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giorgett@mat.uniroma2.it

München, 27-28 May 2016, 38th LQP Workshop

1joint work with K.-H. Rehren, see [arXiv:1512.01995v1]

Luca Giorgetti (Uni Tor Vergata) Braided categories of endomorphisms in QFT 1 / 13

giorgett@mat.uniroma2.it


DHR construction

after [Doplicher, Haag, Roberts 69-74]:

RCFTs (as Haag-Kastler nets) UMTCs (as in Mac Lane’s book)

{I ⊂ R 7→ A(I)} DHR construction7−−−−−−−−−−−−−−−−→ DHR{A}

• I ⊂ R open bounded intervals,
A(I) = A(I)′′ local observables

• Möb y R and covariantly on {A}
• ∃! vacuum vector Ω, split property,

Haag duality (on R)

• Rationality = finite number of
superselection sectors (positive
energy i.e. DHR representations)

• Examples: Virasoro (c < 1)
minimal models, SU(N)-currents,
orbifolds [cf. Marcel’s talk], tensor
products, finite index extensions

• “objects” = DHR endomorphisms
ρ, σ, id, ... of {A}

• “arrows” = intertwiners t : ρ→ σ

• “tensor product” = composition
ρ× σ = ρ σ

• “braiding” = ερ,σ : ρ σ → σρ
subject to “commutative diagrams”

• Modularity = non-degeneracy
condition on the braiding

[Fredenhagen, Rehren, Schroer 92],
[Kawahigashi, Longo, Müger 01]
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DHR construction

Important numerical invariants of {A} can be extracted from DHR{A}:
• statistical dimensions dρ and phases ωρ of ρ ∈ DHR{A}

; classification of DHR sectors [ρ] [DHR 71]

• modular matrices S, T

; structure of the DHR category [Rehren 88]

They have more analytic counterparts:

• dρ ∼ index of subfactors [Longo 89]

• ωρ ∼ conformal spin [DHR 74], [Guido, Longo 96]

• S, T ∼ modular transformations of Virasoro characters [Verlinde 88]

They depend only on the abstract UMTC class of DHR{A}, i.e., different QFTs
might give the same numbers, and “the same” category (according to Mac Lane).

Luca Giorgetti (Uni Tor Vergata) Braided categories of endomorphisms in QFT 3 / 13



DHR construction

Important numerical invariants of {A} can be extracted from DHR{A}:
• statistical dimensions dρ and phases ωρ of ρ ∈ DHR{A}

; classification of DHR sectors [ρ] [DHR 71]

• modular matrices S, T

; structure of the DHR category [Rehren 88]

They have more analytic counterparts:

• dρ ∼ index of subfactors [Longo 89]

• ωρ ∼ conformal spin [DHR 74], [Guido, Longo 96]

• S, T ∼ modular transformations of Virasoro characters [Verlinde 88]

They depend only on the abstract UMTC class of DHR{A}, i.e., different QFTs
might give the same numbers, and “the same” category (according to Mac Lane).

Luca Giorgetti (Uni Tor Vergata) Braided categories of endomorphisms in QFT 3 / 13



DHR construction

Important numerical invariants of {A} can be extracted from DHR{A}:
• statistical dimensions dρ and phases ωρ of ρ ∈ DHR{A}

; classification of DHR sectors [ρ] [DHR 71]

• modular matrices S, T

; structure of the DHR category [Rehren 88]

They have more analytic counterparts:

• dρ ∼ index of subfactors [Longo 89]

• ωρ ∼ conformal spin [DHR 74], [Guido, Longo 96]

• S, T ∼ modular transformations of Virasoro characters [Verlinde 88]

They depend only on the abstract UMTC class of DHR{A}, i.e., different QFTs
might give the same numbers, and “the same” category (according to Mac Lane).

