

On the Dynamics of the Polaron in the Strong Coupling Limit

Marcel Griesemer University of Stuttgart

Munich, March 30, 2017

People involved

- loannis Anapolitanos
- Matthias Engelmann
- Joachim Kerner
- David Mitrouskas
- Guido Schneider (Stuttgart)
- Jochen Schmid
- Andreas Wünsch

What are Polarons?

An electron in an ionic crystal polarizes its surroundings by Coulomb interaction. Electron and lattice polarization (deformation) together constitute a quasi-particle (polaron).

Quelle: Madelung, Festkörpertheorie

What are Polarons?

www.physics.ubc.ca/research/condensed.php

An electron in an ionic crystal polarizes its surroundings by Coulomb interaction. Electron and lattice polarization (deformation) together constitute a quasi-particle (polaron).

Quelle: Madelung, Festkörpertheorie

Idealizations of the Model of Fröhlich

► The spatial extension of the lattice deformation is large compared to the lattice parameters (→ continuum approximation)

Idealizations of the Model of Fröhlich

- The spatial extension of the lattice deformation is large compared to the lattice parameters (→ continuum approximation)
- Most relevant for the electron-phonon interaction are long wave length phonons for which $\omega(k) \simeq \omega_0$.

Dispersion in a crystal.

Idealizations of the Model of Fröhlich

- ► The spatial extension of the lattice deformation is large compared to the lattice parameters (→ continuum approximation)
- Most relevant for the electron-phonon interaction are long wave length phonons for which $\omega(k) \simeq \omega_0$.

The band electron has a parabolic dispersion relation.

The Large Polaron Model of H. Fröhlich

The Hilbert space is

$$\mathscr{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F}$$

 $\mathcal{F} = \bigoplus_{n \geq 0} \otimes_s^n L^2(\mathbb{R}^3)$ symmetric Fock space.

We choose units where $m = 1/2, \hbar = 1, \omega_0 = 1$, so that

$$\boxed{H_{\alpha} = -\Delta + N_{\rm ph} + \sqrt{\alpha} W}$$

where $N_{\rm ph}$ is the number operator on \mathcal{F} ,

$$W = \frac{1}{2\pi} \int \frac{dk}{|k|} \left(e^{ik \cdot x} a(k) + e^{-ik \cdot x} a^*(k) \right)$$

One parameter: $\sqrt{\alpha}$ is a dimensionless coupling constant. Often $\alpha\gg$ 1, therefore one is interested in the limit

$$\alpha \to \infty$$
.

Self-adjointness

The Hamiltonian

$$H = -\Delta + N_{\rm ph} + \sqrt{\alpha} W$$

- is NOT a sum of operators but a sum of forms. Use the KLMN theorem to define a self-adjoint hamiltonian.
- ▶ $H_{\Lambda} \to H$ in the norm resolvent sense as $\Lambda \to \infty$. Hence

$$e^{-iH_{\Lambda}t} \rightarrow e^{-iHt}$$
 $(\Lambda \rightarrow \infty)$

in the strong operator topology.

Properties of the domain

There is an explicitly known dressing transform U such that UHU^* is self-adjoint on $D(H_0)$. Exploiting mapping properties of U we obtain:

Theorem (A. Wünsch, M.G.)

$$D(H) \subset \Big(\bigcap_{0 < s < 3/4} D\big((-\Delta)^s\big)\Big) \cap D(N),$$
$$D(H) \cap D(-\Delta)^{3/4} = \{0\}.$$

Properties of the domain

There is an explicitly known dressing transform U such that UHU^* is self-adjoint on $D(H_0)$. Exploiting mapping properties of U we obtain:

Theorem (A. Wünsch, M.G.)

$$D(H) \subset \Big(\bigcap_{0 < s < 3/4} D\big((-\Delta)^s\big)\Big) \cap D(N),$$
$$D(H) \cap D(-\Delta)^{3/4} = \{0\}.$$

- ▶ In particular $D(H) \cap D(H_0) \subset D(H) \cap D(-\Delta) = \{0\}$.
- Since $D(H_{\Lambda}) = D(H_0)$ there is no vector $\psi \neq 0$ such that $H\psi = \lim_{\Lambda \to \infty} H_{\Lambda}\psi$ is true.

