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Quantum Adiabatic Theory

Adiabatic theory describes slowly driven quantum systems,

i~∂tψ(t) = Hεtψ(t).

It is standard to use the rescale time s = εt, ∂t = ε∂s , and ~ = 1,

iε∂sψ(s) = Hsψ(s).

The basic premise

Slow driving keeps a gapped system close to its ground state.
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Standard Adiabatic Theorem

Let |Ωs〉 be the ground state of Hs , and ψ(0) = |Ω0〉.

Suppose:

1. The ground state is gapped for 0 ≤ s ≤ 1,

2. The Hamiltonian is smooth (enough).

Then the solution of the Schrödinger equation satisfies

||ψ(s)− e iθs |Ωs〉|| ≤ Cε, 0 ≤ s ≤ 1.

Example

For spin Hamiltonian Hs = Bs ·σ with e.g. Bs = (−s, 0, g) we have

s = −∞ :

BBBB

BB
BB

→ s =∞ :

BBBB

BB
BB
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Anderson Catastrophe in Adiabatic Theory

For L independent spins with H =
∑

x Bs · σx the solution is a
product state

ψ(s) = ⊗xψx(s) = ⊗x(|Ωx ,s〉+ O(ε)).

This implies

|〈ψ(s)|Ωs〉| = (1− O(ε))L →L→∞ 0.

We need an adiabatic theorem that survives the large volume limit!
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Quantum Spin Systems

Torus ΛL ≡ Zd/(LZ)d with a volume (number of lattice sites) Ld

and Hamiltonians
Hs =

∑
X⊂ΛL

HX ,s ,

with HX ,s acting on the subset X .
For extensive operator B =

∑
X BX , define

||B||loc := sup
x
||

∑
X :X3x

BX ||.

I Local Hamiltonian: Hermitian op. with || · ||loc < C uniformly
in L.

I Local observable: sitting at origin, independent of L.

I All bounds understood to be uniform in L
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Local Adiabatic Theorem

Theorem
Let Hs be a family of local Hamiltonians for 0 ≤ s ≤ 1 with
following properties (all uniformly in s and size L)

I finite range Hs,X = 0 for diam(X ) > R.

I unique ground state Ωs

I gapped: HsΩ⊥s ≥ g > 0.

I smooth ||∂ks Hs ||loc ≤ C , for k = 0, . . . , d + 2

I smoothly start ∂ks H0 = 0 for k = 0, . . . , d + 2 for s = 0.

Then the solution ψ(s) of the Schrödinger equation satisfies

|〈ψ(s)|O|ψ(s)〉 − 〈Ωs |O|Ωs〉| ≤ Cε,

for any local observable O; C = C (O) independent of s, L.

Extension: isolated spectral patch instead of unique GS.
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Three Key Ingredients

1. Construction of local dressing transformation.

2. Quasi-adiabatic continuation of Hastings and Wen [PRB 2005]

3. Lieb-Robinson bounds [CMP 1972]



Dressing transformation1

We construct Us,n = e−iAs,n with ||A||loc = O(ε) such that
φs,n = Us,nΩs is a solution of

ε∂sφs = −i(Hs + Yn,s)φs , φ0 = |Ω0〉

with ||Yn||loc = O(εn).

Dressing properties:

I As,n is determined recursively

I Local in Space: Us,n produces correlations among ||A||dloc sites.

I Local in Time: As,n = 0 whenever Hs is constant

When n ≥ d + 2, this solves our problem

1[Berry 1990, Nenciu 1993]
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Sketch of the perturbative argument

Why does it help

I O(s, s ′) is Heisenberg evolution from s ′ to s of local
observable O.

I View evolution as small perturbation of the one generated by
Hs + Yn,s .

I Duhamel:

〈ψ(s)|O|ψ(s)〉 = 〈φs |O|φs〉+
i

ε

∫ s

0
〈φs′ |[Yn,s′ ,O(s, s ′)]φs′〉ds ′.

I LR: O(s, s ′) supported in a ball of radius ε−1(s − s ′). Hence

|〈φs′ |[Yn,s′ ,O(s, s ′)]φs′〉| ≤ Cεn−d .