Luca Giorgetti (Uni Tor Vergata) Braided categories of endomorphisms in QFT 3 / 13



DHR construction

Tensor products are a source of RCFTs: given {A} and {B} let

(A⊗ B)(I) := A(I)⊗ B(I) in B(HA ⊗HB) , ΩA⊗B := ΩA ⊗ ΩB

then

{I ⊂ R 7→ A ⊗ B(I)} 7−→ DHR{A ⊗ B} ' DHR{A}� DHR{B}

ερ�σ,τ�η := εAρ,τ � εBσ,η

In particular, if {B} has no non-vacuum DHR sectors, “holomorphic” RCFTs,
i.e., DHR{B} ' Vec, where [id] ' C and [id]⊕ · · · ⊕ [id] ' Cn, then

DHR{A ⊗ B} ' DHR{A}

because C � Vec ' C for every C-linear additive category C. However

{A ⊗ B} � {A}

unless {B} ∼= {C}.
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DHR construction

Question: how to complete the DHR construction? [G, Rehren 15]

Observation:

if ρ, σ are resp. left/right localizable ⇒ ερ,σ = 1

• specific feature of the DHR braiding (missing on Mac Lane’s book)

• refers to spacetime DHR “localizability” of ρ and σ (here on R)

• DHR endomorphisms often commute ρ σ = σρ (consequence of locality)

• ερ,σ = 1 + naturality = very definition of DHR braiding
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Braided actions of DHR categories

New input: consider the whole realization of DHR{A} as braided tensor category
of endomorphisms of the net, or better, locally:

A(I0) fixed local algebra ∼ M0 injective type III1 factor

DHRI0{A} local DHR category ∼ C strict UMTC

DHRI0{A} ↪−−−→
restr.

End(A(I0)) ∼ C ↪−→ End(M0)

ρ 7−→ ρ�A(I0)

t 7−→ t

“braided action” of DHRI0{A} on A(I0)

- strict tensor functor

- faithful, full

- replete image

Isomorphism of nets {A} ∼= {B}, i.e., W : HA → HB, WA(I)W ∗ = B(I), I ⊂ R,
and WΩA = ΩB gives an isomorphism of braided actions, i.e., invariant for nets:

AdW : A(I0)→ B(I0), AdW ◦ ρA ◦AdW∗ = ρB, AdW (tA) = tB
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(Braided) actions of DHR categories

Why “braided”? Forget for a moment the braiding and its realization.

Let {A} and {B} s.t. DHRI0{A} ' DHRI0{B} as abstract tensor categories, i.e.

DHRI0{A} '−−→
F

DHRI0{B}

ρA 7−→ F (ρ)B

tA 7−→ F (t)B

tensor F (ρ)× F (σ) ∼= F (ρ× σ)

(strict tensor if F (ρ)× F (σ) = F (ρ× σ))

DHRI0{A} ↪−→ End(A(I0))

'
−−−−→F

−−−−→ FV

DHRI0{B} ↪−→ End(B(I0))

• where FV (ρ) := AdV ◦ ρ ◦AdV ∗ “spatial” strict tensor functor [Popa 95],
[Izumi 15] s.t.

AdV : A(I0)→ B(I0), FV (ρ) ∼= F (ρ), AdV (t) ∼= F (t)

⇒ there is a unique action of DHRI0{A} on the injective type III1 factor, as
a tensor category, where the equivalence is realized by FV

• however FV need not be a braided equivalence: AdV (εAρ,σ) 6= εBFV (ρ),FV (σ)
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Braided actions & abstract points

The braiding must play a role. How to use the DHR braiding feature: ερ,σ = 1 ?

• Consider “abstract points” of A(I0):

• geometric point p ∈ I0 i.e. I0 = IL ∪ {p} ∪ IR , IL < IR

{A} ;
(
A(IL) , A(IR) , DHRIL{A} , DHRIR{A}

)
• abstract point p̂ of A(I0) w.r.t. DHRI0{A} ↪→ End(A(I0))

p̂ :=
(
N , N c , CN , CNc

)
+ conditions

- “relative commutants” of subalgebras and subcategories, e.g.
N c = N ′ ∩ A(I0) and Cc = C′ ∩DHRI0{A}

- “duality relations” [Doplicher 82] subalgebras ←→ subcategories, e.g.
CN = (N c)⊥ and N = (CNc)⊥

N CN c

N c CN

⊥

c c

⊥

,
ερ,σ = 1

ρ∈CN , σ∈CNc

• Algebra replaces geometry:

CN ↪→ End(N ) well defined, CN fusion, ερ,σ = 1 finite system of eqns
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Abstract points: geometric or not?

