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In binding together elements long-known but heretofore scattered and
appearing unrelated to one another, it suddenly brings order where
there reigned apparent chaos — Henri Poincaré
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Motivation

Problem

Given a local net B characterize all irreducible subnets A ⊂ B, i.e. subnets
with A(O)′ ∩ B(O) = C.

Higher dimensions (Doplicher–Haag–Roberts): Given B
I Rep(B) is a rigid symmetric C∗–tensor category and by

Doplicher–Roberts duality braided equiavalent to Repk(G).

I (G, k) supergroup, i.e. G compact group, with k ∈ Z(G) and k2 = e.

I There is a unique Z2-graded “field net” F ⊃ B, with an action of G,
such that B = FG and B(O)′ ∩ F(O) = C.

I Given A ⊂ B irreducible, F is also a field net for A and it follows,
that A = FH for some compact group H with G ⊂ H ⊂ Aut(F).

Since A and B have the same field net they describe “similar” physics.
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Space-time dimension d ≤ 2:

I Rep(B) is a braided (sometimes rigid, basically never symmetric)
C∗–tensor category but there is no nice duality theory (sometimes
weak C∗–Hopf algebra).

I There is no gauge group.

I There is no field net (sometimes a field bundle).

I Non-integer dimensions d ∈ {2 cos(π/n) : n ≥ 3} ∪ [2,∞].

Example

Let B with Rep(B) ∼= 〈id〉 (vacuum is the only sector) and G a finite
group in Aut(B):

d > 2 Rep(BG) ∼= Rep(G), in particular
dim(Rep(BG)) =

∑
ρ∈Irr dρ

2 = |G|,
d ≤ 2 Rep(BG) ∼= Rep(Dω(G)) for some [ω] ∈ H3(G,T), in

particular not determined by G and
dim(Rep(BG)) =

∑
ρ∈Irr dρ

2 = |G|2.
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Unitary fusion categories - algebraic quantum field theory point of view

The strict rigid C∗–tensor category End0(N), with N a type III factor.

I Objects: Endomorphisms ρ : N → N with finite index
[N : ρ(N)] <∞.

I Morphisms: t : ρ→ σ is a t ∈ N , such that tρ(x) = σ(x)t for all
x ∈ N .

I Tensor product: ρ⊗ σ := ρ ◦ σ (composition of endomorphisms)

I dρ = [N : ρ(N)]
1
2 with [N : ρ(N)] the Jones index.

I Unitarity ; (ess. unique) spherical structure (Longo–Roberts ’1997).

Theorem (well-known: (Ocnneanu ’88), (Popa ’95), . . . , (Hayashi–Yamagami ’00))

Every (amenable) rigid C∗-tensor category C, is realizable as a full
subcategory of End0(N) with N a (hyperfinite) type III1 factor

C is called a unitary fusion category (UFC) if # Irr(C) <∞.
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Conformal net axioms

A conformal net associates with every interval I ⊂ S1 a von Neumann
algebra on a fixed Hilbert space H:

S1 ⊃ I 7−→ A(I) ⊂ B(H)

1. Isotony: I ⊂ J ⇒ A(I) ⊂ A(J)

2. Locality: [A(I),A(J)] = {0} if I ∩ J = ∅.
3. Covariance: U : G→ U(H), s.t. U(g)A(I)U(g)∗ = A(gI).

4. Vacuum: Unique (up to phase) G-invariant unit vector Ω ∈ H, s.t.
∨IA(I)Ω = H.

We often additionally assume complete rationality in the sense of
(Kawahigashi–Longo–Müger ’01)
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Conformal net by example

Loop group net of G at level k. G compact Lie group, LG = C∞(S1, G)

AGk(I) = π0,k(LIG)′′, LIG = {γ ∈ LG : supp γ ⊂ I}

Net associated with even lattice Γ ⊂ Rn = torus loop group LT with
T = Rn/Γ

AL(I) = AT(I)

Virasoro net with c ∈
{

1− 6
m(m+1) : m = 3, 4, . . .