Ingredient of the proof

Lemma (Frank, Schlein 2014)

If
$$f \in L^2(\mathbb{R}^n)$$
 and $f_x(k) = e^{-ikx}f(k)$, the for all $\psi \in D(H_0)$

$$\|a(f_x)\psi\| \leq C(f)\|\sqrt{N}(1-\Delta_x)^{1/2}\psi\|$$

where

$$C(f) := \sup_{p \in \mathbb{R}^n} \left(\int \frac{|f(k)|^2}{1 + (p-k)^2} dk \right)^{1/2}$$

Ingredient of the proof

Lemma (Frank, Schlein 2014)

If $f \in L^2(\mathbb{R}^n)$ and $f_x(k) = e^{-ikx}f(k)$, the for all $\psi \in D(H_0)$

$$\|a(f_x)\psi\| \leq C(f)\|\sqrt{N}(1-\Delta_x)^{1/2}\psi\|$$

where

$$C(f) := \sup_{p \in \mathbb{R}^n} \left(\int \frac{|f(k)|^2}{1 + (p-k)^2} dk \right)^{1/2}$$

Application: $C(f_{\Lambda})$ and hence $||a(f_{\Lambda})\psi||$ is bounded uniformly in Λ for

$$f_{\Lambda}(k) = \frac{1}{|k|} \chi(|k| < \Lambda).$$

Minimal Energy and the Pekar Functional

Let

$$E_{\alpha} = \inf_{\|\psi\|=1} \langle \psi, H_{\alpha} \psi \rangle.$$

Minimal Energy and the Pekar Functional

Let

$$E_{\alpha} = \inf_{\|\psi\|=1} \langle \psi, H_{\alpha} \psi \rangle.$$

Minimizing w.r.to product states only

$$\psi = \varphi \otimes \eta \in L^2 \otimes \mathcal{F}, \qquad \|\varphi\| = 1 = \|\eta\|$$

gives an upper bound

$$\begin{split} E_{\alpha} & \leq & \inf \langle \varphi \otimes \eta, H_{\alpha} \varphi \otimes \eta \rangle \\ & = & \inf_{\|\varphi\|=1} \left(\int |\nabla \varphi|^2 \, dx - \frac{\alpha}{2} \int \frac{|\varphi(x)|^2 |\varphi(y)|^2}{|x-y|} \, dx dy \right) \\ & = & \frac{\alpha^2}{2} E_{\text{Pekar}} \end{split}$$

Minimal Energy and the Pekar Functional

Let

$$E_{\alpha} = \inf_{\|\psi\|=1} \langle \psi, \mathcal{H}_{\alpha} \psi \rangle.$$

Minimizing w.r.to product states only

$$\psi = \varphi \otimes \eta \in L^2 \otimes \mathcal{F}, \qquad \|\varphi\| = 1 = \|\eta\|$$

gives an upper bound

$$E_{\alpha} \leq \inf \langle \varphi \otimes \eta, H_{\alpha} \varphi \otimes \eta \rangle$$

$$= \inf_{\|\varphi\|=1} \left(\int |\nabla \varphi|^{2} dx - \frac{\alpha}{2} \int \frac{|\varphi(x)|^{2} |\varphi(y)|^{2}}{|x - y|} dx dy \right)$$

$$= \alpha^{2} E_{\text{Pekar}}$$

Theorem (Donsker, Varadhan 1983 and Lieb, Thomas 1997)

$$E_{\alpha} = \alpha^2 E_{\text{Pekar}} + O(\alpha^{9/5}) \qquad (\alpha \to \infty)$$

Euler-Lagrange and Landau-Pekar equations......

Theorem (Schmid, Schneider, M.G.)

