Braided categories of endomorphisms in QFT¹

Luca Giorgetti

Dipartimento di Matematica, Università di Roma Tor Vergata giorgett@mat.uniroma2.it

München, 27-28 May 2016, 38th LQP Workshop

¹joint work with K.-H. Rehren, see [arXiv:1512.01995v1]

after [Doplicher, Haag, Roberts 69-74]: RCFTs (as Haag-Kastler nets)

UMTCs (as in Mac Lane's book)

$$\{I \subset \mathbb{R} \mapsto \mathcal{A}(I)\} \xrightarrow{\mathsf{DHR} \text{ construction}} \mathsf{DHR}\{\mathcal{A}\}$$

- $I \subset \mathbb{R}$ open bounded intervals, $\mathcal{A}(I) = \mathcal{A}(I)''$ local observables
- Möb $\curvearrowright \mathbb{R}$ and covariantly on $\{A\}$
- $\exists !$ vacuum vector Ω , split property, Haag duality (on \mathbb{R})
- Rationality = finite number of superselection sectors (positive energy i.e. DHR representations)
 - Examples: Virasoro (c < 1)
 minimal models, SU(N)-currents,
 orbifolds [cf. Marcel's talk], tensor
 products, finite index extensions

- "objects" = DHR endomorphisms ρ , σ , id, ... of $\{A\}$
- "arrows" = intertwiners $t: \rho \to \sigma$
- "tensor product" = composition $\rho \times \sigma = \rho \, \sigma$
- "braiding" = $\mathcal{E}_{\rho,\sigma}: \rho\,\sigma \to \sigma\rho$ subject to "commutative diagram
- Modularity = non-degeneracy condition on the braiding

[Fredenhagen, Rehren, Schroer 92], [Kawahigashi, Longo, Müger 01]

after [Doplicher, Haag, Roberts 69-74]: RCFTs (as Haag-Kastler nets)

UMTCs (as in Mac Lane's book)

$$\{I \subset \mathbb{R} \mapsto \mathcal{A}(I)\} \xrightarrow{\mathsf{DHR} \text{ construction}} \mathsf{DHR}\{\mathcal{A}\}$$

- $I \subset \mathbb{R}$ open bounded intervals, $\mathcal{A}(I) = \mathcal{A}(I)''$ local observables
- Möb $\curvearrowright \mathbb{R}$ and covariantly on $\{A\}$
- $\exists !$ vacuum vector Ω , split property, Haag duality (on \mathbb{R})
- Rationality = finite number of superselection sectors (positive energy i.e. DHR representations)
 - Examples: Virasoro (c < 1) minimal models, SU(N)-currents, orbifolds [cf. Marcel's talk], tensor products, finite index extensions

- "objects" = DHR endomorphisms ρ , σ , id, ... of $\{A\}$
- "arrows" = intertwiners $t: \rho \to \sigma$
- "tensor product" = composition $\rho \times \sigma = \rho \, \sigma$
- "braiding" = $\mathcal{E}_{\rho,\sigma}: \rho \, \sigma \to \sigma \rho$ subject to "commutative diagram
- Modularity = non-degeneracy condition on the braiding

[Fredenhagen, Rehren, Schroer 92], [Kawahigashi, Longo, Müger 01]

after [Doplicher, Haag, Roberts 69-74]: RCFTs (as Haag-Kastler nets)

UMTCs (as in Mac Lane's book)

$$\{I \subset \mathbb{R} \mapsto \mathcal{A}(I)\} \xrightarrow{\mathsf{DHR} \text{ construction}} \mathsf{DHR}\{\mathcal{A}\}$$

- $I \subset \mathbb{R}$ open bounded intervals, $\mathcal{A}(I) = \mathcal{A}(I)''$ local observables
- Möb $\curvearrowright \mathbb{R}$ and covariantly on $\{\mathcal{A}\}$
- $\exists !$ vacuum vector Ω , split property, Haag duality (on \mathbb{R})
- Rationality = finite number of superselection sectors (positive energy i.e. DHR representations)
 - Examples: Virasoro (c < 1) minimal models, SU(N)-currents, orbifolds [cf. Marcel's talk], tensor products, finite index extensions

- "objects" = DHR endomorphisms ρ , σ , id, ... of $\{A\}$
- $\bullet \ \ \text{``arrows''} = \mathsf{intertwiners} \ t: \rho \to \sigma$
- "tensor product" = composition $\rho \times \sigma = \rho \, \sigma$
- "braiding" = $\mathcal{E}_{\rho,\sigma}: \rho\,\sigma \to \sigma\rho$ subject to "commutative diagrams"
- Modularity = non-degeneracy condition on the braiding