}
∪ [1,∞):

Virc(I) = πc,0
(
Diff+

I (S1)
)′′

Constructions:

I ⊗-product

I Coset construction

I Orbifold construction = fixed point by finite group G

I Mirror extensions
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Representation theory of conformal nets

A representation π ∈ Rep(A) of A = {A(I)}I⊂S1 is a family:

π = {πI : A(I)→ B(Hπ)} ,

which is compatible, i.e. πJ � A0(I) = πI for I ⊂ J .

I Every π unitarily equivalent to a Doplicher–Haag–Roberts localized
endomorphism ρ ∈ End(A(I)).

I RepI(A) ⊂ End(A(I)) full and replete.
; C∗-tensor category

I Assume finite dimensions dρ ≡ [A(I) : ρ(A(I))]
1
2

!
<∞

; rigidity + semisimplicty

I ∃ natural braiding {ερ,σ : ρ⊗ σ → σ ⊗ ρ} (Fredenhagen–Rehren–Schroer

’89) ερ,σ =

σ

σρ

ρ

; unitary ribbon category
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Complete rationality

Theorem ((Kawahigashi–Longo–Müger ’01))

Let A be a completely rational conformal net, then all irreducible
representations have finite dimensions and C := RepI(A) is a unitary
modular tensor category.

C braided UFC is modular ⇐⇒ trivial Müger center

C′ ∩ C =

ρ ∈ C :

σρ

=

σρ

for all σ ∈ C

 = 〈id〉

; unitary representations of the modular group SL(2,Z).

On the opposite symmetric means C′ ∩ C = C.
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Extensions

Theorem ((Longo–Rehren ’95),(Müger),(B–Kawahigashi–Longo ’14))

There is a one-to-one correspondence between

I commutative algebras θ in C and

I local, finite index extensions B ⊃ A.

If A is rational, then Rep(B) ∼= Mod0
Rep(A)(θ), the category of local

θ-modules.

Note: In higher dimensions, Rep(A) is symmetric and
Mod0

Rep(A)(θ) = ModRep(A)(θ).
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Example (Rep(ASU(2)k))

Irreducible representations {0, 1
2 , 1, . . . ,

k
2}:

[i]× [j] =

min(i+j,k−i−j)⊕
n=|i−j|

[n]

Rep(ASU(2)k) is generated by 1
2 -representation ρ and ∪ ∈ Hom(id, ρρ) :

= −d = =

with ∩ ∈ Hom(ρρ, id) and braiding defined by the Kaufmann bracket

:= −
∗

= q
1
2 + q−

1
2

where q = e
iπ
k+2 , d = q + q−1 = 2 cos

(
π
k+2

)
.
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Example ((Capelli–Itzykson–Zuber ’87),(Ocneanu))

B ⊃ ASU(2)k
1:1←→ A,D,E Coxeter–Dynkin diagrams with Coxeter number

k + 2.

Ak+1 ASU(2)k ⊂ ASU(2)k

D2n ASU(2)4n−4
⊂ ASO(3)2n−2

≡ ASU(2)4n−4
o Z2 with

representations 1
2D2n

E6, E8 ASU(10)k ⊂ ASpin(5)1 and ASU(2)28 ⊂ AG2,1 , with Ising and
Fib representations.
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Holomorphic nets

A completely rational net B is called holomorphic if Rep(B) = 〈id〉, i.e. B
has only the vacuum sector.

Example

I Conformal net associated with even self-dual lattice, i.e.

L
!

= L∗ := {x ∈ Rn : 〈x, L〉 ∈ Z}. E.g. E8, E8 ⊕ E8, D
+
16, Leech, . . .

I Loop group net of E8 at level 1 AE8,1 and ASO(32)1 (not s.c.).

I Moonshine net A]
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Orbifold construction

Let G be a finite group acting properly on a net B then the fixed point net
BG is called the G-orbifold net.

Question (Evans–Gannon ’11)

Can we orbifold a VOA [or conformal net] by something more
general than a group?

Theorem (probably well-known, (B. ’16))

Let BK ⊂ B be a finite index subnet for a Kac algebra (finite C∗-Hopf
algebra) K, then K is a finite group.
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Stochastic Maps

Let (M,Ω) be a non-commutative propability space,i.e.

I M = M ′′ ⊂ B(H) a von Neumann algebra.

I Ω ∈ H a cyclic and separating vector, i.e. MΩ = M ′Ω = H.