Let $u \in C([0,T_0],H^4(\mathbb{R}^3))$ be a solution of the Choquard equation and $C_1>0$, then there exits a constant C_2 and $\varepsilon_0>0$ such the following holds: every solution $(\varphi_\varepsilon,V_\varepsilon)$ of the LP-system with $\varepsilon\leq\varepsilon_0$ and initial data satisfying

$$\varphi_{\varepsilon} = u, \qquad V_{\varepsilon} = -|\cdot|^{-1} * |u|^2 \qquad (t=0)$$

and

$$\|\partial_t V_{\varepsilon}\|_{\infty} + \|\Delta \partial_t V_{\varepsilon}\|_{L^2 \cap L^1} \le C_1 \qquad (t = 0)$$

exists on $[0, T_0]$ and for all $t \in [0, T_0]$:

$$\|\varphi_{\varepsilon} - u\|_{H^2} + \|V + |\cdot|^{-1} * |u|^2\|_{\infty} < C_2 \varepsilon.$$

The Dirac-Frenkel variational principle

Let $\mathcal{M} \subset \mathscr{H}$ be the manifold

$$\mathcal{M} = \{ u = \mathbf{a}\varphi \otimes \eta \neq \mathbf{0} \mid \mathbf{a} \in \mathbb{C}, \ \varphi \in L^2, \ \eta \in \mathcal{F} \}$$

Given $u_0 \in \mathcal{M}$ we determine the orbit $u_t = a_t \varphi_t \otimes \eta_t \in \mathcal{M}$ by the conditions that the velocity $\partial_t u \in T_u \mathcal{M}$ is the **best approximation** to $-iHu \notin T_u \mathcal{M}$.

The Dirac-Frenkel variational principle

Let $\mathcal{M} \subset \mathscr{H}$ be the manifold

$$\mathcal{M} = \{ u = \mathbf{a}\varphi \otimes \eta \neq \mathbf{0} \mid \mathbf{a} \in \mathbb{C}, \ \varphi \in L^2, \ \eta \in \mathcal{F} \}$$

Given $u_0 \in \mathcal{M}$ we determine the orbit $u_t = a_t \varphi_t \otimes \eta_t \in \mathcal{M}$ by the conditions that the velocity $\partial_t u \in T_u \mathcal{M}$ is the **best approximation** to $-iHu \notin T_u \mathcal{M}$.

This means that

$$i\partial_t u = P(u)Hu$$

Dirac-Frenkel-equation

P(u) = orthogonal projection onto $T_u\mathcal{M}$.

Rescaling of Space and Time

Since $E_{\alpha}=O(\alpha^2)$ as $\alpha\to\infty$ it is convenient to scale out α^2 : Let $x_{\rm lab}, k_{\rm lab}$ be the old (laboratory) variables for electron position and phonon momentum. Implementing

$$x = \alpha x_{\text{lab}}, \qquad k = \frac{1}{\alpha} k_{\text{lab}}$$

unitarily (in terms of U) we find

$$UH_{F,\alpha}U^* = \alpha^2(-\Delta + \alpha^{-2}N_{\rm ph} + \alpha^{-1}W).$$

Rescaling of Space and Time

Since $E_{\alpha}=O(\alpha^2)$ as $\alpha\to\infty$ it is convenient to scale out α^2 : Let $x_{\rm lab}, k_{\rm lab}$ be the old (laboratory) variables for electron position and phonon momentum. Implementing

$$x = \alpha x_{\text{lab}}, \qquad k = \frac{1}{\alpha} k_{\text{lab}}$$

unitarily (in terms of U) we find

$$UH_{F,\alpha}U^* = \alpha^2(-\Delta + \alpha^{-2}N_{\rm ph} + \alpha^{-1}W).$$

The factor α^2 is removed by the rescaling of time

$$t = \alpha^2 t_{\rm lab}$$
.

We arrive at

$$i\partial_t \psi = H\psi, \qquad H = -\Delta + \alpha^{-2} N_{\rm ph} + \alpha^{-1} W.$$

For each annihilation/creation operator a factor of α^{-1} .