[Fredenhagen, Rehren, Schroer 92], [Kawahigashi, Longo, Müger 01]

Important numerical invariants of $\{A\}$ can be extracted from DHR $\{A\}$:

- ullet statistical dimensions $d_
 ho$ and phases $\omega_
 ho$ of $ho\in\mathrm{DHR}\{\mathcal{A}\}$
 - \sim classification of DHR sectors $[\rho]$ [DHR 71]
- modular matrices S, T
 - → structure of the DHR category [Rehren 88]

They have more analytic counterparts:

- $d_{
 ho} \sim {
 m index} \ {
 m of \ subfactors} \ [{
 m Longo} \ {
 m 89}]$
- $\omega_{
 ho}\sim$ conformal spin [DHR 74], [Guido, Longo 96]
- $\bullet~S$, $T\sim$ modular transformations of Virasoro characters [Verlinde 88]

They depend **only** on the abstract UMTC class of $DHR\{A\}$, i.e., different QFTs might give the same numbers, and "the same" category (according to Mac Lane)

Important numerical invariants of $\{A\}$ can be extracted from DHR $\{A\}$:

- statistical dimensions d_{ρ} and phases ω_{ρ} of $\rho \in DHR\{A\}$ \sim classification of DHR sectors $[\rho]$ [DHR 71]
- modular matrices S, T
 - \sim structure of the DHR category [Rehren 88]

They have more analytic counterparts:

- $d_{
 ho} \sim {
 m index}$ of subfactors [Longo 89]
- $\omega_{
 ho}\sim$ conformal spin [DHR 74], [Guido, Longo 96]
- ullet S, $T\sim$ modular transformations of Virasoro characters [Verlinde 88]

They depend **only** on the abstract UMTC class of $DHR\{A\}$, i.e., different QFTs might give the same numbers, and "the same" category (according to Mac Lane)

Important numerical invariants of $\{A\}$ can be extracted from DHR $\{A\}$:

- statistical dimensions d_{ρ} and phases ω_{ρ} of $\rho \in DHR\{A\}$ \sim classification of DHR sectors $[\rho]$ [DHR 71]
- modular matrices S, T
 - \sim structure of the DHR category [Rehren 88]

They have more analytic counterparts:

- $d_{
 ho} \sim {
 m index}$ of subfactors [Longo 89]
- $\omega_{
 ho}\sim$ conformal spin [DHR 74], [Guido, Longo 96]
- ullet S, $T\sim$ modular transformations of Virasoro characters [Verlinde 88]

They depend **only** on the abstract UMTC class of $DHR\{A\}$, i.e., different QFTs might give the same numbers, and "the same" category (according to Mac Lane).

Tensor products are a source of RCFTs: given $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ let

$$(\mathcal{A}\otimes\mathcal{B})(I):=\mathcal{A}(I)\otimes\mathcal{B}(I) \text{ in } \mathcal{B}(\mathcal{H}^{\mathcal{A}}\otimes\mathcal{H}^{\mathcal{B}}) \quad , \quad \Omega^{\mathcal{A}\otimes\mathcal{B}}:=\Omega^{\mathcal{A}}\otimes\Omega^{\mathcal{B}}$$

then

$$\begin{split} \{I \subset \mathbb{R} \mapsto \mathcal{A} \otimes \mathcal{B}(I)\} &\longmapsto \ \mathrm{DHR}\{\mathcal{A} \otimes \mathcal{B}\} \ \simeq \ \mathrm{DHR}\{\mathcal{A}\} \boxtimes \mathrm{DHR}\{\mathcal{B}\} \\ & \varepsilon_{\rho \boxtimes \sigma, \tau \boxtimes \eta} := \varepsilon_{\rho, \tau}^{\mathcal{A}} \boxtimes \varepsilon_{\sigma, \eta}^{\mathcal{B}} \end{split}$$

