Adiabatic Theorem for Many Body Quantum Systems

S. Bachmann, W. De Roeck, Martin Fraas [arxiv:1612.01505]+ math-paper in preparation

Munich, March 2017

Adiabatic theory describes slowly driven quantum systems,

$$i\hbar\partial_t\psi(t)=H_{\varepsilon t}\psi(t).$$

Adiabatic theory describes slowly driven quantum systems,

$$i\hbar\partial_t\psi(t)=H_{\varepsilon t}\psi(t).$$

It is standard to use the rescale time $s=\varepsilon t, \partial_t=\varepsilon\partial_s,$ and $\hbar=1$,

$$i\varepsilon\partial_s\psi(s)=H_s\psi(s).$$

Adiabatic theory describes slowly driven quantum systems,

$$i\hbar\partial_t\psi(t)=H_{\varepsilon t}\psi(t).$$

It is standard to use the rescale time $s=\varepsilon t, \partial_t=\varepsilon\partial_s,$ and $\hbar=1$,

$$i\varepsilon\partial_s\psi(s)=H_s\psi(s).$$

The basic premise

Slow driving keeps a gapped system close to its ground state.

Adiabatic theory describes slowly driven quantum systems,

$$i\hbar\partial_t\psi(t)=H_{\varepsilon t}\psi(t).$$

It is standard to use the rescale time $s=\varepsilon t, \partial_t=\varepsilon\partial_s,$ and $\hbar=1$,

$$i\varepsilon\partial_s\psi(s)=H_s\psi(s).$$

The basic premise

Slow driving keeps a gapped system close to its ground state.

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0)=|\Omega_0\rangle$.

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0)=|\Omega_0\rangle$. Suppose:

1. The ground state is gapped for $0 \le s \le 1$,

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0)=|\Omega_0\rangle$. Suppose:

- 1. The ground state is gapped for $0 \le s \le 1$,
- 2. The Hamiltonian is smooth (enough).

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0)=|\Omega_0\rangle$. Suppose:

- 1. The ground state is gapped for $0 \le s \le 1$,
- 2. The Hamiltonian is smooth (enough).

Then the solution of the Schrödinger equation satisfies

$$||\psi(s) - e^{i\theta_s}|\Omega_s\rangle|| \le C\varepsilon, \quad 0 \le s \le 1.$$

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0)=|\Omega_0\rangle$. Suppose:

- 1. The ground state is gapped for $0 \le s \le 1$,
- 2. The Hamiltonian is smooth (enough).

Then the solution of the Schrödinger equation satisfies

$$||\psi(s) - e^{i\theta_s}|\Omega_s\rangle|| \le C\varepsilon, \quad 0 \le s \le 1.$$

Example

For spin Hamiltonian $H_s = B_s \cdot \sigma$ with e.g. $B_s = (-s, 0, g)$ we have

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0) = |\Omega_0\rangle$. Suppose:

- 1. The ground state is gapped for $0 \le s \le 1$,
- 2. The Hamiltonian is smooth (enough).

Then the solution of the Schrödinger equation satisfies

$$||\psi(s) - e^{i\theta_s}|\Omega_s\rangle|| \le C\varepsilon, \quad 0 \le s \le 1.$$

Example

For spin Hamiltonian $H_s = B_s \cdot \sigma$ with e.g. $B_s = (-s, 0, g)$ we have

$$\mathbf{b}=-\infty$$
 :

Let $|\Omega_s\rangle$ be the ground state of H_s , and $\psi(0) = |\Omega_0\rangle$. Suppose:

- 1. The ground state is gapped for $0 \le s \le 1$,
- 2. The Hamiltonian is smooth (enough).

Then the solution of the Schrödinger equation satisfies

$$||\psi(s) - e^{i\theta_s}|\Omega_s\rangle|| \le C\varepsilon, \quad 0 \le s \le 1.$$

Example

For spin Hamiltonian $H_s = B_s \cdot \sigma$ with e.g. $B_s = (-s, 0, g)$ we have

$$s=-\infty$$
 : $\Rightarrow s=\infty$:

For L independent spins with $H = \sum_x B_s \cdot \sigma_x$ the solution is a product state

$$\psi(s) = \otimes_{\mathsf{x}} \psi_{\mathsf{x}}(s) = \otimes_{\mathsf{x}} (|\Omega_{\mathsf{x},s}\rangle + O(\varepsilon)).$$

For L independent spins with $H = \sum_{x} B_{s} \cdot \sigma_{x}$ the solution is a product state

$$\psi(s)=\otimes_{\mathsf{X}}\psi_{\mathsf{X}}(s)=\otimes_{\mathsf{X}}(|\Omega_{\mathsf{X},s}
angle+O(arepsilon)).$$
 $s=-\infty:$

