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UV Divergence in Classical Electrodynamics

A classical charge interacting with its field could be modeled by the Maxwell
equations:

oo

OA*(x) = —47re/ 2(1)0%(x — z(7)) dT, 0 A" =0 (M)

— 00

coupled to the Lorentz equation:

mzh(t) = eF" (2(r))z, (1), FM = 0"AY — 9V A", (L)

The right-hand side of (L) is ill-defined as at the charge world lines every solution
of (M) carries a singularity of the type

1/distance?.

Hence, the coupled set of equations (M) and (L) are ill-defined.

Mathematical Remedy: Unphysical cut off at high frequencies A < oo in the fields.
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Dirac’s Mass Renormalization Method

Dirac’s key idea: (M) correct but (L) must be changed.

1 1
mzt =e |FI" 2, + Z(FN + FN )"z, + E(Fr’;t — FN)™ 2,

free“v 2 e adv adv

~—Llepsn ~2e(zmav—EVar)2,+O(AY)

For A — oo the divergent term is absorbed by a bare mass m = m(A) that must
tend to —oo such that

1 .
Myen = m(A) + Ee/\ = experimentally measured mass of an electron
so that effectively we have
free

2 ..
Myen 2" = eF!” 2, + §e2(z“z'” — 7V:M)z,. (LD)

However, the story does not end here as almost all solutions to (LD) are
unphysical and 'good’ solutions have to be distinguished from 'bad’ ones.
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Bosonic UV Divergence in QFT

For some time it had been fashionable to say that because of the failure of the
classical theory QFT was invented:

@ Hope: Spreading of the wave function provides a natural smearing of the
point-like interaction.

@ Non-relativistic QED models, there is hope indeed:

o For the Nelson model an energy renormalization is sufficient [Nelson, 1964];
o For the Pauli-Fierz model it is conjectured [Hiroshima & Spohn 2003]:

-o(2))

m(A) = Ops00 (A7) = Meg = const.
o (Pseudo-) Relativistic QED models:

o No similar results;
o Not much non-perturbativ information known at all.

If so,
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Two Results for the Spinless, One-Particle Yukawa Model

We consider the Yukawa model for one nucleon that interacts with its own scalar
field. W.r.t. QED we neglect:

@ Pair-Creation;

@ Spin.
The equation of motion is given by

.d
Iawt = H\Ut

for the Hamiltonian
Him /P + /w(k)a*(k)a(k)dk +g/p(k) (a(k)e™ + a* (k)e ) dk

where w(k) := \/k? 4+ 2 and p(k) == —=

2w(k)
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Introduction of cut-offs

H:=+/p>+m?+ /w(k)a*(k)a(k) dk +g/ﬂ(k) (a(k)e”‘x + a*(k)e—ikx) dk

As in classical electrodynamics the equation of motion is ill-defined because
p¢ L2

To study this ill-defined equation of motion we introduce:

@ A smearing of the point interaction on small lengths by cutting off the
interaction at hight momenta A;

@ A cut-off of the interaction for momenta below k = 1 to separate the
ultraviolet from the infrared problem — the latter of which is well understood.
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In the P-fibre of the total momentum operator P = p 4+ P’ for

Pf = /ka*(k)a(k)dk

the model Hamiltonian reads

Hp|h =1/(P — Pf)2 + m2 + / (k)dk

—: Hnuc

=:Hf

e / p(K) (b(k) + b7 (K)) dk
<|k|<A

—[L =l +6" )

on the boson Fock space

oo J
=Ppr,  FO:=c,  F= =) LB\ Be,C;dk).

=1
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Ultraviolet Behavior of the Energy

For the ground state energy in the P fibre
Ep|} :=info (Hply | FI})

we find

Theorem (D., Pizzo; CMP 2014)

Let |P| < Pmax < 00 and |g| sufficiently small. There are constants
0 < b < a< oo such that for all k <\ < ©

—g?aN < Epp — /P2 + m? < —g?bA.