In particular, if $\{\mathcal{B}\}$ has no non-vacuum DHR sectors, "holomorphic" RCFTs, i.e., $\mathrm{DHR}\{\mathcal{B}\}\simeq\mathrm{Vec}$, where $[\mathrm{id}]\simeq\mathbb{C}$ and $[\mathrm{id}]\oplus\cdots\oplus[\mathrm{id}]\simeq\mathbb{C}^n$, then

$$\mathrm{DHR}\{\mathcal{A}\otimes\mathcal{B}\}\ \simeq\ \mathrm{DHR}\{\mathcal{A}\}$$

because $\mathcal{C} \boxtimes \mathrm{Vec} \simeq \mathcal{C}$ for every \mathbb{C} -linear additive category \mathcal{C} . However

$$\{\mathcal{A}\otimes\mathcal{B}\}\ncong\{\mathcal{A}\}$$

unless $\{\mathcal{B}\}\cong\{\mathbb{C}\}.$

Tensor products are a source of RCFTs: given $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ let

$$(\mathcal{A}\otimes\mathcal{B})(I):=\mathcal{A}(I)\otimes\mathcal{B}(I) \text{ in } \mathcal{B}(\mathcal{H}^{\mathcal{A}}\otimes\mathcal{H}^{\mathcal{B}}) \quad , \quad \Omega^{\mathcal{A}\otimes\mathcal{B}}:=\Omega^{\mathcal{A}}\otimes\Omega^{\mathcal{B}}$$

then

$$\begin{split} \{I \subset \mathbb{R} \mapsto \mathcal{A} \otimes \mathcal{B}(I)\} &\longmapsto \ \mathrm{DHR}\{\mathcal{A} \otimes \mathcal{B}\} \ \simeq \ \mathrm{DHR}\{\mathcal{A}\} \boxtimes \mathrm{DHR}\{\mathcal{B}\} \\ & \varepsilon_{\rho \boxtimes \sigma, \tau \boxtimes \eta} := \varepsilon_{\rho, \tau}^{\mathcal{A}} \boxtimes \varepsilon_{\sigma, \eta}^{\mathcal{B}} \end{split}$$

In particular, if $\{\mathcal{B}\}$ has no non-vacuum DHR sectors, "holomorphic" RCFTs, i.e., $\mathrm{DHR}\{\mathcal{B}\}\simeq\mathrm{Vec}$, where $[\mathrm{id}]\simeq\mathbb{C}$ and $[\mathrm{id}]\oplus\cdots\oplus[\mathrm{id}]\simeq\mathbb{C}^n$, then

$$\mathrm{DHR}\{\mathcal{A}\otimes\mathcal{B}\} \simeq \mathrm{DHR}\{\mathcal{A}\}$$

because $\mathcal{C} \boxtimes \mathrm{Vec} \simeq \mathcal{C}$ for every \mathbb{C} -linear additive category \mathcal{C} . However

$$\{\mathcal{A}\otimes\mathcal{B}\}\ncong\{\mathcal{A}\}$$

unless $\{\mathcal{B}\}\cong\{\mathbb{C}\}.$

Question: how to complete the DHR construction? [G, Rehren 15]

Observation:

if
$$ho$$
, σ are resp. left/right localizable \Rightarrow $\mathcal{E}_{
ho,\sigma}=\mathbb{1}$

- specific feature of the DHR braiding (missing on Mac Lane's book)
- refers to spacetime DHR "localizability" of ρ and σ (here on $\mathbb R$)
- DHR endomorphisms often commute $\rho \, \sigma = \sigma \rho$ (consequence of locality)
- ullet ${\cal E}_{
 ho,\sigma}={\mathbb 1}$ + naturality = very definition of DHR braiding

Braided actions of DHR categories

New input: consider the whole realization of $DHR\{A\}$ as braided tensor category of endomorphisms of the net, or better, locally:

$$\mathcal{A}(I_0)$$
 fixed local algebra $\ \sim \ \mathcal{M}_0$ injective type III_1 factor $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ local DHR category $\ \sim \ \mathcal{C}$ strict UMTC

$$\begin{split} \mathrm{DHR}^{I_0}\{\mathcal{A}\} & \xrightarrow[\mathsf{restr.}]{} \mathrm{End}(\mathcal{A}(I_0)) & \sim \quad \mathcal{C} & \longleftrightarrow \mathrm{End}(\mathcal{M}_0) \\ \rho & \longmapsto \rho_{\restriction \mathcal{A}(I_0)} & \quad \text{- strict tensor functor} \\ t & \longmapsto t & \quad \text{- faithful, full} \end{split}$$

- replete image

"braided action" of $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ on $\mathcal{A}(I_0)$

Isomorphism of nets $\{A\} \cong \{\mathcal{B}\}$, i.e., $W: \mathcal{H}^{\mathcal{A}} \to \mathcal{H}^{\mathcal{B}}$, $W\mathcal{A}(I)W^* = \mathcal{B}(I)$, $I \subset \mathbb{R}$, and $W\Omega^{\mathcal{A}} = \Omega^{\mathcal{B}}$ gives an isomorphism of braided actions, i.e., invariant for nets:

$$Ad_W : \mathcal{A}(I_0) \to \mathcal{B}(I_0), \quad Ad_W \circ \rho^{\mathcal{A}} \circ Ad_{W^*} = \rho^{\mathcal{B}}, \quad Ad_W(t^{\mathcal{A}}) = t^{\mathcal{B}}$$