A linear map φ : (M1,Ω1) −→ (M2,Ω2) is called a stochastic map if

I φ : M1 →M2 is completely positive, i.e.
φ⊗ 1Mn(C) : M1 ⊗Mn(C)→M2 ⊗Mn(C) is positive for all n ≥ 1.

I State-preserving: (Ω2, φ( · )Ω2) = (Ω1, ·Ω1).

I Normal: Continuous with respect to the ultraweak topology.

I Unital: φ(1M1) = 1M2 .

An adjoint is a stochastic map φ] : (M2,Ω2)→ (M1,Ω1), such that

(φ](m2)Ω1,m1Ω1) = (m2Ω2, φ(m1)Ω2), mi ∈Mi
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Stochastic maps are quantum operations preserving a state.

Theorem (Stinespring, Connes)

M type purely infinite and φ : M →M stochastic map, then there is an
isometry v ∈M and an endomorphism β ∈ End(M), such that

φ( · ) = v∗β( · )v .

Conversely, v an isometry and β ∈ End(M), such that
(vΩ, β( · )vΩ) = (Ω, ·Ω), then φ( · ) = v∗β( · ) is a stochastic map.
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Hypergroup actions

Given a net ({A(I)},Ω) a family of stochastic maps
{φIk : (A(I),Ω): (A(I),Ω) : I ∈ I, k = 0, . . . , n}, such that

I compatible: φIk � A(Ĩ) = φĨk
I unital: φI0 = idA(I)

I closed under adjoints: k 7→ k̄ on {1, . . . n}, such that φ]k = φk̄
I closed under composition: φi ◦ φj =

∑
k C

k
ijφk for some (Ckij ≥ 0).

I dual/weak inverse: C0
ij > 0 if and only if j = ī.

I simplex: The φk are extremal and affine independent.

is called a hypegroup action. The set K = {c0, . . . , ck} with the
coefficients Ckij is called a hypergroup. The span CK has the structure of
a finite C∗-algebra, generalizing the group algebra CG.
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Example (Hypergroup)

KD = {φ0 = id, φ1} with d ∈ [1,∞) and

φ1 ◦ φ1 =
1

d
φ0 +

d− 1

d
φ1 φ0 ◦ φ1 = φ1 = φ1 ◦ φ0, φ0 ◦ φ0 = φ0 .

φ1 ◦ · : Conv(K)→ Conv(K) defines a Markov chain:

φ0 φ1

1
d−1
d

1
d

Example

If d = 1 then K ∼= Z2.

Haar element (invariant measure) E ∈ Conv(K):

E( · ) :=
1

d+ 1
[φ0( · ) + dφ1( · )] ; E◦φk = E = φk◦E, E◦E = E
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Example (Hypergroup action)

Let G be a finite group of (first kind) gauge automorphism
{αIg : A(I)→ A(I) : I ∈ I, g ∈ G} (internal symmetries).

Theorem (B.)

Let K be a hypergroup action on B. Then BK defined by the fixed-point

BK(I) := B(I)K = {b ∈ B(I) : φIk(b) = b for all k ∈ K}

is a finite index subnet of B, called the K-orbifold net of B.

Example (Doplicher–Haag–Roberts, Rehren, Xu, Müger)

If K = G is a group, then BG is the G-orbifolda net of B.

athe name orbifold has roots in string theory, where the fixed point with
respect to a finite group has geometrical meaning.
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– When is A = BK for some hypergroup action?

– How does the hypergroups K abstractly look like?

– How does Rep(BK) looks like in terms of Rep(B)?
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Theorem

Let A ⊂ B with [B : A] <∞, then there is a canonical hypergroup action
K, such that A = BK .
There is a Galois like correspondence between intermediate nets
BK ⊂ Ã ⊂ B and subhypergroups L ⊂ K.
In this case A = ÃK//L, where K//L = L\K/L are the double cosets.

Proof.

There is a unique conditional expectation E : B(I)→ A(I) ⊂ B(I) and
E( · ) = v∗γ( · )v. The canonical endomorphisms [γ] =

⊕
i[βi] with sector

{βi} pairwise different (no multiplicities). It follows that

E( · ) =
1

[B : A]

∑
i

dβi · w∗i βi( · )wi︸ ︷︷ ︸
=:φi( · )

and K = {φi} gives the hypergroup action on B(I) which extends
naturally to all Ĩ ∈ I.