For L independent spins with $H = \sum_x B_s \cdot \sigma_x$ the solution is a product state

$$\psi(s) = \otimes_{\mathsf{X}} \psi_{\mathsf{X}}(s) = \otimes_{\mathsf{X}} (|\Omega_{\mathsf{X},s}\rangle + O(\varepsilon)).$$

$$s=\infty$$
 :

For L independent spins with $H = \sum_{x} B_{s} \cdot \sigma_{x}$ the solution is a product state

$$\psi(s) = \otimes_{\mathsf{X}} \psi_{\mathsf{X}}(s) = \otimes_{\mathsf{X}} (|\Omega_{\mathsf{X},s}\rangle + O(\varepsilon)).$$

$$s=\infty$$
 :

This implies

$$|\langle \psi(s)|\Omega_s\rangle| = (1 - O(\varepsilon))^L \quad \to_{L\to\infty} \quad 0.$$

For L independent spins with $H = \sum_x B_s \cdot \sigma_x$ the solution is a product state

$$\psi(s) = \bigotimes_{\mathsf{X}} \psi_{\mathsf{X}}(s) = \bigotimes_{\mathsf{X}} (|\Omega_{\mathsf{X},s}\rangle + O(\varepsilon)).$$

$$s=\infty$$
 :

This implies

$$|\langle \psi(s)|\Omega_s\rangle| = (1 - O(\varepsilon))^L \quad \to_{L\to\infty} \quad 0.$$

We need an adiabatic theorem that survives the large volume limit!

Quantum Spin Systems

Torus $\Lambda_L \equiv \mathbb{Z}^d/(L\mathbb{Z})^d$ with a volume (number of lattice sites) L^d

Quantum Spin Systems

Torus $\Lambda_L \equiv \mathbb{Z}^d/(L\mathbb{Z})^d$ with a volume (number of lattice sites) L^d and Hamiltonians

$$H_s = \sum_{X \subset \Lambda_I} H_{X,s},$$

with $H_{X,s}$ acting on the subset X.

Quantum Spin Systems

Torus $\Lambda_L \equiv \mathbb{Z}^d/(L\mathbb{Z})^d$ with a volume (number of lattice sites) L^d and Hamiltonians

$$H_s = \sum_{X \subset \Lambda_L} H_{X,s},$$

with $H_{X,s}$ acting on the subset X. For extensive operator $B = \sum_X B_X$, define

$$||B||_{\mathsf{loc}} := \sup_{X} ||\sum_{X:X\ni X} B_X||.$$

- ▶ Local Hamiltonian: Hermitian op. with $||\cdot||_{loc} < C$ uniformly in L.
- ▶ Local observable: sitting at origin, independent of *L*.
- ▶ All bounds understood to be uniform in *L*

Local Adiabatic Theorem

Theorem

Let H_s be a family of local Hamiltonians for $0 \le s \le 1$ with following properties (all uniformly in s and size L)

- finite range $H_{s,X} = 0$ for diam(X) > R.
- unique ground state Ω_s
- gapped: $H_s\Omega_s^{\perp} \geq g > 0$.
- ▶ smooth $||\partial_s^k H_s||_{loc} \le C$, for k = 0, ..., d + 2
- ▶ smoothly start $\partial_s^k H_0 = 0$ for k = 0, ..., d + 2 for s = 0.

Then the solution $\psi(s)$ of the Schrödinger equation satisfies

$$|\langle \psi(s)|O|\psi(s)\rangle - \langle \Omega_s|O|\Omega_s\rangle| \leq C\varepsilon,$$

for any local observable O; C = C(O) independent of s, L.

Local Adiabatic Theorem

Theorem

Let H_s be a family of local Hamiltonians for $0 \le s \le 1$ with following properties (all uniformly in s and size L)

- finite range $H_{s,X} = 0$ for diam(X) > R.
- unique ground state Ω_s
- gapped: $H_s\Omega_s^{\perp} \geq g > 0$.
- ▶ smooth $||\partial_s^k H_s||_{loc} \le C$, for k = 0, ..., d + 2
- ▶ smoothly start $\partial_s^k H_0 = 0$ for k = 0, ..., d + 2 for s = 0.

Then the solution $\psi(s)$ of the Schrödinger equation satisfies

$$|\langle \psi(s)|O|\psi(s)\rangle - \langle \Omega_s|O|\Omega_s\rangle| \leq C\varepsilon,$$

for any local observable O; C = C(O) independent of s, L. Extension: isolated spectral patch instead of unique GS.

Three Key Ingredients

- 1. Construction of local dressing transformation.
- 2. Quasi-adiabatic continuation of Hastings and Wen [PRB 2005]
- 3. Lieb-Robinson bounds [CMP 1972]

We construct $U_{s,n}=e^{-iA_{s,n}}$ with $||A||_{\mathrm{loc}}=O(\varepsilon)$ such that $\phi_{s,n}=U_{s,n}\Omega_s$ is a solution of

$$\varepsilon \partial_s \phi_s = -i(H_s + Y_{n,s})\phi_s, \quad \phi_0 = |\Omega_0\rangle$$

with $||Y_n||_{loc} = O(\varepsilon^n)$.