@ Despite the quantum dispersion relation the energy diverges linearly as in the
classical analogue;

@ In [Lieb & Loss, 2000] also a linear dependence of the self-energy was shown
for

H=\/(p — VaA(x))? + m?.
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Ultraviolet Behavior of the Effective Velocity

Theorem (D., Pizzo; CMP 2014)

Let |P| < Pmax < 0o and |g| be sufficiently small. Then, there exist universal
constants Cy, C; > 0 such that the following estimate holds true for all
k<N <oo:

A
9Epls </\—g2C1L+C2‘g|1/2 i=1.2.3.
oP; | — [P2 + m2]1/2 ’ '
Consequences:
@ As the free energy is given by Ep|r = %, switching on the interaction

for arbitrary small |g| > O flattens the mass shell up to O(|g|'/?);

@ No matter how small the coupling constant is, the nucleon becomes infinitely
heavy in the limit A — oo and the theory becomes trivial;

@ No choice of mass renormalization m = m(A\) can prevent this behavior!
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Strategy of Proof

Problem

Regular perturbation theory would require g = O(A™1),
but we want results uniform in K < A < co.

We slice up the domain of the interaction integral

N N
A * Ay"
gP|. = g/ p(k) (b(k)+ b*(k)) dk =g (O] N
| ; < (k) (b(k) + b*(k)) Z:‘; A1
with respect to a fineness parameter % < 7y < 1, chosen such that
InA
1:,{:/\7N = N = n Nln/\(l—’y)
—In~y

and define
Hp = H™ + H + Cbmvn, Fni= .7-‘|Q7,,.
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Iterative Construction of the P-fibre Ground State

The construction of the ground state Wp y of Hp y [ Fi is done by induction
adding slices of the interaction step-by-step starting from the free ground state
Vp o of Hpo | Fo.

Assume at step (n—1):
(i) Wp n_1 and Ep ,_1 are unique ground state and energy of Hp ,_1 [ Fp_1;
(ii) For a universal constant ¢ > 0 the spectral gap fulfills

Gap (Hp,n—1 | Fn-1) > Cw (Ay").

Induction step to n:

(1) External information needed: Gap (Hp ,—1 | Fp) > Cw (AY") and
EP,n < EP,n—l;

(2) Neumann expansion of ground state Wp , with respect to ground state
Wp ,_1 and interaction slice ®|7~1.
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Neumann expansion of the Ground State

Intended expansion:

1 dz
v — Vp o
P,n i f;n HP R P,n—1
1 & dz /
- _ ol Vp n
27i Z%fi‘n HP,n_]_ —Z |: g |n71 H 1 — Z:| P 1

For this we need an estimate of:

Hpn1—2 &% Hpn1—2z

for a convenient contour z € I, and uniformly in kK < A < 0.

Fn
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@ By a variational argument ensures Gap (Hp n—1 [ Fn) > Cw (Ay").
@ Let us restrict to contours z € [, in C such that

1
ng (A’y"+1) <|Epp-1—2z| <(w (/\’y"H) .

© The iteration only works well when adding the interaction slices starting from
A to AYN =1 in decreasing order as then

1 1/2
n—1
g¢|n <HP,,71 _ Z>

is compensated thanks to the spectral gap estimate and the chosen domain

for z which gives
Y 1 1/2
a M1 =) '

=0 (lel (MM 1 =7)""?),
Fn

HP,n—l —Z

@ This allows the construction of Wp , and another variational argument
guarantees Ep , < Ep ,_1 so that by Kato's theorem

Gap (Hp.n | Fn) > Cw (Ay™1)

]:n

which closes the induction.
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Recursion Formula for the Expansion

The ground state of Hp , | F, for sufficiently small |g| is then given by

1 dz
Up , - Up ,_
P, 2mi ?{n Hp,—z Pyn—1
1 & dz J
= — ¢ n \U —
2mi gﬁ Hp.n-1 -2 [ e Hp.n-1 Z} ot
where

This provides the key estimate for z € ', for the error control:

1 1/2 1 1/2
S Y (L — <0 (lglx = 7)¥?).
‘(H) sl () <o)
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The two main results must now also be inferred by iterative expansion.

