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What are Polarons?

An electron in an ionic crystal polarizes its surroundings by Coulomb interaction.
Electron and lattice polarization (deformation) together constitute a quasi-particle (polaron).

Quelle: Madelung, Festkérpertheorie
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» The spatial extension of the lattice deformation is large
compared to the lattice parameters (— continuum
approximation)

» Most relevant for the electron-phonon interaction are long wave
length phonons for which w(k) ~ wo.

w

-ﬁ\[ Optical branch

Dispersion in a crystal.

» The band electron has a parabolic dispersion relation.



The Large Polaron Model of H. Frohlich

The Hilbert space is

H =R F
F = @pso @7 L2(R3)  symmetric Fock space.

We choose units where m=1/2 i=1,wg = 1, so that

Hy, = =A+ Ny + VaW

where N, is the number operator on F,

_ L % ik -x —ik-X 5%
W= o |k|(e a(k) + e "*a*(k))

One parameter: |/« is a dimensionless coupling constant. Often
a > 1, therefore one is interested in the limit

o — 0.



Self-adjointness

The Hamiltonian
H=—A+ Ny + VoW

» is NOT a sum of operators but a sum of forms. Use the KLMN
theorem to define a self-adjoint hamiltonian.
» H, — Hinthe norm resolvent sense as A — oo. Hence

—iHpt

e it =t (A 5 0)

in the strong operator topology.



Properties of the domain

There is an explicitly known dressing transform U such that UHU* is
self-adjoint on D(Hy). Exploiting mapping properties of U we obtain:

Theorem (A. Winsch, M.G.)

D(H)c () D((-4))) N D(N),

0<s5<3/4

D(H) n D(-A)%* = {0}.



Properties of the domain

There is an explicitly known dressing transform U such that UHU* is
self-adjoint on D(Hy). Exploiting mapping properties of U we obtain:

Theorem (A. Winsch, M.G.)
DH)c () D((-4)9))nD(N),
0<s5<3/4

D(H) n D(-A)%* = {0}.

> In particular D(H) N D(Hy) € D(H) N D(—A) = {0}.

» Since D(H\) = D(H,) there is no vector ¢ # 0 such that
Hvy = limpa_. Hpav is true.



Ingredient of the proof

Lemma (Frank, Schlein 2014)
If f € [3(R") and f,(k) = e~ ™™ f(k), the for all y € D(Hp)

la(f)ell < CHIVNQ — 802

(k)P e
C(f) = seuﬂg ( T4 (p— k2 dk>

where



Ingredient of the proof

Lemma (Frank, Schlein 2014)
If f € [3(R") and f,(k) = e~ ™™ f(k), the for all y € D(Hp)

la(t)wll < COIVN( = Ax)"2y|

1/2
C(f) := sup ( |f(k)|2)2 dk)

where

pERN 1+(p—k
Application: C(fy) and hence ||a(fa)v| is bounded uniformly in A for

(k) = ox([k[ < A).

’
KX



Minimal Energy and the Pekar Functional

Let

Ea = H'}Jr\?f:“ <'¢)7 Haw>'
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Minimal Energy and the Pekar Functional

Let
E., = inf (¥, Hy).

llell=1
Minimizing w.r.to product states only
b=ponel2eF, |ol=1=]nl
gives an upper bound
Eo < inflp@n Hoip@n)

inf /v 2 gx — /“” )Plely dxd)
|«>|1< Vel Ix —y| 4

2
= o Eperar

Theorem (Donsker, Varadhan 1983 and Lieb, Thomas 1997)

E, = a®Epeyar + O(a9/5) (o = o)



Euler-Lagrange and Landau-Pekar equations......



Theorem (Schmid, Schneider, M.G.)

Let u € C([0, To], H*(R®)) be a solution of the Choquard equation and
Cy > 0, then there exits a constant C, and q > 0 such the following
holds: every solution (¢, V.) of the LP-system with ¢ < ¢ and initial
data satisfying

Pe = U, Vs—_|'|71*|u‘2 (tZO)

and
[0 Velloo + |20 Vel 2ar < G (E=0)

exists on [0, To] and for all t € [0, Ty]:

loe = tllpe + [V 41177 # Ul < Coe.



The Dirac-Frenkel variational principle

Let M C 7 be the manifold
M={u=apen#0|acC, pcl? necF}

Given uy € M we determine the orbit u; = ayp; ® n; € M by the
conditions that the velocity 9;u € T, M is the best approximation to
—iHu & TyM.