¹[Berry 1990, Nenciu 1993]

We construct $U_{s,n}=e^{-iA_{s,n}}$ with $||A||_{\mathrm{loc}}=O(\varepsilon)$ such that $\phi_{s,n}=U_{s,n}\Omega_s$ is a solution of

$$\varepsilon \partial_{s} \phi_{s} = -i(H_{s} + Y_{n,s})\phi_{s}, \quad \phi_{0} = |\Omega_{0}\rangle$$

with $||Y_n||_{loc} = O(\varepsilon^n)$.

Dressing properties:

We construct $U_{s,n}=e^{-iA_{s,n}}$ with $||A||_{\mathrm{loc}}=O(\varepsilon)$ such that $\phi_{s,n}=U_{s,n}\Omega_s$ is a solution of

$$\varepsilon \partial_s \phi_s = -i(H_s + Y_{n,s})\phi_s, \quad \phi_0 = |\Omega_0\rangle$$

with $||Y_n||_{loc} = O(\varepsilon^n)$.

Dressing properties:

- $ightharpoonup A_{s,n}$ is determined recursively
- ▶ Local in Space: $U_{s,n}$ produces correlations among $||A||_{loc}^d$ sites.
- ▶ Local in Time: $A_{s,n} = 0$ whenever H_s is constant

We construct $U_{s,n}=e^{-iA_{s,n}}$ with $||A||_{\mathrm{loc}}=O(\varepsilon)$ such that $\phi_{s,n}=U_{s,n}\Omega_s$ is a solution of

$$\varepsilon \partial_s \phi_s = -i(H_s + Y_{n,s})\phi_s, \quad \phi_0 = |\Omega_0\rangle$$

with $||Y_n||_{loc} = O(\varepsilon^n)$.

Dressing properties:

- \triangleright $A_{s,n}$ is determined recursively
- ▶ Local in Space: $U_{s,n}$ produces correlations among $||A||_{loc}^d$ sites.
- ▶ Local in Time: $A_{s,n} = 0$ whenever H_s is constant

When $n \ge d + 2$, this solves our problem

¹[Berry 1990, Nenciu 1993]

Sketch of the perturbative argument

Why does it help

- ▶ O(s, s') is Heisenberg evolution from s' to s of local observable O.
- View evolution as small perturbation of the one generated by $H_s + Y_{n,s}$.
- ▶ Duhamel:

$$\langle \psi(s)|O|\psi(s)
angle = \langle \phi_s|O|\phi_s
angle + rac{i}{arepsilon}\int_0^s \langle \phi_{s'}|[Y_{n,s'},O(s,s')]\phi_{s'}
angle \mathrm{d}s'.$$

▶ LR: O(s, s') supported in a ball of radius $\varepsilon^{-1}(s - s')$. Hence

$$|\langle \phi_{s'}|[Y_{n,s'}, O(s,s')]\phi_{s'}\rangle| \leq C\varepsilon^{n-d}.$$

Upshot: Using n=d+2 and $\langle \phi_s|O|\phi_s \rangle - \langle \Omega_s|O|\Omega_s \rangle = \mathcal{O}(\varepsilon)$,

$$\langle \psi(s)|O|\psi(s)\rangle - \langle \Omega_s|O|\Omega_s\rangle = \mathcal{O}(\varepsilon).$$

Construction of dressing I

Goal: construct $U_{s,n}=e^{-iA_{s,n}}$ with $||A||_{loc}=O(\varepsilon)$ s.t. $\phi_{s,n}=U_{s,n}\Omega_s$ solves

$$\varepsilon \partial_s \phi_s = -i(H_s + Y_{n,s})\phi_s, \quad \phi_0 = |\Omega_0\rangle$$

with $||Y_n||_{loc} = O(\varepsilon^n)$.

Simplifications:

- ▶ Drop s and n. We do n = 1.
- Assume $H_s\Omega_s=0$.
- ▶ Multiply left and right by U^* . Set $\widetilde{Y} = U^*YU$.

 \Rightarrow

$$\epsilon U^*(U\Omega)' = -i(U^*HU + \widetilde{Y})\Omega$$

Construction of dressing II

Construct $U = e^{-i\epsilon A}$ with quasilocal A s.t.

$$\epsilon U^*(U\Omega)' = -i(U^*HU + \widetilde{Y})\Omega$$

$$\epsilon^0$$
: 0 = $H\Omega$ (ok by assumption)

$$\epsilon^1$$
: $\Omega' = -[A, H]\Omega$ (Difficult \rightarrow next slide)

$$\epsilon^{>1}$$
: $\widetilde{Y} \equiv i\epsilon U^*U' - (U^*HU - i[A, H])$

So, if we solve $\Omega'=-[A,H]\Omega$ by local Ham A, then \widetilde{Y} is a local Ham with $|\widetilde{|}|_{loc}\sim\epsilon^2$.