The Dirac-Frenkel approximation

If
$$\|\varphi\| = \|\eta\| = 1$$
 and $u = a\varphi \otimes \eta$ we find $P(u)Hu = \tilde{H}(u)u$

$$\tilde{H}(u) = (-\Delta + \alpha^{-1} V_{\eta}) \otimes 1 + 1 \otimes (\alpha^{-2} N + \alpha^{-1} \phi(f)) - \alpha^{-1} \langle W \rangle_{\varphi \otimes \eta}$$

where

$$egin{aligned} V_{\eta}(x) &= rac{1}{2\pi} \int rac{dk}{|k|} ig(e^{ikx} \langle \eta, a(k)\eta
angle + h.c.ig) \ \phi(f) &= a(f) + a^*(f), \qquad f(k) &= rac{1}{2\pi} rac{\hat{
ho}(k)}{|k|} \quad
ho &= |arphi|^2 \end{aligned}$$

The Dirac-Frenkel approximation

If
$$\|\varphi\| = \|\eta\| = 1$$
 and $u = a\varphi \otimes \eta$ we find $P(u)Hu = \tilde{H}(u)u$

$$\tilde{H}(u) = (-\Delta + \alpha^{-1} V_{\eta}) \otimes 1 + 1 \otimes (\alpha^{-2} N + \alpha^{-1} \phi(f)) - \alpha^{-1} \langle W \rangle_{\varphi \otimes \eta}$$

where

$$\begin{aligned} V_{\eta}(x) &= \frac{1}{2\pi} \int \frac{dk}{|k|} \big(e^{ikx} \langle \eta, a(k)\eta \rangle + h.c. \big) \\ \phi(f) &= a(f) + a^*(f), \qquad f(k) = \frac{1}{2\pi} \frac{\hat{\rho}(k)}{|k|} \quad \rho = |\varphi|^2 \end{aligned}$$

The Dirac-Frenkel equation $i\partial u = \tilde{H}(u)u$ becomes the system

$$\begin{cases} i\dot{\varphi} = (-\Delta + V_{\eta})\varphi \\ i\dot{\eta} = (\alpha^{-2}N_{\rm ph} + \alpha^{-1}\phi(f))\eta. \end{cases}$$

and

$$a(t) = \exp\left(i\alpha^{-1}\int_0^t \langle \pmb{W}
angle_{arphi \otimes \eta} \, d\pmb{s}\right)$$

The phonon potential

The equation for η can be solved explicitly and one finds $V_{\eta}=V_{0,t}+V_{\varphi,t}$ with

$$egin{aligned} V_{0,t}(x) &= rac{1}{2\pilpha}\intrac{dk}{|k|}\Big(e^{ikx-it/lpha^2}\langle\eta_0,a(k)\eta_0
angle + ext{h.c.}\Big) \ V_{arphi,t}(x) &= rac{1}{lpha^2}\int_0^t\Big(\sin((s-t)lpha^{-2})\intrac{|arphi_s(y)|^2}{|x-y|}\,dy\Big)\,ds \end{aligned}$$

▶ $V_{0,t}$ is due to the freely evolved initial state η_0 of the phonons, it solves the homogeneous equation $(\partial_t^2 + \alpha^{-4})V_{0,t} = 0$.

The phonon potential

The equation for η can be solved explicitly and one finds $V_{\eta} = V_{0,t} + V_{\varphi,t}$ with

$$egin{aligned} V_{0,t}(x) &= rac{1}{2\pilpha}\intrac{dk}{|k|}\Big(e^{ikx-it/lpha^2}\langle\eta_0,a(k)\eta_0
angle + ext{h.c.}\Big) \ V_{arphi,t}(x) &= rac{1}{lpha^2}\int_0^t\Big(\sin((s-t)lpha^{-2})\intrac{|arphi_s(y)|^2}{|x-y|}\,dy\Big)\,ds \end{aligned}$$

