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Idealizations of the Model of Fröhlich

I The spatial extension of the lattice deformation is large
compared to the lattice parameters (→ continuum
approximation)

I Most relevant for the electron-phonon interaction are long wave
length phonons for which ω(k) ' ω0.

I The band electron has a parabolic dispersion relation.
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The Large Polaron Model of H. Fröhlich
The Hilbert space is

H = L2(R3)⊗F
F = ⊕n≥0 ⊗n

s L2(R3) symmetric Fock space.

We choose units where m = 1/2, ~ = 1, ω0 = 1, so that

Hα = −∆ + Nph +
√
αW

where Nph is the number operator on F ,

W =
1

2π

∫
dk
|k |
(
eik·xa(k) + e−ik·xa∗(k)

)
One parameter:

√
α is a dimensionless coupling constant. Often

α� 1, therefore one is interested in the limit

α→∞.



Self-adjointness

The Hamiltonian
H = −∆ + Nph +

√
αW

I is NOT a sum of operators but a sum of forms. Use the KLMN
theorem to define a self-adjoint hamiltonian.

I HΛ → H in the norm resolvent sense as Λ→∞. Hence

e−iHΛt → e−iHt (Λ→∞)

in the strong operator topology.



Properties of the domain

There is an explicitly known dressing transform U such that UHU∗ is
self-adjoint on D(H0). Exploiting mapping properties of U we obtain:

Theorem (A. Wünsch, M.G.)

D(H) ⊂
( ⋂

0<s<3/4

D
(
(−∆)s)) ∩ D(N),

D(H) ∩ D(−∆)3/4 = {0}.

I In particular D(H) ∩ D(H0) ⊂ D(H) ∩ D(−∆) = {0}.
I Since D(HΛ) = D(H0) there is no vector ψ 6= 0 such that

Hψ = limΛ→∞ HΛψ is true.
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Ingredient of the proof

Lemma (Frank, Schlein 2014)
If f ∈ L2(Rn) and fx (k) = e−ikx f (k), the for all ψ ∈ D(H0)

‖a(fx )ψ‖ ≤ C(f )
∥∥√N(1−∆x )1/2ψ

∥∥
where

C(f ) := sup
p∈Rn

(∫
|f (k)|2

1 + (p − k)2 dk

)1/2

Application: C(fΛ) and hence ‖a(fΛ)ψ‖ is bounded uniformly in Λ for

fΛ(k) =
1
|k |
χ(|k | < Λ).
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Minimal Energy and the Pekar Functional
Let

Eα = inf
‖ψ‖=1

〈ψ,Hαψ〉.

Minimizing w.r.to product states only

ψ = ϕ⊗ η ∈ L2 ⊗F , ‖ϕ‖ = 1 = ‖η‖

gives an upper bound

Eα ≤ inf〈ϕ⊗ η,Hαϕ⊗ η〉

= inf
‖ϕ‖=1

(∫
|∇ϕ|2 dx − α

2

∫
|ϕ(x)|2|ϕ(y)|2

|x − y |
dxdy

)
= α2EPekar

Theorem (Donsker, Varadhan 1983 and Lieb, Thomas 1997)

Eα = α2EPekar + O(α9/5) (α→∞)
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Euler-Lagrange and Landau-Pekar equations......



Theorem (Schmid, Schneider, M.G.)
Let u ∈ C([0,T0],H4(R3)) be a solution of the Choquard equation and
C1 > 0, then there exits a constant C2 and ε0 > 0 such the following
holds: every solution (ϕε,Vε) of the LP-system with ε ≤ ε0 and initial
data satisfying

ϕε = u, Vε = −| · |−1 ∗ |u|2 (t = 0)

and
‖∂tVε‖∞ + ‖∆∂tVε‖L2∩L1 ≤ C1 (t = 0)

exists on [0,T0] and for all t ∈ [0,T0]:

‖ϕε − u‖H2 + ‖V + | · |−1 ∗ |u|2‖∞ < C2ε.



The Dirac-Frenkel variational principle

LetM⊂H be the manifold

M = {u = aϕ⊗ η 6= 0 | a ∈ C, ϕ ∈ L2, η ∈ F}

Given u0 ∈M we determine the orbit ut = atϕt ⊗ ηt ∈M by the
conditions that the velocity ∂tu ∈ TuM is the best approximation to
−iHu 6∈ TuM.