Braided actions of DHR categories

New input: consider the whole realization of $DHR\{A\}$ as braided tensor category of endomorphisms of the net, or better, locally:

$$\mathcal{A}(I_0)$$
 fixed local algebra $\ \sim \ \mathcal{M}_0$ injective type $I\!I\!I_1$ factor

 $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ local DHR category $\ \sim \ \mathcal{C}$ strict UMTC

$$\begin{aligned} \operatorname{DHR}^{I_0}\{\mathcal{A}\} & \xrightarrow[\operatorname{restr.}]{} \operatorname{End}(\mathcal{A}(I_0)) & \sim & \mathcal{C} & \hookrightarrow \operatorname{End}(\mathcal{M}_0) \\ \rho & \longmapsto \rho_{\upharpoonright \mathcal{A}(I_0)} & - \text{ strict tensor functor} \\ t & \longmapsto t & - \text{ faithful, full} \\ & - \text{ replete image} \end{aligned}$$

"braided action" of $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ on $\mathcal{A}(I_0)$

Isomorphism of nets $\{\mathcal{A}\}\cong\{\mathcal{B}\}$, i.e., $W:\mathcal{H}^{\mathcal{A}}\to\mathcal{H}^{\mathcal{B}}$, $W\mathcal{A}(I)W^*=\mathcal{B}(I)$, $I\subset\mathbb{R}$, and $W\Omega^{\mathcal{A}}=\Omega^{\mathcal{B}}$ gives an isomorphism of braided actions, i.e., invariant for nets:

$$\operatorname{Ad}_W : \mathcal{A}(I_0) \to \mathcal{B}(I_0), \quad \operatorname{Ad}_W \circ \rho^{\mathcal{A}} \circ \operatorname{Ad}_{W^*} = \rho^{\mathcal{B}}, \quad \operatorname{Ad}_W(t^{\mathcal{A}}) = t^{\mathcal{B}}$$

(Braided) actions of DHR categories

Why "braided"? Forget for a moment the braiding and its realization.

Let $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ s.t. $\mathrm{DHR}^{I_0}\{\mathcal{A}\}\simeq\mathrm{DHR}^{I_0}\{\mathcal{B}\}$ as abstract tensor categories, i.e.

$$\begin{split} \operatorname{DHR}^{I_0}\{\mathcal{A}\} &\stackrel{\simeq}{\longrightarrow} \operatorname{DHR}^{I_0}\{\mathcal{B}\} \\ &\rho^{\mathcal{A}} \longmapsto F(\rho)^{\mathcal{B}} \\ &t^{\mathcal{A}} \longmapsto F(t)^{\mathcal{B}} \end{split} \qquad \qquad \int \operatorname{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \operatorname{End}(\mathcal{A}(I_0)) \\ \operatorname{tensor} &F(\rho) \times F(\sigma) \cong F(\rho \times \sigma) \\ (\operatorname{strict tensor if } F(\rho) \times F(\sigma) = F(\rho \times \sigma)) \end{split}$$

• where $F_V(\rho) := \mathrm{Ad}_V \circ \rho \circ \mathrm{Ad}_{V^*}$ "spatial" strict tensor functor [Popa 95], [Izumi 15] s.t.

$$\operatorname{Ad}_V : \mathcal{A}(I_0) \to \mathcal{B}(I_0), \quad F_V(\rho) \cong F(\rho), \quad \operatorname{Ad}_V(t) \cong F(t)$$

 \Rightarrow there is a unique action of DHR $^{I_0}\{\mathcal{A}\}$ on the injective type III_1 factor, as a tensor category, where the equivalence is realized by F_V

• however F_V need **not** be a braided equivalence: $\mathrm{Ad}_V(\mathcal{E}^{\mathcal{A}}_{\rho,\sigma})
eq \mathcal{E}^{\mathcal{B}}_{F_V(\rho),F_V(\sigma)}$

(Braided) actions of DHR categories

Why "braided"? Forget for a moment the braiding and its realization.