- ▶ $V_{0,t}$ is due to the freely evolved initial state η_0 of the phonons, it solves the homogeneous equation $(\partial_t^2 + \alpha^{-4})V_{0,t} = 0$.
- $V_{\varphi,t}$ is due to the phonons generated by the electron, the retarded self-interaction. It solves

$$(\partial_t^2 + \alpha^{-4})V_{\varphi,t} = -\alpha^{-4}|\cdot|^{-1} * |\varphi|^2.$$

with vanishing initial data: $V_{\varphi,0} = \partial_t V_{\varphi,0} = 0$.

$$u_t := a(t)\varphi_t \otimes \eta_t, \qquad t \in \mathbb{R}.$$

Then the following theorem holds true:

$$u_t := a(t)\varphi_t \otimes \eta_t, \qquad t \in \mathbb{R}.$$

Then the following theorem holds true:

Theorem

There exists a constant $C \in \mathbb{R}$ such that for all $\alpha \geq 1$ and all $t \in \mathbb{R}$,

$$\|e^{-i\mathcal{H}t}(\varphi_0\otimes\eta_0)-u_t\|^2\leq C\left|rac{t}{lpha}
ight|.$$

$$u_t := a(t)\varphi_t \otimes \eta_t, \qquad t \in \mathbb{R}.$$

Then the following theorem holds true:

Theorem

There exists a constant $C \in \mathbb{R}$ such that for all $\alpha \geq 1$ and all $t \in \mathbb{R}$,

$$\|e^{-iHt}(\varphi_0\otimes\eta_0)-u_t\|^2\leq C\left|rac{t}{lpha}
ight|.$$

► There are similar results due to Frank/Schlein (2014) and Frank/Gang (2015).

$$u_t := a(t)\varphi_t \otimes \eta_t, \qquad t \in \mathbb{R}.$$

Then the following theorem holds true:

Theorem

There exists a constant $C \in \mathbb{R}$ such that for all $\alpha \geq 1$ and all $t \in \mathbb{R}$,

$$\|e^{-iHt}(arphi_0\otimes\eta_0)-u_t\|^2\leq C\left|rac{t}{lpha}
ight|.$$

- ► There are similar results due to Frank/Schlein (2014) and Frank/Gang (2015).
- ► The time scale is too short to uniquely characterise the effective dynamics. (Mitrouskas)

Initial data $\varphi_0 \otimes \eta_0 \in \mathcal{M}$ minimizing the energy

If φ_0 is the minimizer of the Pekar functional then

$$\varphi_t = e^{-i\lambda t} \varphi_0, \qquad V = -|\varphi_0|^2 * |\cdot|^{-1}$$

solves the Landau-Pekar system, which reduces to the EL equation

$$(-\Delta - |\varphi_0|^2 * |\cdot|^{-1})\varphi_0 = \lambda \varphi_0$$

of the Pekar-functional.

Initial data $\varphi_0 \otimes \eta_0 \in \mathcal{M}$ minimizing the energy

• If φ_0 is the minimizer of the Pekar functional then

$$\varphi_t = e^{-i\lambda t} \varphi_0, \qquad V = -|\varphi_0|^2 * |\cdot|^{-1}$$

solves the Landau-Pekar system, which reduces to the EL equation

$$(-\Delta - |\varphi_0|^2 * |\cdot|^{-1})\varphi_0 = \lambda \varphi_0$$

of the Pekar-functional.