This means that

i∂tu = P(u)Hu

Dirac-Frenkel-equation

P(u) = orthogonal projection onto TuM.
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Rescaling of Space and Time
Since Eα = O(α2) as α→∞ it is convenient to scale out α2: Let
xlab, klab be the old (laboratory) variables for electron position and
phonon momentum. Implementing

x = αxlab, k =
1
α

klab

unitarily (in terms of U) we find

UHF ,αU∗ = α2(−∆ + α−2Nph + α−1W ).

The factor α2 is removed by the rescaling of time

t = α2tlab.

We arrive at

i∂tψ = Hψ, H = −∆ + α−2Nph + α−1W .

For each annihilation/creation operator a factor of α−1.



Rescaling of Space and Time
Since Eα = O(α2) as α→∞ it is convenient to scale out α2: Let
xlab, klab be the old (laboratory) variables for electron position and
phonon momentum. Implementing

x = αxlab, k =
1
α

klab

unitarily (in terms of U) we find

UHF ,αU∗ = α2(−∆ + α−2Nph + α−1W ).

The factor α2 is removed by the rescaling of time

t = α2tlab.

We arrive at

i∂tψ = Hψ, H = −∆ + α−2Nph + α−1W .

For each annihilation/creation operator a factor of α−1.



The Dirac-Frenkel approximation
If ‖ϕ‖ = ‖η‖ = 1 and u = aϕ⊗ η we find P(u)Hu = H̃(u)u

H̃(u) = (−∆ + α−1Vη)⊗ 1 + 1⊗ (α−2N + α−1φ(f ))− α−1〈W 〉ϕ⊗η

where

Vη(x) =
1

2π

∫
dk
|k |
(
eikx〈η,a(k)η〉+ h.c.

)
φ(f ) = a(f ) + a∗(f ), f (k) =

1
2π

ρ̂(k)

|k |
ρ = |ϕ|2

The Dirac-Frenkel equation i∂u = H̃(u)u becomes the system{
iϕ̇ = (−∆ + Vη)ϕ

i η̇ = (α−2Nph + α−1φ(f ))η.

and

a(t) = exp

(
iα−1

∫ t

0
〈W 〉ϕ⊗η ds

)



The Dirac-Frenkel approximation
If ‖ϕ‖ = ‖η‖ = 1 and u = aϕ⊗ η we find P(u)Hu = H̃(u)u

H̃(u) = (−∆ + α−1Vη)⊗ 1 + 1⊗ (α−2N + α−1φ(f ))− α−1〈W 〉ϕ⊗η

where

Vη(x) =
1

2π

∫
dk
|k |
(
eikx〈η,a(k)η〉+ h.c.

)
φ(f ) = a(f ) + a∗(f ), f (k) =

1
2π

ρ̂(k)

|k |
ρ = |ϕ|2

The Dirac-Frenkel equation i∂u = H̃(u)u becomes the system{
iϕ̇ = (−∆ + Vη)ϕ

i η̇ = (α−2Nph + α−1φ(f ))η.

and

a(t) = exp

(
iα−1

∫ t

0
〈W 〉ϕ⊗η ds

)



The phonon potential

The equation for η can be solved explicitly and one finds
Vη = V0,t + Vϕ,t with

V0,t (x) =
1

2πα

∫
dk
|k |

(
eikx−it/α2

〈η0,a(k)η0〉+ h.c.
)

Vϕ,t (x) =
1
α2

∫ t

0

(
sin((s − t)α−2)

∫
|ϕs(y)|2

|x − y |
dy
)

ds

I V0,t is due to the freely evolved initial state η0 of the phonons, it
solves the homogeneous equation (∂2

t + α−4)V0,t = 0.

I Vϕ,t is due to the phonons generated by the electron, the
retarded self-interaction. It solves

(∂2
t + α−4)Vϕ,t = −α−4| · |−1 ∗ |ϕ|2.

with vanishing initial data: Vϕ,0 = ∂tVϕ,0 = 0.
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Let ϕ0 ∈ H2(R3), η0 ∈W (αg)∗Ω, where g ∈ L2(R3, (1 + k2) dk). Let
ϕt , ηt be the corresponding solution to the DF-equations and

ut := a(t)ϕt ⊗ ηt , t ∈ R.

Then the following theorem holds true:

Theorem
There exists a constant C ∈ R such that for all α ≥ 1 and all t ∈ R,

‖e−iHt (ϕ0 ⊗ η0)− ut‖2 ≤ C
∣∣∣∣ t
α

∣∣∣∣ .
I There are similar results due to Frank/Schlein (2014) and

Frank/Gang (2015).