Quasilocal Adiabatic Generator K

Left to do: solve

$$\Omega' = -[A, H]\Omega$$
, A quasilocal

Quasilocal Adiabatic Generator K

Left to do: solve

$$\Omega' = -[A, H]\Omega,$$
 A quasilocal

Theorem (Hastings-Wen, Bachmann-Nachtergaele-Sims) There is local Ham K implementing parallel transport:

$$\Omega' = iK\Omega, \qquad \langle \Omega, K\Omega \rangle = 0$$

(basis of whole philosophy 'quantum phases': $\Omega_1 = \mathcal{T}e^{i\int ds K_s}\Omega_0$) Proof is beautiful and relies on gap. Same as what follows now.

Quasilocal Adiabatic Generator K

Left to do: solve

$$\Omega' = -[A, H]\Omega,$$
 A quasilocal

Theorem (Hastings-Wen, Bachmann-Nachtergaele-Sims) There is local Ham K implementing parallel transport:

$$\Omega' = iK\Omega, \qquad \langle \Omega, K\Omega \rangle = 0$$

(basis of whole philosophy 'quantum phases': $\Omega_1 = \mathcal{T}e^{i\int ds K_s}\Omega_0$) Proof is beautiful and relies on gap. Same as what follows now. We still have to solve

$$iK\Omega = -[A, H]\Omega \quad \Leftrightarrow \quad iK\Omega = HA\Omega$$

Construction of dressing IV

First Idea to solve $iK\Omega = HA\Omega$:

$$A\Omega = \frac{i}{H}K\Omega \approx -\int_0^\infty dt \ e^{itH}K\Omega = -\int_0^\infty dt \ e^{itH}Ke^{-itH}\Omega$$

Comments

- ▶ $\frac{1}{H}K\Omega$ well-defined by $K\Omega \in \Omega^{\perp} = \chi[H \ge g]$.
- ▶ In general regularization needed for integral.
- ▶ $\tau_t(K) := e^{itH} K e^{-itH}$ is quasilocal by Lieb-Robinson, but support grows $||\tau_t(K)||_{\text{loc}} \sim t$.
- Hence thus obtained

$$A \equiv \int_0^\infty dt \, \tau_t(K)$$

is not quasi-local (nor even well-defined, in fact)

Construction of dressing V

Second Idea to solve $K\Omega = HA\Omega$: Use spectral gap to write

$$iK\Omega = HA\Omega = f(H)A\Omega$$
,

with

- f(x) = x for $x \ge \text{gap}$.
- $x \mapsto F(t) = \frac{i}{f(x)}$ is smooth and \hat{F} decays rapidly.

Then

$$A\Omega = rac{1}{f(H)} K\Omega = \int dt \, \hat{F}(t) e^{itH} K\Omega = \int dt \, \hat{F}(t) au_t(K) \Omega$$

Thus obtained

$$A \equiv \int dt \, \hat{F}(t) au_t(K)$$

is quasi-local by Lieb-Robinson+rapid decay of \hat{F} . This solves our issue!

Application: Validity of Linear response

Setting: An adiabatically switched on perturbation

$$H = H_{\rm i} + \alpha e^{\epsilon t} V, \qquad t \in (-\infty, 0]$$

with H_i and V local Hamiltonians and ψ_i ground state of H_i . Linear response for local observable J:

$$\chi_{J,V} := \lim_{L \to \infty} \lim_{\alpha \to 0} \lim_{\epsilon \to 0} \frac{\langle \psi_t | J | \psi_t \rangle - \langle \psi_i | J | \psi_i \rangle}{\alpha}$$

'validity of linear response' is for us 1) existence of these limits and 2) the equality

$$\chi_{J,V} = i \int_0^\infty \langle \psi_{
m i} | [V(t),J] | \psi_{
m i}
angle, \qquad V(t) = {
m e}^{it H_{
m i}} V {
m e}^{-it H_{
m i}}$$

Linear response: Kubo's formula

Theorem If

$$H = H_i + \beta V$$

is uniformly gapped for in a neighbourhood of $\beta=0$, then for any local observable J

$$\chi_{J,V} := \lim_{\alpha \to 0} \lim_{\epsilon \to 0} \frac{\langle \psi_t | J | \psi_t \rangle - \langle \psi_i | J | \psi_i \rangle}{\alpha}$$

exists, uniformly in the volume.

Earlier results by Muller, Klein, Bru, Pedra for response smoothed in frequency.