The F,-distance between ground state vectors in the sequence (Vp ,)nen can now
be controlled explicitly by the von Neumann expansion (here, up to third order):

1
Vpn=Vp,1—g——F¢ |0 Wp,
Pn=Vpn_1 ngvn_l — EP,n—1¢ I Vpen-1
~ 1 1
2L n—1 *|n—1
+g°9p5 . ¢ Vp o1
& ©Pn1 HP,n—l - EP7n—1 | HP,n—l - EP,n—l |n 5
~ 1 _ 1 _
+g°0p o*[n! o [ o

P,n—1
Hpn1—Epna Hpn-1—Epna

~ 1
2 n—1
e
& =P, l(b‘ HP,nfl - EP,nfl

+0 (gl -72),

2
> ol

where épm_l is the orthogonal projector on Wp ,_1 ® Q € F,,.
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Expansion of the Effective Velocity

Using this formula one may start expanding the effective velocity at level n

OEpn /= ~ o P; — P,-'r
Tp = (Ve VilPIe,) . Vi(P):= TR

by expanding the vectors Wp , in terms of Wp ,_;.

The aim is to find a flow equation relating the effective velocity of level n to the
one of level (n—1).

Dirk - André Deckert (LMU) LQP @ IAS TUM May 27, 2016 16 /



<‘T’P,n, Vi(P)‘T’P,n> =
(1 _ a4 0 <[g|(1 N 7)1/2} “)) <u7,,,n,1, \/,-(P)\T:p,n,1>

1/2 4
+ App1+ Bpp1+ O ([|g(1 -7 >

where
AP,n—l -
g2< 1 Qb* nfl\IIP 1 V(P) 1 ¢* nfl\UP _1>
Hpn1— EP,nfl " 7 ' HP,nfl - EP,nfl "
BP,n—l -
g22%e<gf5 1 ¢|n71 1 Qb* nfl\]}P 1 X
" Hpp1—Epp1 " Hppo1—Epp1 " o

x \/,-(P)\Tlp,n_1>
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<\|1P N, Vi(P)Wp N> ﬁ (1 - gzaplxifﬂ) <‘T’P707 V"(P)(I}on>

Jj=1

=

—1
+ (1- g2aP|%71> (1 - gzaP|%:j'+1) [Apn—j—1+ Bp.n—j_1]

.
||
N

+(1- g20<P|%71) [Ap.n—2 + Bp n—2] + [Ap,n—1 + Bp,n—1]

1/2 4
+0 [ N [lela -
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<\|1P N, Vi(P)Wp N> ﬁ (1 - gzaplxifﬂ) <‘T’P707 V"(P)(I}on>

Jj=1

=

—1
+) (1-gPaplyh)- .. (1 - gzaPm:f-H) [Ap.n—j-1+ Bp.n—j-1]

.
||
N

+ (1= g%ap|y ") [Ap.n—2 + Bp.n—2] + [Ap.n—1 + Bp n—1]
o /2]

N { 11—~

+O0 | N |lgl(T=7)

Crucial variational estimate:

ag’(l—7) < g’apli ™ < cg?(1—7).
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1P|

<e*C1g2N(1*7)</\*g2€1 _
VIP|12+m2
~

<\|’P Y% ‘UP N> ﬁ (1 — gzaP|%:§+1> <\T’P,o, Vi(P)Vp o>
j=1

-1
(1—g%ap|y") ... (1 - gZOéPm:j-H) [Apn—j-1+ Bpn—j-1]

N
_l’_
=2
+ (1= g%ap|N 1) [Ap.n—2 + Bp.n—2] + [Ap.n—1 + Bp n_1]
_ ~\1/2
+0 [ N [lelt—)
<im