I The time scale is too short to uniquely characterise the effective
dynamics. (Mitrouskas)
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Initial data ϕ0 ⊗ η0 ∈M minimizing the energy

I If ϕ0 is the minimizer of the Pekar functional then

ϕt = e−iλtϕ0, V = −|ϕ0|2 ∗ | · |−1

solves the Landau-Pekar system, which reduces to the EL
equation

(−∆− |ϕ0|2 ∗ | · |−1)ϕ0 = λϕ0

of the Pekar-functional.

I The phonon state η0 which is associated to the potential V is the
coherent state

η0 = e−iπ(αf )Ω, f (k) =
ρ̂(k)

2π|k |

where ρ = |ϕ0|2. It is the ground state of α−2Nph + α−1φ(f ) and if
u0 := ϕ0 ⊗ η0 then H̃(u0)u0 = EPu0. Hence the Dirac-Frenkel-Eq.
is solved by

u = e−iEPtu0.
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Theorem (2016)
Let ϕ0 be the minimiser of the Pekar functional and η0 ∈ F be the
corresponding phonon state, then

‖e−iHt (ϕ0 ⊗ η0)− e−iEPt (ϕ0 ⊗ η0)‖2 ≤ C
|t |
α2

for all t ∈ R and some C ∈ R.



Elements of the Proof

We need to compare

e−iHtu0 = lim
Λ→∞

e−iHΛtu0

with
e−iEPtu0 = e−iH̃tu0

where H̃ is the effective (Dirac-Frenkel) Hamiltonian H̃ = H̃(u0).

The difference δH := H − H̃ is not small, but (H − H̃)u0 is, because
u0 = ϕ0 ⊗ η0 where η0 = exp(−iπ(αf ))Ω and

eiπ(αf )(H − H̃)e−iπ(αf ) =
1
α

(W − φ(f ))

where
(H0 + 1)−1/2(W − φ(f ))(H0 + 1)−1/2

is a bounded operator.
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the Proof continued

Let ψt = e−iHtu0. Using that ut = e−iEPtu0 solves the Dirac-Frenkel
equation we get

‖ψt − ut‖2 = 2 Im
∫ t

0
〈ψs − us,P(u)⊥δHus〉ds

which formally is of size O(t/α).

To get another factor of α−1 we write

ψs − us = e−iH̃s
∫ s

0
eiH̃τδHe−iHtu0 dτ

ei(H̃−EP)sP(u)⊥ =
d
ds

ei(H̃−EP)s(H̃ − EP)−1P(u)⊥

and integrate by parts. This works because

H̃ − EP � P(u)⊥H

has a gap in the spectrum above E = infσ(H̃) which is
independent of α.
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Extension to N Polarons

The (rescaled) N-polaron Hamiltonian

HN =
N∑

j=1

(
−∆xj + α−1Wj

)
+
∑
i<j

U
|xi − xj |

+ α−2Nph

can be defined as a norm-resolvent limit of HN,Λ as Λ→∞. U > 1.
The Pekar-Tomasevich functional

EN(ϕ) := inf
η∈F
〈ϕ⊗ η,HN(ϕ⊗ η)〉

= 〈ϕ,

 N∑
j=1

(−∆xj ) +
∑
i<j

U
|xi − xj |

ϕ〉 − 1
2

∫
ρ(x)ρ(y)

|x − y |
dxdy

(constrained by ‖ϕ‖ = 1) where ρ is the electron density of ϕ.

EN has a minimizer for U < 1 + εN and for any type of statistics (Lewin
/ Anapolitanos, Griesemer).
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Initial data

ϕ0 = minimizer of EN

η0 = e−iπ(αf )Ω, f (k) =
ρ̂(k)

2π|k |
ρ = density of ϕ0.

Theorem
Let u0 = ϕ0 ⊗ η0 be as above and E (PT)

N = EN(ϕ0) = 〈u0,HNu0〉, then

‖e−iHN tu0 − e−iE (PT)
N tu0‖2 ≤ CN

|t |
α2

for all t ∈ R and some CN ∈ R.



Conclusion

There is no self-trapping of the polaron (i.e. no ground state), but for
large α any minimizer ϕ0 ⊗ η0 of the energy among all product states

is a long-lived metastable state – self-trapping!



Happy birthday, Herbert !