The Dirac-Frenkel variational principle

Let M C 7 be the manifold
M={u=apen#0|acC, pcl? necF}

Given uy € M we determine the orbit u; = ayp; ® n; € M by the
conditions that the velocity 9;u € T, M is the best approximation to
—iHu & TyM.

This means that

‘ié),u: P(u)Hu‘

Dirac-Frenkel-equation —N .

P(u) = orthogonal projection onto T, M.

Orthogonal projection




Rescaling of Space and Time

Since E, = O(a?) as o — oo it is convenient to scale out o?: Let
Xuab, Kb b€ the old (laboratory) variables for electron position and
phonon momentum. Implementing

1
X = Xiap, k= aklab

unitarily (in terms of U) we find

UHE oU* = o®(—A + a 2Ny, + "W).



Rescaling of Space and Time

Since E, = O(a?) as o — oo it is convenient to scale out o?: Let
Xuab, Kb b€ the old (laboratory) variables for electron position and
phonon momentum. Implementing

X = Xiap, k= %klab
unitarily (in terms of U) we find
UHg L U* = o®(—A + a_szh +a7'W).
The factor o is removed by the rescaling of time
t= a2tlab.

We arrive at

iOpp = Hip, H=—-A+a 2Ny +a 'W.

For each annihilation/creation operator a factor of o~ ".



The Dirac-Frenkel approximation
If ||l = [Inll = 1 and u = ap ® n we find P(u)Hu = H(u)u
A =(A+a V) @1 +1@ (@ 2N +a '¢(f)) —a™ (W)ee,

where

Vi) = 5= [ (e tn.atkom) + he)

1 p(k) :‘ |2

o =aln+a(), k) =50




The Dirac-Frenkel approximation
If ||l = [Inll = 1 and u = ap ® n we find P(u)Hu = H(u)u

A =(A+a V) @1 +1@ (@ 2N +a '¢(f)) —a™ (W)ee,

where
V)= 217 fﬁ(e""ﬂ a(kyn) + h.c.)
o(f) = a(f) + a*(f),  f(k) = 217r P|(:|) P

The Dirac-Frenkel equation idu = H(u)u becomes the system

(-A+ V)
i = (a™2Npn + a6 (F))n.

a(t) = exp <ia‘ /t<W>¢®n ds)
0

and



The phonon potential

The equation for  can be solved explicitly and one finds
VTI = V07t + V%t with

1 aK [ ix—it/a?
Vo.i(x) = 270 | K| (ek Y (o, a(K)no) + h-C-)
1 2y [ les)?
Voi(X) = ?/0 <sm((s —bHa™9) X — ] dy) ds

» W is due to the freely evolved initial state g of the phonons, it
solves the homogeneous equation (82 + a~*)Vy; = 0.



The phonon potential

The equation for  can be solved explicitly and one finds
VTI = V07t + V%t with

1 ak /
Vo.(x) (&% /" o, alk)mo) + h.c.)

= %ra ) T

1 1t _ sW)I?
V,o(x) = ?/0 <sm((st)a 2) ||<f((—yi/|| dy) ds

» W is due to the freely evolved initial state g of the phonons, it
solves the homogeneous equation (02 + a~*) V= 0.

» V. is due to the phonons generated by the electron, the
retarded self-interaction. It solves

(0F +a™YWVor = —a™*| |77 x o],

with vanishing initial data: V, o = 9;V, 0 = 0.



Let g € H?(R3), o € W(ag)*Q, where g € L2(R3, (1 + k?) dk). Let
o, m¢ be the corresponding solution to the DF-equations and

u=at)pr@n,  teR

Then the following theorem holds true:
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Let g € H?(R3), o € W(ag)*Q, where g € L2(R3, (1 + k?) dk). Let
o, m¢ be the corresponding solution to the DF-equations and

us = a(t)pr @, teR.

Then the following theorem holds true:

Theorem
There exists a constant C € R such that for alla« > 1 and all t € R,

_i t
o0 0) — ul? < €| £ .

» There are similar results due to Frank/Schlein (2014) and
Frank/Gang (2015).

» The time scale is too short to uniquely characterise the effective
dynamics. (Mitrouskas)



Initial data v ® no € M minimizing the energy
> If ¢ is the minimizer of the Pekar functional then

pr = e My, V=—|pof2x]-|

solves the Landau-Pekar system, which reduces to the EL
equation

(—A = lpol? % |- |7 "o = Ago
of the Pekar-functional.