Marcel Bischoff (Vanderbilt) Generalized Orbifolds in ACQFT TUM, 05/27/16



, When is A = BK for some hypergroup action?

– How does the hypergroups K abstractly look like?
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Example

Let F be a UFC and Rep(A) ∼= Z(F).

I The the Longo–Rehren inclusion gives a local net B ⊃ A, with
Rep(B) = 〈id〉

I Can be seen as generalized crossed-product B = Ao F̂ . and A = BF

I F ∼= Irr(F) forms a hypergroup with:

C
[τ ]
[ρ],[σ] =

dρ · dσ
dτ

N
[τ ]
[ρ],[σ] [ρ]× [σ] =

∑
N

[τ ]
[ρ],[σ][τ ]

If G is a finite group and F = 〈αg : g ∈ G〉, where α : G→ Out(M) is a
G-kernel (characterized by [ω] ∈ H3(G,T)), then F = G and B = Ao Ĝ.
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Theorem

Let B be holomorphic, i.e. Rep(B) = 〈id〉. If K is a hypergroup action,
then there is a fusion category F whose fusion rules give K and
Rep(BK) ∼= Z(F).

1. In other words, F is a categorification of K.

2. Wide open mathematical problem: which hypergroups (fusion rings)
permit a categorification?

3. If K = G is a group, categorifications are given by [ω] ∈ H3(G,T) or
equivalently a G-kernel α : G→ Out(M).
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, When is A = BK for some hypergroup action?

, If [B : A] <∞ ; K finite hypergroup.

– How does the hypergroups K abstractly look like?

, If B is holomorphic ; K is a categorifiable fusion ring.
– If B is competely rational?

– How does Rep(BK) looks like in terms of Rep(B)?

, If B is holomorphic ; Rep(B) ∼= Z(F) for some F with Irr(F) = K.
– If B is competely rational?
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Theorem

Let B be completely rational (then Rep(B) is a UMTC). If a hypergroup
K is acting properly.

1. ∃ a (canonical) hypergroup K̃, such that K = K̃//KRep(B).

2. K̃ is categorifable, i.e. ∃ a fusion category F ⊃ Rep(B) centrally
with KF .

3. Rep(BK) ∼= Rep(B)
′ ∩ Z(F), i.e. Müger’s centralizer of Rep(B) in

the Drinfeld center Z(F).

Müger’s centralizer D ⊂ C where C is braided fusion category:

D′ ∩ C =

ρ ∈ C :

σρ

=

σρ

for all σ ∈ D


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Let F ⊃ D be an extension of a UMTC D. Then the inclusion ι : D → F
is central, if there is a braided ⊗-functor ι̃ : D → Z(F), such that the
following diagram commutes:

Z(F)

D F

F
ι̃

ι

where F : Z(F)→ F is the forgetful functor (forgetting the
half-braiding).
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Quantum Galois Correspondence: E6 example

AE8,1

ASpin(16)1

ASpin(5)1×Spin(11)1 AG10,1

ASU(2)10×Spin(11)1

∗ · · · ··

∗ · · · ∗·

∗ · · · ∗∗
∗ · ∗ · ∗·

∗ ∗ ∗ ∗ ∗
∗

G = (SU(2)× Spin(11))/Z2 and Rep(AG10,1) realizes the Drinfeld center
of the even part of the E6 subfactor (B. 2015).
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Outlook

I Twisted representations?

I Generalization of G-crossed braided tensor categories.

I Relation to phase boundaries and defects.

I Harmonic analysis, Fourier transformation, generalized S-matrices.

I Construction/existence of Haagerup net (VOA) AHg conjectured by
(Evans–Gannon ’11).

I Actions on loop group models, action on vertex operator algebras,
e.g.. affine Lie algebras.

I Infinite index inclusions (semi-compact/discrete), e.g. Virc ⊂ B for
c > 1.
; a lot of analysis.

I Fixed point for lattice models and models of topological phase of
matter (opposite of condensation).
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Thank you for your attention!
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