Let $\{\mathcal{A}\}$ and $\{\mathcal{B}\}$ s.t. $\mathrm{DHR}^{I_0}\{\mathcal{A}\}\simeq\mathrm{DHR}^{I_0}\{\mathcal{B}\}$ as abstract tensor categories, i.e.

$$\begin{array}{ccc} \operatorname{DHR}^{I_0}\{\mathcal{A}\} & \xrightarrow{\cong} \operatorname{DHR}^{I_0}\{\mathcal{B}\} \\ & \rho^{\mathcal{A}} \longmapsto F(\rho)^{\mathcal{B}} \\ & t^{\mathcal{A}} \longmapsto F(t)^{\mathcal{B}} \end{array} & \operatorname{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \operatorname{End}(\mathcal{A}(I_0)) \\ & \text{tensor } F(\rho) \times F(\sigma) \cong F(\rho \times \sigma) \\ & \text{(strict tensor if } F(\rho) \times F(\sigma) = F(\rho \times \sigma)) \end{array}$$

• where $F_V(\rho) := \mathrm{Ad}_V \circ \rho \circ \mathrm{Ad}_{V^*}$ "spatial" strict tensor functor [Popa 95], [Izumi 15] s.t.

$$Ad_V : \mathcal{A}(I_0) \to \mathcal{B}(I_0), \quad F_V(\rho) \cong F(\rho), \quad Ad_V(t) \cong F(t)$$

 \Rightarrow there is a unique action of $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ on the injective type III_1 factor, as a tensor category, where the equivalence is realized by F_V

• however F_V need **not** be a braided equivalence: $\mathrm{Ad}_V(\mathcal{E}_{\rho,\sigma}^{\mathcal{A}}) \neq \mathcal{E}_{F_V(\rho),F_V(\sigma)}^{\mathcal{B}}$

(Braided) actions of DHR categories

Why "braided"? Forget for a moment the braiding and its realization.

Let $\{A\}$ and $\{B\}$ s.t. $\mathrm{DHR}^{I_0}\{A\}\simeq\mathrm{DHR}^{I_0}\{B\}$ as abstract tensor categories, i.e.

$$\begin{array}{cccc} \operatorname{DHR}^{I_0}\{\mathcal{A}\} & \xrightarrow{\simeq} \operatorname{DHR}^{I_0}\{\mathcal{B}\} \\ & \rho^{\mathcal{A}} \longmapsto F(\rho)^{\mathcal{B}} \\ & t^{\mathcal{A}} \longmapsto F(t)^{\mathcal{B}} \end{array} & \operatorname{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \operatorname{End}(\mathcal{A}(I_0)) \\ & \text{tensor } F(\rho) \times F(\sigma) \cong F(\rho \times \sigma) \\ & \text{(strict tensor if } F(\rho) \times F(\sigma) = F(\rho \times \sigma)) \end{array}$$

• where $F_V(\rho) := \mathrm{Ad}_V \circ \rho \circ \mathrm{Ad}_{V^*}$ "spatial" strict tensor functor [Popa 95], [Izumi 15] s.t.

$$Ad_V : \mathcal{A}(I_0) \to \mathcal{B}(I_0), \quad F_V(\rho) \cong F(\rho), \quad Ad_V(t) \cong F(t)$$

- \Rightarrow there is a unique action of $\mathrm{DHR}^{I_0}\{\mathcal{A}\}$ on the injective type III_1 factor, as a tensor category, where the equivalence is realized by F_V
- however F_V need **not** be a braided equivalence: $\mathrm{Ad}_V(\mathcal{E}_{\rho,\sigma}^{\mathcal{A}}) \neq \mathcal{E}_{F_V(\rho),F_V(\sigma)}^{\mathcal{B}}$

Braided actions & abstract points

The braiding must play a role. How to use the DHR braiding feature: $\mathcal{E}_{
ho,\sigma}=\mathbb{1}$?

- Consider "abstract points" of $\mathcal{A}(I_0)$:
 - geometric point $p \in I_0$ i.e. $I_0 = I_L \cup \{p\} \cup I_R$, $I_L < I_R$ $\{\mathcal{A}\} \, \rightsquigarrow \, \left(\, \mathcal{A}(I_L) \,,\, \mathcal{A}(I_R) \,,\, \mathrm{DHR}^{I_L}\{\mathcal{A}\} \,,\, \mathrm{DHR}^{I_R}\{\mathcal{A}\} \,\right)$
 - abstract point \widehat{p} of $\mathcal{A}(I_0)$ w.r.t. $\mathrm{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \mathrm{End}(\mathcal{A}(I_0))$ $\widehat{p} := \left(\mathcal{N}\,,\,\mathcal{N}^c\,,\,\mathcal{C}_{\mathcal{N}}\,,\,\mathcal{C}_{\mathcal{N}^c}\,\right) + \text{ conditions}$
 - "relative commutants" of subalgebras and subcategories, e.g. $\mathcal{N}^c = \mathcal{N}' \cap \mathcal{A}(I_0) \text{ and } \mathcal{C}^c = \mathcal{C}' \cap \mathrm{DHR}^{I_0}\{\mathcal{A}\}$
 - "duality relations" [Doplicher 82] subalgebras \leftrightarrow subcategories, e.g. $\mathcal{C}_{\mathcal{N}} = (\mathcal{N}^c)^{\perp}$ and $\mathcal{N} = (\mathcal{C}_{\mathcal{N}^c})^{\perp}$