Initial data ¢ ® ng € M minimizing the energy
» If g is the minimizer of the Pekar functional then

pr = e My, V=—|pof2x]-|

solves the Landau-Pekar system, which reduces to the EL
equation

(—A = lpol? % |- |7 "o = Ago
of the Pekar-functional.

» The phonon state 7 which is associated to the potential V is the
coherent state

; p(k

where p = |po[?. Itis the ground state of a=2N,, + = '¢(f) and if
Up := o @ 1o then Fl(uo)uo = Epug. Hence the Dirac-Frenkel-Eq.
is solved by

u=e Erly,.



Theorem (2016)

Let ¢y be the minimiser of the Pekar functional and ny € F be the
corresponding phonon state, then

—i _i t
&~ (o © 1) — &~ (o @ )2 < C11

for all t € R and some C ¢ R.



Elements of the Proof

We need to compare

e Muyy = lim e~

N— o0

Uo
with

—iAt

_iEPtUQ =e Up

e

where H is the effective (Dirac-Frenkel) Hamiltonian H = H(up).



Elements of the Proof

We need to compare

—iHt iHt

e "ug = lim e "My
A— o0
with ‘ N
e—lEptuo — e—lHtU0

where H is the effective (Dirac-Frenkel) Hamiltonian A = H(up).
The difference 6H := H — H is not small, but (H — H)uy is, because
Ug = o ® nmo wWhere ny = exp(—in(af))Q and

e/Tr((Mf)(H _ Fl)e—iﬂ(rvf) — l(W — qf)(f))

where
(Ho +1)""2(W — ¢(f))(Ho + 1)~ /2

is a bounded operator.



the Proof continued

Let ooy = e~ ™My,. Using that u; = e~ B!y, solves the Dirac-Frenkel
equation we get

t
e — w2 = 2 |m/0 (ths — s, P(u)-5Hus) ds

which formally is of size O(t/«).
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T S . .
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the Proof continued

Let ooy = e~ ™My,. Using that u; = e~ B!y, solves the Dirac-Frenkel
equation we get

t
e — w2 = 2 Im/ (s — Us, P(U)~5Hug) ds
0
which formally is of size O(t/«).To get another factor of o~ we write

T S . .
'(/Js — U = e—/HS/ eIHT(SHe—IH[UO ar
0

e,'(F[,EP)sP(u)J_ _ %e/(FleP)S(F/ — EP)71 P(U)J_

and integrate by parts. This works because
H—E | P(u)tsr

has a gap in the spectrum above E = info(H) which is
independent of a.




Extension to N Polarons

The (rescaled) N-polaron Hamiltonian

N
U
Hy=> (-dy+a W)+ > ) a2 Ny
j=1 i<j

can be defined as a norm-resolvent limit of Hyr as A — oco. U > 1.
The Pekar-Tomasevich functional

En(p) = inf (0 @1, Hv(e @ n))

inf
neF
B N U 1 [ p(x)p(y)
B (,-E_T‘(_AX’) " ;, X - X/I) 7 E/ x—y Y

(constrained by ||¢|| = 1) where p is the electron density of .



Extension to N Polarons

The (rescaled) N-polaron Hamiltonian

N
U
Hv =3 (-0y +a W) +3 o o Ny
j=1 i<j

can be defined as a norm-resolvent limit of Hyr as A — oco. U > 1.
The Pekar-Tomasevich functional

En(p) = inf (0 @1, Hv(e @ n))

inf
neF

ZN v U 1 [ p(x)ply)
- (1—1 (") i<j IXi — X/|) - E/W oy

(constrained by ||¢|| = 1) where p is the electron density of .
En has a minimizer for U < 1 + ey and for any type of statistics (Lewin
/ Anapolitanos, Griesemer).



Initial data

po = minimizer of &y

; p(k

p = density of ¢g.
Theorem
Let uy = @o @10 be as above and E ") = En(o) = (o, Huto), then

|t

”e IHNIUO —_e iEy tu0||2 < CN?

for allt € R and some Cy € R.



Conclusion

There is no self-trapping of the polaron (i.e. no ground state), but for
large a any minimizer o ® 1o of the energy among all product states
is a long-lived metastable state — self-trapping!