▶ The phonon state η_0 which is associated to the potential V is the coherent state

$$\eta_0 = e^{-i\pi(\alpha f)}\Omega, \qquad f(k) = rac{\hat{
ho}(k)}{2\pi|k|}$$

where $\rho=|\varphi_0|^2$. It is the ground state of $\alpha^{-2}N_{\rm ph}+\alpha^{-1}\phi(f)$ and if $u_0:=\varphi_0\otimes\eta_0$ then $\tilde{H}(u_0)u_0=E_{\rm P}u_0$. Hence the Dirac-Frenkel-Eq. is solved by

$$u=e^{-iE_{\rm P}t}u_0.$$

Theorem (2016)

Let φ_0 be the minimiser of the Pekar functional and $\eta_0 \in \mathcal{F}$ be the corresponding phonon state, then

$$\|oldsymbol{e}^{-i\mathcal{H}t}(arphi_0\otimes\eta_0)-oldsymbol{e}^{-i\mathcal{E}_{\mathbb{P}}t}(arphi_0\otimes\eta_0)\|^2\leq Crac{|t|}{lpha^2}$$

for all $t \in \mathbb{R}$ and some $C \in \mathbb{R}$.

Elements of the Proof

We need to compare

$$e^{-iHt}u_0=\lim_{\Lambda\to\infty}e^{-iH_{\Lambda}t}u_0$$

with

$$e^{-iE_{\mathrm{P}}t}u_{0}=e^{-i\tilde{H}t}u_{0}$$

where \tilde{H} is the effective (Dirac-Frenkel) Hamiltonian $\tilde{H}=\tilde{H}(u_0)$.

Elements of the Proof

We need to compare

$$e^{-iHt}u_0=\lim_{\Lambda\to\infty}e^{-iH_{\Lambda}t}u_0$$

with

$$e^{-iE_{\rm P}t}u_0=e^{-i\tilde{H}t}u_0$$

where \tilde{H} is the effective (Dirac-Frenkel) Hamiltonian $\tilde{H} = \tilde{H}(u_0)$. The difference $\delta H := H - \tilde{H}$ is not small, but $(H - \tilde{H})u_0$ is, because $u_0 = \varphi_0 \otimes \eta_0$ where $\eta_0 = \exp(-i\pi(\alpha f))\Omega$ and

$$e^{i\pi(\alpha f)}(H-\tilde{H})e^{-i\pi(\alpha f)}=\frac{1}{\alpha}(W-\phi(f))$$

where

$$(H_0+1)^{-1/2}(W-\phi(f))(H_0+1)^{-1/2}$$

is a bounded operator.

the Proof continued

Let $\psi_t = e^{-iHt}u_0$. Using that $u_t = e^{-iE_Pt}u_0$ solves the Dirac-Frenkel equation we get

$$\|\psi_t - u_t\|^2 = 2 \operatorname{Im} \int_0^t \langle \psi_s - u_s, P(u)^{\perp} \delta H u_s \rangle ds$$

which formally is of size $O(t/\alpha)$.

the Proof continued

Let $\psi_t = e^{-iHt}u_0$. Using that $u_t = e^{-iE_Pt}u_0$ solves the Dirac-Frenkel equation we get

$$\|\psi_t - u_t\|^2 = 2 \operatorname{Im} \int_0^t \langle \psi_s - u_s, P(u)^\perp \delta H u_s \rangle ds$$

which formally is of size $O(t/\alpha)$. To get another factor of α^{-1} we write

$$\begin{split} \psi_{s}-u_{s}&=e^{-i\tilde{H}s}\int_{0}^{s}e^{i\tilde{H}\tau}\delta He^{-iHt}u_{0}\,d\tau\\ e^{i(\tilde{H}-E_{P})s}P(u)^{\perp}&=\frac{d}{ds}e^{i(\tilde{H}-E_{P})s}(\tilde{H}-E_{P})^{-1}P(u)^{\perp} \end{split}$$

and integrate by parts.

the Proof continued

Let $\psi_t = e^{-iHt}u_0$. Using that $u_t = e^{-iE_Pt}u_0$ solves the Dirac-Frenkel equation we get

$$\|\psi_t - u_t\|^2 = 2 \operatorname{Im} \int_0^t \langle \psi_{s} - u_{s}, P(u)^{\perp} \delta H u_{s}
angle \, ds$$

which formally is of size $O(t/\alpha)$. To get another factor of α^{-1} we write

$$\begin{split} \psi_s - u_s &= e^{-i\tilde{H}s} \int_0^s e^{i\tilde{H}\tau} \delta H e^{-iHt} u_0 \, d\tau \\ e^{i(\tilde{H} - E_P)s} P(u)^\perp &= \frac{d}{ds} e^{i(\tilde{H} - E_P)s} (\tilde{H} - E_P)^{-1} P(u)^\perp \end{split}$$

and integrate by parts. This works because

$$\tilde{H} - E_{\rm P} \upharpoonright P(u)^{\perp} \mathscr{H}$$

has a gap in the spectrum above $E = \inf \sigma(\tilde{H})$ which is independent of α .