Crucial variational estimate:
ag’(l1—7) < g’aplp ! < cg?(1—9)
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1P|

<e*C1g2N(1*7)</\*g2€1 _
VIP|12+m2
~

<‘UP Y% ‘UP N> ﬁ (1 — gzaP|%:§+1> <\T’P,o, Vi(P)Vp o>
j=1

-1
(1—g%ap|y") ... (1 —gzap|%:j-+l) [Ap.n—j—1+ Bp.n—j-1]

N
_l’_
=2
+(1-g 0<P|%71) [Ap.n—2 + Bp n—2] + [Ap,n—1 + Bp,n—1]
_ ~\1/2
+0 [ N [lelt—)
<im

Crucial variational estimate:
ag’(l1—7) < g’aplp ! < cg?(1—9)

- )

If one could also provide the bounds
Y
Apn—jl < g Cm7 1Bpn—j| < |g??C(1
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this would imply

P
cpea_IPL__ Glg'? + O (|g]* log A(1 —7)).

OEp|}
[P2 4 m2]"/?

oP;

The real hard part is to show these bounds

1—v

2
Apn—j| < 8°C i

1Bp.n—j| < |g|*/?C(1—7).

AP,nfl =

1 ~
2 x| n—1
T 1) Vp 1, Vi(P
g<”,nl E,nl ‘n ,n—1, ()

1

Hpn1—Epna

¢* |Zl€|}P,n—1>

1 1 —~
2 1 n—1 x| n—1
2Re( Op ol TTWp g, X
& < P Hp no1 — Epn1 | P | o

X \/i(P)(I}P7n1>
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1Ben—j| < |gl?C(1—7)

Bpn_1:=

1
g229{€< Qfg,nfl HP

n—1— Epn_1

1
Hppn_1— Epn_1

n—1
n

¢* |Z_1\UP,H717 X

X Vi(P)‘UP,n1>
The situation is worse because we cannot use V.

Dirk - André Deckert (LMU) LQP @ IAS TUM May 27, 2016 20 / 28



1Bpn—j| < |g]*?C(1

Bpn_1:=

1 1
g22iﬁe<Qﬁn1 H nt

n
pn—1— Epn_1 Hppn_1— Epn_1

¢* |Z_1\UP,H717 X

X Vi(P)‘UP,n1>
The situation is worse because we cannot use V.

/\,Yn 1
Broa| = g2[25% [ dkplio?x
N

o

1 1 -~ ~
Vp h1, Vi(P)Wp n
<QP" YHpn1— Epp1 Hp—gn1 +w(k) — Ep oy "} (P)Ve. 1>‘

A’)/n71 1 1 R
< g’C dk = || —————90p, Vi(P)Vp.n_
=8 Ay k2 HP,nfl — EP,nfl QP,n—l ( ) P,n—1
_ 1
< g?Chy" 1(1—7)”/_1,3_1L_—P_Q P Vi(P)Wp s
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We need to show

1

|1/2
H HP,n—l - EP,n—l

< clel”

Qp 1 Vi(P)Vp n 1 Ay

To show this we use another expansion from scale Ay"~1 to scale
= AN
—p—1 .= /\’}/

for an / € NU {0} such that

A n—1
Ay < min {/\, Vge } < Ay'L

A=Ag® N %‘_
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Backwards Expansion

Using the control of the mass shell from the construction one infers

1 1/2 oiE 1 1/2
Hp=,_,—z &% Hp=z, ,—2z

and after expansion

< |g|1_§C, zZ l'p,,,_l.