Algebra replaces geometry:

 $\mathcal{C}_{\mathcal{N}}\hookrightarrow \mathrm{End}(\mathcal{N})$ well defined, $\mathcal{C}_{\mathcal{N}}$ fusion, $\mathcal{E}_{\rho,\sigma}=\mathbb{1}$ finite system of eqns

• Let $p\in I_0$, $t\mapsto \Lambda^t_{I_0}$ one-parameter group of dilations of I_0 , Δ_ω modular operator of $\mathcal{A}(I_0)$ w.r.t. ω , then

$$\mathrm{Ad}_{\Delta_{\omega}^{it}}:\mathcal{A}(I_0)\to\mathcal{A}(I_0)\,,\quad \Delta_{\omega}^{it}\,\widehat{p}\,\Delta_{\omega}^{-it} \text{ again abstract point of }\mathcal{A}(I_0)$$

- $\omega=$ vacuum, [Bisognano-Wichmann] $\Delta_\omega^{it}\,\widehat{p}\,\Delta_\omega^{-it}=\widehat{q}$, where $q=\Lambda_{I_0}^{-2\pi t}(p)$
- $\omega=$ any faithful normal state of $\mathcal{A}(I_0)$, [Longo 97] \sim "fuzzy points"
- Similarly, let $u \in \mathcal{U}(\mathcal{A}(I_0))$ unitary group of $\mathcal{A}(I_0)$, then

$$\mathrm{Ad}_u: \mathcal{A}(I_0) \to \mathcal{A}(I_0)\,, \quad u\,\widehat{p}\,u^* \text{ again abstract point of } \mathcal{A}(I_0)$$

- $u \in \mathcal{U}(\mathcal{A}(I_1)), I_1 \subset I_0$ and $p \notin I_1$, then $u \, \widehat{p} \, u^* = \widehat{p}$
- otherwise $u \, \widehat{p} \, u^* \neq \widehat{p} \rightsquigarrow$ "fat points"
- Both come from groups of braided tensor autoequivalences of the DHR braided action on $\mathcal{A}(I_0)$

Prime conformal nets

• Let $\{\mathcal{A} \otimes \mathcal{B}\}$ on \mathbb{R} , embed "diagonally" $\{\mathcal{A} \otimes \mathcal{B}(I)\} \subset \{\mathcal{A}(I) \otimes \mathcal{B}(J)\}$ on \mathbb{R}^2 If $p_1, p_2 \in I_0$, take \widehat{p}_1 in $\mathcal{A}(I_0)$ and \widehat{p}_2 in $\mathcal{B}(I_0)$, then

$$\widehat{p}_1 \otimes \widehat{p}_2$$
 is an abstract point of $\mathcal{A} \otimes \mathcal{B}(I_0)$

geometric in I_0 iff $p_1=p_2 \leadsto$ "2D points"

Abstract points lead far away from geometry (can be fuzzy, fat, 2D,...), while geometric points p,q of $\mathbb R$ are **totally ordered**: $p\leq q$ or $q\leq p$

- Why looking at abstract points?
 - identify a subfamily of RCFTs which can be classified, "prime" conformal nets
 (Idea: rule out ⊗-nets. Tools: prime decomposition of UMTCs [Müger 03]
 + structure of the two-interval inclusion [KLM 01])
 - give a way of classifying them by means of the DHR braided action

Prime conformal nets

• Let $\{\mathcal{A} \otimes \mathcal{B}\}$ on \mathbb{R} , embed "diagonally" $\{\mathcal{A} \otimes \mathcal{B}(I)\} \subset \{\mathcal{A}(I) \otimes \mathcal{B}(J)\}$ on \mathbb{R}^2 If $p_1, p_2 \in I_0$, take \widehat{p}_1 in $\mathcal{A}(I_0)$ and \widehat{p}_2 in $\mathcal{B}(I_0)$, then

$$\widehat{p}_1 \otimes \widehat{p}_2$$
 is an abstract point of $\mathcal{A} \otimes \mathcal{B}(I_0)$

geometric in I_0 iff $p_1=p_2 \leadsto$ "2D points"

