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Standard Adiabatic Theorem

Let |Qs) be the ground state of Hs, and ¥(0) = |Qg). Suppose:
1. The ground state is gapped for 0 < s <1,
2. The Hamiltonian is smooth (enough).

Then the solution of the Schrodinger equation satisfies
[4(s) — e*|Q)|| < Ce, 0<s<1.
Example
For spin Hamiltonian Hs = Bs - o with e.g. Bs = (—s,0, g) we have
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Anderson Catastrophe in Adiabatic Theory

For L independent spins with H = )" Bs - 0 the solution is a
product state

@Z)(S) = ®x¢x(5) = ®X(|QX,S> + 0(5))

This implies

[(W(s)IQ)| = (1= 0(e))"  —1mee O

We need an adiabatic theorem that survives the large volume limit!
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Quantum Spin Systems

Torus Ap = Z9/(LZ)? with a volume (number of lattice sites) L9

and Hamiltonians
Hs: Z HX,57
XCAL

with Hx s acting on the subset X.
For extensive operator B =), Bx, define

|[B|lioc := sup || Z Bx||-

X:X>x

» Local Hamiltonian: Hermitian op. with || - ||ioc < C uniformly
in L.

> Local observable: sitting at origin, independent of L.

» All bounds understood to be uniform in L



Local Adiabatic Theorem

Theorem
Let Hs be a family of local Hamiltonians for 0 < s < 1 with
following properties (all uniformly in s and size L)

» finite range Hs x = 0 for diam(X) > R.

> unique ground state Qg

> gapped: HsQLf > g > 0.

» smooth ||0KHs||loc < C, for k=0,...,d+2

» smoothly start OXHy =0 for k =0,...,d +2 for s = 0.

Then the solution 1)(s) of the Schrodinger equation satisfies
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Local Adiabatic Theorem

Theorem
Let Hs be a family of local Hamiltonians for 0 < s < 1 with
following properties (all uniformly in s and size L)

» finite range Hs x = 0 for diam(X) > R.

> unique ground state Qg

> gapped: HsQLf > g > 0.

» smooth ||0KHs||loc < C, for k=0,...,d+2

» smoothly start OXHy =0 for k =0,...,d +2 for s = 0.

Then the solution 1)(s) of the Schrodinger equation satisfies
[(4(s)[019(s)) — (2|0[2)| < Ce,

for any local observable O; C = C(O) independent of s, L.

Extension: isolated spectral patch instead of unique GS.



Three Key Ingredients

1. Construction of local dressing transformation.
2. Quasi-adiabatic continuation of Hastings and Wen [PRB 2005]
3. Lieb-Robinson bounds [CMP 1972]
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Dressing transformation!

We construct Us , = e~ with [|Al|j,c = O(e) such that
¢s,n = Us nSs is a solution of

5as¢s = _i(Hs + Yn,s)¢s: ¢o = |QO>
with || Vallloe = O(e").

Dressing properties:
> Asn is determined recursively
» Local in Space: Us,, produces correlations among ||A||¢ . sites.
» Local in Time: As , = 0 whenever H; is constant

When n > d + 2, this solves our problem

![Berry 1990, Nenciu 1993]



Sketch of the perturbative argument
Why does it help

» O(s,s’) is Heisenberg evolution from s’ to s of local
observable O.

» View evolution as small perturbation of the one generated by
Hs + Yns.

» Duhamel:
(WSO = (@6l016 + - [ (6x[Yae, 015, o) ds.
» LR: O(s,s’) supported in a ball of radius e~1(s — s’). Hence
(651¥ns (s, o) < Co
Upshot: Using n = d +2 and (6] 0]6s) — (24/010) = Oc),

(¥(s)|O[¥(s)) — (2|0[2s) = O(e).



Construction of dressing |

Goal: construct Us , = e~ sn with ||A||joc = O(¢) s.t.
¢s.n = Us nS2s solves

5as¢s = _i(Hs + Yn,s)¢57 ¢0 = |QO>
with || Ya|llee = O(g").
Simplifications:
» Drop s and n. We do n=1.
» Assume H;Q, = 0.

> Multiply left and right by U*. Set Y = U*YU.
=

cU*(UQ) = —i(U*HU + Y)Q



Construction of dressing Il

Construct U = e~ /A with quasilocal A s.t.

cU*(UQ) = —i(U*HU + Y)Q

e0: 0=HQ  (ok by assumption)
el: Q' = —[A H|Q (Difficult — next slide)
el Y = icU U — (U*HU — i[A, H)])

So, if we solve Q' = —[A, H]Q by local Ham A, then Y is a local
Ham with ||||10c ~ €.
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Quasilocal Adiabatic Generator K

Left to do: solve

Q' = —[A, H]Q, A quasilocal
Theorem (Hastings-Wen, Bachmann-Nachtergaele-Sims)
There is local Ham K implementing parallel transport:

Q' =iKQ, — (QKQ) =0

(basis of whole philosophy 'quantum phases’: Q; = TeideKSQo)
Proof is beautiful and relies on gap. Same as what follows now.
We still have to solve

KQ=—[AHQ <& iKQ=HAQ



Construction of dressing IV

First Idea to solve iKQ = HAQ:

. Oo . oo . .
AQ = LKQ ~ / dt e'tHKQ — / dt e/tHKe—/tHQ
H 0 0

Comments
> LKQ well-defined by KQ € Q- = x[H > g].
> In general regularization needed for integral.
» 7:(K) := e Ke="™ is quasilocal by Lieb-Robinson, but
support grows ||7¢(K)||ioc ~ t.

» Hence thus obtained
A= / dt (K)
0

is not quasi-local (nor even well-defined, in fact)



Construction of dressing V
Second Idea to solve KQ = HAQ: Use spectral gap to write
iKQ = HAQ = f(H)AQ,

with
» f(x) = x for x > gap.
» x— F(t) = @ is smooth and F decays rapidly.
Then
1

AQ FOH)

KQ = / dt E(t)etKQ = / dt E(£)e(K)Q

Thus obtained

A= /dt F(t)m(K)

is quasi-local by Lieb-Robinson+rapid decay of F. This solves our
issue!



Application: Validity of Linear response

Setting: An adiabatically switched on perturbation
H = H; + aeV, t € (—o0,0]

with H; and V local Hamiltonians and 1; ground state of H;.
Linear response for local observable J:

Xsv = lim lim lim (e[ Je) — (Wil J|9hi)

[—00 a—0e—0 (o}

'validity of linear response’ is for us 1) existence of these limits and
2) the equality

=i [V, V() = e



Linear response: Kubo's formula

Theorem
If

H=H +pV

is uniformly gapped for in a neighbourhood of 8 = 0, then for any
local observable J

(Pe|Jhe) — (] J|1i)

exists, uniformly in the volume.

Earlier results by Muller, Klein, Bru, Pedra for response smoothed
in frequency.