Fn-1

1 —~
H Qp »1Vi(P)Vp 1

HP,n—l - EP,n—l

1
= *Hpz,_, — Epn-1 ’"_

y=n—1

< HQ,%,
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@ Case =,_1 < A. In this case we exploit

1 g€
Qp = <cC
H P.=n 1 HP7£"_1 — EP,n—l F /\fy”
=n—1
@ Case =,_1 = A. In this case we have
P; ~
Q{E (P)\UP,_n 1 P21 m ,D)_,7 1“} P=,_1 — 0
Therefore
1 ge
1
PV <C .
HQ P,=n- "Hp=, , — Ep.n_ 1QP,_n 1 ( ) P.=n—1 Aryn

Therefore,

€ 1-5
|Bpn-1] < g2CAY"H(1 —’y)(C £ CW) <g?C(1—~), fore= %

A~y Ay"
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@ In which scaling can we prevent the model from becoming trivial?

|1/2

@ How to remove the technical artifact of the |g|'/* error term?

@ How to infer bounds from below?

Thank you!
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Expansion of the Self-Energy

In this way we can readily control the shift in the ground state energy:

<\UP,I77 [HP,n — HP,nfl] \UP,n—1>
(Vp,n Vp p1)

Epn—Eppn1=
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Expansion of the Self-Energy

In this way we can readily control the shift in the ground state energy:

<\UP,I77 [HP,I‘I — HP,nfl] \UP,n—1>

Ep,—Ep 1=
Pon = =Pt (VpnVpn 1)
o <\UP,nag¢|271wP,n71>
<WP,n7WP,n—1>
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Expansion of the Self-Energy

In this way we can readily control the shift in the ground state energy:

<\UP,I77 [HP,I‘I — HP,nfl] \UP,n—1>

Ep,—Ep 1=
Pon = =Pt (VpnVpn 1)
o <\UP,nag¢|271wP,n71>
<WP,n7WP,n—1>

= AEp[y 7 + 0 (|gl*A(L = 7)*?).
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Expansion of the Self-Energy

In this way we can readily control the shift in the ground state energy:

<\UP,I77 [HP,I‘I — HP,nfl] \UP,n—1>

Ep,—Ep 1=
P =Pt (Vp.n,Vpn1)
o <\UP,nag¢'|271wP,n71>
<WP,n7WP,n—1>
= AEp[y 7 + 0 (|gl*A(L = 7)*?).
for
1_ .2 rr 2 /G 1 T
AEp|p™ = / dk p(k <\|/ n—1, \U,,_>.
P‘ £ Ay p( ) Pt HPfk,nfl‘i'W(k)_EP,nfl Pt

Crucial variational estimate:

ag’My" M1 —7) < AEp[yt < bg®My" N1 — ).
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This together with

N
Epn = Epo — Z AEpp 40 (/V|g|4(1 - 7)4/2)7

n=1
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This together with

N
Epn = Epo— Z AEpp 40 (N|g|4(1 - “Y)4/2)7
n=1
and using N < (1'”7’;) implies
N
Epny < VP2+m?—g?aN1-7)) 7"+ 0 (InAgl*(1—7))
n=1

as well as

N
Epn > VP2 +m? = g’bA(1—7)> 7"t =0 (InAgl*(1-7))

n=1

for which the errors can be controlled by v — 1.
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A first estimate after pull-through gives

|Ap.n-1| =
2 M 3 2 1 01
d°k p(k Vp 1,
g //\’yn1 p( ) <HP,n—1 +W(k) — EP,n—l P,n—1
1 ~
x Vi(P — k WUp ,_
( )HP—k,n—l +w(k) — Epn—1 P 1>

< G 2/Mn d|k|k2iii < Cg?(1—+)
=8 Jae Kl Tk[Th] = 8 T
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This is too coarse and one has to do better:

Apn_1=Apn_1

P=0

1 .
d)\ *|n=1ly _
/ <HP)\n 1— Epxn— 1¢ I Vern-1,

I | o~ A nl>
” )2 n PA,
PX,n—1 — EP}‘,"_]

x Vi(PX)

= 0 due to rotational symmetry.
P=0
@ For each derivatives of the resolvents or the ground state vector we gain
another resolvent.

° AP,nfl

@ The derivative of V gives

%V;(P)\) PiX — V(P)\)ZJ 1\/J(P>\)P)\.

V(PX— P2+ m2
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