Abstract points lead far away from geometry (can be fuzzy, fat, 2D,...), while geometric points p,q of $\mathbb R$ are **totally ordered**: $p\leq q$ or $q\leq p$

- Why looking at abstract points?
 - identify a subfamily of RCFTs which can be classified, "prime" conformal nets (Idea: rule out ⊗-nets. Tools: prime decomposition of UMTCs [Müger 03] + structure of the two-interval inclusion [KLM 01])
 - give a way of classifying them by means of the DHR braided action

Comparability of abstract points

Let
$$\widehat{p}$$
, \widehat{q} abstract points, $\widehat{p} = (\mathcal{N}, \mathcal{N}^c, \ldots)$, $\widehat{q} = (\mathcal{M}, \mathcal{M}^c, \ldots)$, of $\mathcal{A}(I_0)$
$$\mathcal{N} \vee \mathcal{M}^c \subset (\mathcal{N} \vee \mathcal{M}^c)^{cc} \quad \text{"abstract" two-interval inclusion (cf. [KLM 01])}$$

$$\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}} \quad (= \mathrm{DHR}^{\overline{pq}} \{\mathcal{A}\} \quad \text{if} \quad p,q \in I_0 \text{ and } p < q)$$

- Abstract points can be "algebraically compared" by looking at two natural intermediate algebras in $\mathcal{N} \vee \mathcal{M}^c \subset \ldots \subset (\mathcal{N} \vee \mathcal{M}^c)^{cc}$
 - $(\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}})^{\perp} = \text{fixed points algebra}$
 - $\mathcal{U}(\mathcal{N},\mathcal{M}^c)=$ unitary charge transporters from $\mathcal{C}_{\mathcal{N}}$ to $\mathcal{C}_{\mathcal{M}^c}$

$$\widehat{p} \sim \widehat{q} \quad \text{if} \quad \left\{ \begin{array}{ll} (\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}})^{\perp} = \mathcal{N} \vee \mathcal{M}^c & \text{(1)} \\ \\ \mathcal{U}(\mathcal{N}, \mathcal{M}^c) = (\mathcal{N} \vee \mathcal{M}^c)^{cc} & \text{(2)} \end{array} \right. \quad \text{and} \quad \left[\mathcal{N} \leftrightarrow \mathcal{M}\right]$$

- In the geometric case:
 - (1) conjecture of [Dop 82] in 4D, holds for RCFTs in 1D [GR 15]
 - (2) charge transporters generate relative commutants [KLM 01]

Comparability of abstract points

Let
$$\widehat{p}$$
, \widehat{q} abstract points, $\widehat{p} = (\mathcal{N}, \mathcal{N}^c, \ldots)$, $\widehat{q} = (\mathcal{M}, \mathcal{M}^c, \ldots)$, of $\mathcal{A}(I_0)$
$$\mathcal{N} \vee \mathcal{M}^c \subset (\mathcal{N} \vee \mathcal{M}^c)^{cc} \quad \text{"abstract" two-interval inclusion (cf. [KLM 01])}$$

$$\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}} \quad (= \mathrm{DHR}^{\overline{pq}} \{\mathcal{A}\} \quad \text{if} \quad p,q \in I_0 \text{ and } p < q)$$

- Abstract points can be "algebraically compared" by looking at two natural intermediate algebras in $\mathcal{N} \vee \mathcal{M}^c \subset \ldots \subset (\mathcal{N} \vee \mathcal{M}^c)^{cc}$
 - $(\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}})^{\perp}$ = fixed points algebra
 - $\mathcal{U}(\mathcal{N},\mathcal{M}^c)=$ unitary charge transporters from $\mathcal{C}_{\mathcal{N}}$ to $\mathcal{C}_{\mathcal{M}^c}$

$$\widehat{p} \sim \widehat{q} \quad \text{if} \quad \left\{ \begin{array}{ll} (\mathcal{C}_{\mathcal{N}^c} \cap \mathcal{C}_{\mathcal{M}})^{\perp} = \mathcal{N} \vee \mathcal{M}^c & \text{(1)} \\ \\ \mathcal{U}(\mathcal{N}, \mathcal{M}^c) = (\mathcal{N} \vee \mathcal{M}^c)^{cc} & \text{(2)} \end{array} \right. \quad \text{and} \quad \left[\mathcal{N} \leftrightarrow \mathcal{M}\right]$$

$$(2)'$$

- In the geometric case:
 - (1) conjecture of [Dop 82] in 4D, holds for RCFTs in 1D [GR 15]
 - (2) charge transporters generate relative commutants [KLM 01]

