 6∼= Mm

unless m = n. However Mn ⊗ K ∼= Mm ⊗ K for every m, n ∈ N.

Standard classification results (Elliott, Kirchberg-Phillips, . . . )
suggest that a scale condition to strengthen Cu-equivalence is
needed.
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suggest that a scale condition to strengthen Cu-equivalence is
needed.
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Classification

Definition. An element Φ ∈ Cu(A,B) is strictly invertible if there
exist c.p.c. order zero maps φ : A → B and ψ : B → A such that

i. [φ⊗ idK ] = Φ;

ii. ψ ◦ φ ∼ idA and φ ◦ ψ ∼ idB.

Condition ii. is equivalent to: [φ ⊗ idK ] · [ψ ⊗ idK ] = ιA and
[ψ ⊗ idK ] · [φ⊗ idA] = ιK .

By defining the scale of Cu(A,B) as Σ(Cu(A,B)) := {[φ ⊗ idK ] ∈
Cu(A,B) | φ : A → B c.p.c. order zero}, a strictly invertible
element is invertible and in Σ(Cu(A,B)), with inverse in
Σ(Cu(B,A))

Every isomorphism π : A → B induces a strictly invertible element
in Cu(A,B).
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Classification

Example. Let n,m ∈ N. If n < m then there are no c.p.c. order
zero maps φ : Mm → Mn. For n = m we can take φ = idMn

.

A unital C∗-algebra is finite if every isometry is a unitary. A unital
C∗-algebra is stably finite if (A ⊗ K )∼ is finite.

C, Mn, K , M2∞ , AF algebras, AI algebras, . . . are all examples of
stably finite C∗-algebras.

Theorem. Two unital and stably finite C∗-algebras A and B are
isomorphic if and only if there is a strictly invertible element in
Cu(A,B).
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