Upshot: Using n = d + 2 and 〈φs |O|φs〉 − 〈Ωs |O|Ωs〉 = O(ε),

〈ψ(s)|O|ψ(s)〉 − 〈Ωs |O|Ωs〉 = O(ε).



Construction of dressing I

Goal: construct Us,n = e−iAs,n with ||A||loc = O(ε) s.t.
φs,n = Us,nΩs solves

ε∂sφs = −i(Hs + Yn,s)φs , φ0 = |Ω0〉

with ||Yn||loc = O(εn).

Simplifications:

I Drop s and n. We do n = 1.

I Assume HsΩs = 0.

I Multiply left and right by U∗. Set Ỹ = U∗YU.

⇒

εU∗(UΩ)′ = −i(U∗HU + Ỹ )Ω



Construction of dressing II

Construct U = e−iεA with quasilocal A s.t.

εU∗(UΩ)′ = −i(U∗HU + Ỹ )Ω

ε0: 0 = HΩ (ok by assumption)

ε1: Ω′ = −[A,H]Ω (Difficult → next slide)

ε>1: Ỹ ≡ iεU∗U ′ − (U∗HU − i [A,H])

So, if we solve Ω′ = −[A,H]Ω by local Ham A, then Ỹ is a local

Ham with ||̃||loc ∼ ε2.



Quasilocal Adiabatic Generator K

Left to do: solve

Ω′ = −[A,H]Ω, A quasilocal

Theorem (Hastings-Wen, Bachmann-Nachtergaele-Sims)

There is local Ham K implementing parallel transport:

Ω′ = iKΩ, 〈Ω,KΩ〉 = 0

(basis of whole philosophy ’quantum phases’: Ω1 = T e i
∫
dsKs Ω0)

Proof is beautiful and relies on gap. Same as what follows now.
We still have to solve

iKΩ = −[A,H]Ω ⇔ iKΩ = HAΩ
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Construction of dressing IV

First Idea to solve iKΩ = HAΩ:

AΩ =
i

H
KΩ ≈ −

∫ ∞
0

dt e itHKΩ = −
∫ ∞

0
dt e itHKe−itHΩ

Comments

I 1
HKΩ well-defined by KΩ ∈ Ω⊥ = χ[H ≥ g ].

I In general regularization needed for integral.

I τt(K ) := e itHKe−itH is quasilocal by Lieb-Robinson, but
support grows ||τt(K )||loc ∼ t.

I Hence thus obtained

A ≡
∫ ∞

0
dt τt(K )

is not quasi-local (nor even well-defined, in fact)



Construction of dressing V

Second Idea to solve KΩ = HAΩ: Use spectral gap to write

iKΩ = HAΩ = f (H)AΩ,

with

I f (x) = x for x ≥ gap.

I x 7→ F (t) = i
f (x) is smooth and F̂ decays rapidly.

Then

AΩ =
1

f (H)
KΩ =

∫
dt F̂ (t)e itHKΩ =

∫
dt F̂ (t)τt(K )Ω

Thus obtained

A ≡
∫

dt F̂ (t)τt(K )

is quasi-local by Lieb-Robinson+rapid decay of F̂ . This solves our
issue!



Application: Validity of Linear response

Setting: An adiabatically switched on perturbation

H = Hi + αeεtV , t ∈ (−∞, 0]

with Hi and V local Hamiltonians and ψi ground state of Hi.
Linear response for local observable J:

χJ,V := lim
L→∞

lim
α→0

lim
ε→0

〈ψt |J|ψt〉 − 〈ψi|J|ψi〉
α

’validity of linear response’ is for us 1) existence of these limits and
2) the equality

χJ,V = i

∫ ∞
0
〈ψi|[V (t), J]|ψi〉, V (t) = e itHiVe−itHi



Linear response: Kubo’s formula

Theorem
If

H = Hi + βV

is uniformly gapped for in a neighbourhood of β = 0, then for any
local observable J

χJ,V := lim
α→0

lim
ε→0

〈ψt |J|ψt〉 − 〈ψi|J|ψi〉
α

exists, uniformly in the volume.

Earlier results by Muller, Klein, Bru, Pedra for response smoothed
in frequency.