Dedekind's & DHR completeness

Main fact: let $\{A\}$ prime conformal net, $|\widehat{p} \sim \widehat{q}| \Rightarrow \widehat{p} \leq \widehat{q}$ or $\widehat{q} \leq \widehat{p}$

$$\widehat{p} \sim \widehat{q} \ \Rightarrow \ \widehat{p} \leq \widehat{q} \ \text{or} \ \widehat{q} \leq \widehat{p}$$

- where $\widehat{p} \leq \widehat{q} := \mathcal{N} \subset \mathcal{M}, \dots$ "algebraically ordered"
- essential use of primality and $\mathcal{E}_{\rho,\sigma}=\mathbb{1}$ on both \widehat{p} and \widehat{q}
- Classification (under two more conditions):
 - $\widehat{p} \sim \widehat{q} \sim \widehat{r} \Rightarrow \widehat{p} \sim \widehat{r}$ (transitivity, for $\widehat{p} \sim \widehat{q}$ or any $\widehat{p} \approx \widehat{q} \Rightarrow \widehat{p} \sim \widehat{q}$)
 - \widehat{p} , $\widehat{q} \Rightarrow \widehat{p} = V\widehat{q}V^*$ (unitary equivalence, fixed DHR^{I_0}{ \mathcal{A} }, in prime nets)
 - - compute abstract points of $\mathcal{A}(I_0)$ w.r.t $\mathrm{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \mathrm{End}(\mathcal{A}(I_0))$

Dedekind's & DHR completeness

• Main fact: let $\{\mathcal{A}\}$ prime conformal net, $|\widehat{p} \sim \widehat{q}| \Rightarrow \widehat{p} \leq \widehat{q}$ or $\widehat{q} \leq \widehat{p}$

$$\widehat{p} \sim \widehat{q} \ \Rightarrow \ \widehat{p} \leq \widehat{q} \ \text{or} \ \widehat{q} \leq \widehat{p}$$

- where $\widehat{p} \leq \widehat{q} := \mathcal{N} \subset \mathcal{M}, \dots$ "algebraically ordered"
- essential use of primality and $\mathcal{E}_{\rho,\sigma}=\mathbb{1}$ on both \widehat{p} and \widehat{q}
- Classification (under two more conditions):
 - $\hat{p} \sim \hat{q} \sim \hat{r} \Rightarrow \hat{p} \sim \hat{r}$ (transitivity, for $\hat{p} \sim \hat{q}$ or any $\hat{p} \approx \hat{q} \Rightarrow \hat{p} \sim \hat{q}$)
 - \widehat{p} , $\widehat{q} \Rightarrow \widehat{p} = V\widehat{q}V^*$ (unitary equivalence, fixed DHR^{I_0}{ \mathcal{A} }, in prime nets)
 - \Rightarrow DHR braided action on a fixed local algebra DHR^{I_0}{ \mathcal{A} } \hookrightarrow End($\mathcal{A}(I_0)$) completely classifies prime conformal nets
 - compute abstract points of $\mathcal{A}(I_0)$ w.r.t $\mathrm{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \mathrm{End}(\mathcal{A}(I_0))$
 - use previous "main fact"
 - use additivity of local algebras + Dedekind's completeness of \mathbb{R}
 - algebraic Haag's theorem [Weiner 11]

Outlook

- Question: how to complete the DHR construction $\{A\} \longmapsto \mathrm{DHR}\{A\}$? (i.e. add more invariants on the DHR side)
- New input: DHR braided action on local algebras $\mathrm{DHR}^{I_0}\{\mathcal{A}\} \hookrightarrow \mathrm{End}(\mathcal{A}(I_0))$ (sits sharply between subfactor theory/tensor categories and QFT)
- Exploit $\mathcal{E}_{\rho,\sigma}=\mathbb{1}$: consider abstract points \widehat{p} , compare them $\widehat{p}\sim\widehat{q}$, characterize (using abstract points) prime conformal nets (rule out \otimes -nets)
- Aim: reconstruct (not spacetime, but) local algebras $\{\mathcal{A}\}$ inside $\mathcal{A}(I_0)$ using $\widehat{p} \sim \widehat{q} \Rightarrow \widehat{p} \leq \widehat{q}$ or $\widehat{q} \leq \widehat{p}$
- Open questions: find other degeneracies of the DHR construction, find examples of prime conformal nets, improve algebraic conditions, realizability problem for UMTCs