• Let p ∈ I0, t 7→ ΛtI0 one-parameter group of dilations of I0, ∆ω modular
operator of A(I0) w.r.t. ω, then

Ad∆it
ω

: A(I0)→ A(I0) , ∆it
ω p̂∆−itω again abstract point of A(I0)

- ω = vacuum, [Bisognano-Wichmann] ∆it
ω p̂∆−itω = q̂, where q = Λ−2πt

I0
(p)

- ω = any faithful normal state of A(I0), [Longo 97] ; “fuzzy points”

• Similarly, let u ∈ U(A(I0)) unitary group of A(I0), then

Adu : A(I0)→ A(I0) , u p̂ u∗ again abstract point of A(I0)

- u ∈ U(A(I1)), I1 ⊂ I0 and p /∈ I1, then u p̂ u∗ = p̂

- otherwise u p̂ u∗ 6= p̂ ; “fat points”

• Both come from groups of braided tensor autoequivalences of the DHR
braided action on A(I0)
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Prime conformal nets

• Let {A⊗B} on R, embed “diagonally” {A⊗B(I)} ⊂ {A(I)⊗B(J)} on R2

If p1, p2 ∈ I0, take p̂1 in A(I0) and p̂2 in B(I0), then

p̂1 ⊗ p̂2 is an abstract point of A⊗ B(I0)

geometric in I0 iff p1 = p2 ; “2D points”

Abstract points lead far away from geometry (can be fuzzy, fat, 2D,. . . ), while
geometric points p, q of R are totally ordered: p ≤ q or q ≤ p

• Why looking at abstract points?

• identify a subfamily of RCFTs which can be classified, “prime” conformal nets
(Idea: rule out ⊗-nets. Tools: prime decomposition of UMTCs [Müger 03]
+ structure of the two-interval inclusion [KLM 01])

• give a way of classifying them by means of the DHR braided action
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Comparability of abstract points

Let p̂, q̂ abstract points, p̂ = (N ,N c, . . .), q̂ = (M,Mc, . . .), of A(I0)

N ∨Mc ⊂ (N ∨Mc)cc “abstract” two-interval inclusion (cf. [KLM 01])

CN c ∩ CM ( = DHRpq{A} if p, q ∈ I0 and p < q )

• Abstract points can be “algebraically compared” by looking at two natural
intermediate algebras in N ∨Mc ⊂ . . . ⊂ (N ∨Mc)cc

• (CNc ∩ CM)⊥ = fixed points algebra

• U(N ,Mc) = unitary charge transporters from CN to CMc

p̂ ∼ q̂ if

 (CN c ∩ CM)⊥ = N ∨Mc (1)

U(N ,Mc) = (N ∨Mc)cc (2)
and

(1)’
[N ↔M ]

(2)’

• In the geometric case:

• (1) conjecture of [Dop 82] in 4D, holds for RCFTs in 1D [GR 15]

• (2) charge transporters generate relative commutants [KLM 01]
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Dedekind’s & DHR completeness

• Main fact: let {A} prime conformal net, p̂ ∼ q̂ ⇒ p̂ ≤ q̂ or q̂ ≤ p̂

• where p̂ ≤ q̂ := N ⊂M,. . . “algebraically ordered”

• essential use of primality and ερ,σ = 1 on both p̂ and q̂

• Classification (under two more conditions):

• p̂ ∼ q̂ ∼ r̂ ⇒ p̂ ∼ r̂ (transitivity, for p̂ ∼ q̂ or any p̂ ≈ q̂ ⇒ p̂ ∼ q̂ )

• p̂, q̂ ⇒ p̂ = V q̂ V ∗ (unitary equivalence, fixed DHRI0{A}, in prime nets)

⇒ DHR braided action on a fixed local algebra DHRI0{A} ↪→ End(A(I0))
completely classifies prime conformal nets

• compute abstract points of A(I0) w.r.t DHRI0{A} ↪→ End(A(I0))
• use previous “main fact”
• use additivity of local algebras + Dedekind’s completeness of R
• algebraic Haag’s theorem [Weiner 11]
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Outlook

• Question: how to complete the DHR construction {A} 7−→ DHR{A}?
(i.e. add more invariants on the DHR side)

• New input: DHR braided action on local algebras DHRI0{A} ↪→ End(A(I0))
(sits sharply between subfactor theory/tensor categories and QFT)

• Exploit ερ,σ = 1: consider abstract points p̂, compare them p̂ ∼ q̂,
characterize (using abstract points) prime conformal nets (rule out ⊗-nets)

• Aim: reconstruct (not spacetime, but) local algebras {A} inside A(I0)
using p̂ ∼ q̂ ⇒ p̂ ≤ q̂ or q̂ ≤ p̂

• Open questions: find other degeneracies of the DHR construction, find
examples of prime conformal nets, improve algebraic conditions, realizability
problem for UMTCs
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