Extension to N Polarons

The (rescaled) N-polaron Hamiltonian

$$H_{N} = \sum_{j=1}^{N} (-\Delta_{x_{j}} + \alpha^{-1} W_{j}) + \sum_{i < j} \frac{U}{|x_{i} - x_{j}|} + \alpha^{-2} N_{ph}$$

can be defined as a norm-resolvent limit of $H_{N,\Lambda}$ as $\Lambda \to \infty$. U > 1. The **Pekar-Tomasevich** functional

$$\begin{split} \mathcal{E}_{N}(\varphi) &:= \inf_{\eta \in \mathcal{F}} \langle \varphi \otimes \eta, H_{N}(\varphi \otimes \eta) \rangle \\ &= \langle \varphi, \left(\sum_{j=1}^{N} (-\Delta_{x_{j}}) + \sum_{i < j} \frac{U}{|x_{i} - x_{j}|} \right) \varphi \rangle - \frac{1}{2} \int \frac{\rho(x)\rho(y)}{|x - y|} \, dx dy \end{split}$$

(constrained by $\|\varphi\|=1$) where ρ is the electron density of φ .

Extension to N Polarons

The (rescaled) N-polaron Hamiltonian

$$H_{N} = \sum_{j=1}^{N} (-\Delta_{x_{j}} + \alpha^{-1} W_{j}) + \sum_{i < j} \frac{U}{|x_{i} - x_{j}|} + \alpha^{-2} N_{\text{ph}}$$

can be defined as a norm-resolvent limit of $H_{N,\Lambda}$ as $\Lambda \to \infty$. U > 1. The **Pekar-Tomasevich** functional

$$\mathcal{E}_{N}(\varphi) := \inf_{\eta \in \mathcal{F}} \langle \varphi \otimes \eta, H_{N}(\varphi \otimes \eta) \rangle$$

$$= \langle \varphi, \left(\sum_{j=1}^{N} (-\Delta_{x_{j}}) + \sum_{i < j} \frac{U}{|x_{i} - x_{j}|} \right) \varphi \rangle - \frac{1}{2} \int \frac{\rho(x)\rho(y)}{|x - y|} dx dy$$

(constrained by $\|\varphi\|=1$) where ρ is the electron density of φ . \mathcal{E}_N has a minimizer for $U<1+\varepsilon_N$ and for any type of statistics (Lewin / Anapolitanos, Griesemer).

Initial data

$$arphi_0=$$
 minimizer of \mathcal{E}_N $\eta_0=e^{-i\pi(lpha f)}\Omega, \qquad f(k)=rac{\hat{
ho}(k)}{2\pi|k|}$ $ho=$ density of $arphi_0.$

Theorem

Let $u_0 = \varphi_0 \otimes \eta_0$ be as above and $E_N^{(\text{PT})} = \mathcal{E}_N(\varphi_0) = \langle u_0, H_N u_0 \rangle$, then

$$\|e^{-iH_Nt}u_0-e^{-iE_N^{(PT)}t}u_0\|^2 \leq C_N \frac{|t|}{\alpha^2}$$

for all $t \in \mathbb{R}$ and some $C_N \in \mathbb{R}$.

Conclusion

There is no self-trapping of the polaron (i.e. no ground state), but for large α any minimizer $\varphi_0 \otimes \eta_0$ of the energy among all product states is a long-lived metastable state — self-trapping!

Happy birthday, Herbert!