Bosonic quadratic Hamiltonians and their diagonalization

P. T. Nam¹ M. Napiórkowski ² J. P. Solovej ³

¹Masaryk University Brno

²University of Warsaw

³University of Copenhagen

"Macroscopic Limits of Quantum Systems" 70th Birthday of Herbert Spohn

Introduction

Main object of interest:

$$\mathbb{H} = \sum_{ij} h_{ij} a_i^* a_j + \frac{1}{2} \sum_{ij} k_{ij} a_i^* a_j^* + \frac{1}{2} \sum_{ij} \overline{k}_{ij} a_i a_j$$

Here:

- lacksquare h_{ij} is a self-adjoint matrix $(h_{ij}=h_{ij}^*=\overline{h}_{ij}^\#)$;
- ▶ \overline{k}_{ij} is the complex conjugate of the matrix k_{ij} ;
- ▶ a_i^*/a_i are the bosonic creation/annihilation operators on the Fock space:

$$[a_i^*, a_j^*] = [a_i, a_j] = 0, [a_i, a_j^*] = \delta_{ij};$$

▶ the sum might be over an infinite set of indices.

Operators of that type are important in physics!

- they appear as effective theories for quantum many-body systems. Examples:
 - Bogoliubov theory for bosonic systems
 - BCS theory (and BCS-like theories) for fermionic systems
- Quantum field theory (eg. scalar field with position dependent mass).

Operators of that type are important in physics!

- they appear as **effective theories** for quantum many-body systems. Examples:
 - Bogoliubov theory for bosonic systems
 - BCS theory (and BCS-like theories) for fermionic systems
- Quantum field theory (eg. scalar field with position dependent mass).

Bogoliubov theory: (describes low-energy behaviour of bosonic systems)

$$\mathbb{H}_{\mathsf{Bog}} = \sum_{p \neq 0} p^2 a_p^* a_p + \frac{\rho}{2} \sum_{p \neq 0} \widehat{\underline{w}}(p) (2a_p^* a_p + a_p^* a_{-p}^* + a_p a_{-p})$$

Question: what are the spectral properties of this operator?

⇒ DIAGONALIZATION:

$$\mathbb{UH}_{\mathsf{Bog}}\mathbb{U} = \tilde{\mathbb{H}}_{\mathsf{Bog}} = E + \sum e(p)b_p^*b_p$$

Diagonalization of Bogoliubov Hamiltonian

Introduce

$$a_p^* = u_p b_p^* + v_{-p} b_{-p}, \qquad [b_p, b_{p'}^*] = \delta_{pp'} \ \ \text{(CCR)}.$$

In particular:

(CCR)
$$\Rightarrow u_p^2 - v_{-p}^2 = 1 \Rightarrow u_p = \cosh(\alpha_p), v_{-p} = \sinh(\alpha_p)$$

Diagonalization condition:

$$b_p^*b_{-p}^* \text{ and } b_pb_{-p} \text{ terms vanish if } \frac{\rho \hat{w}(p)}{2} \underbrace{(u_p^2 + v_{-p}^2)}_{\cosh(2\alpha_p)} + (p^2 + \rho \hat{w}(p)) \underbrace{u_pv_{-p}}_{\frac{1}{2}\sinh 2\alpha_p} = 0$$

which yields
$$\coth(2\alpha_p) = -\frac{p^2 + \rho \hat{w}(p)}{\rho \hat{w}(p)}$$
 and

$$\Rightarrow \qquad \widetilde{\mathbb{H}}_{\mathsf{Bog}} = E + \sum_{p \neq 0} e(p) b_p^* b_p$$

with
$$e(p) = \sqrt{p^4 + 2\rho \widehat{w}(p)p^2}$$
.

Question:

When, in general, can ℍ be diagonalized?

We saw a 2-dimensional example. Finite dimensional case solved (essentially due to Williamson's Theorem on symplectic transformations '36). What about infinite dimension?

Fock space formalism

► Fock space:

$$\mathcal{F}(\mathfrak{h}) := igoplus_{N=0}^{\infty} igotimes_{\mathsf{sym}}^{N} \mathfrak{h} = \mathbb{C} \oplus \mathfrak{h} \oplus (\mathfrak{h} \otimes_{s} \mathfrak{h}) \oplus \cdots$$

Creation and anihilation operators:

$$a^*(f_{N+1})\left(\sum_{\sigma\in S_N}f_{\sigma(1)}\otimes\ldots\otimes f_{\sigma(N)}\right)=\frac{1}{\sqrt{N+1}}\sum_{\sigma\in S_{N+1}}f_{\sigma(1)}\otimes\ldots\otimes f_{\sigma(N+1)},$$

$$a(f_{N+1})\left(\sum_{\sigma\in S_N}f_{\sigma(1)}\otimes\ldots\otimes f_{\sigma(N)}\right)=N^{\frac{1}{2}}\sum_{\sigma\in S_N}\langle f_{N+1},f_{\sigma(1)}\rangle f_{\sigma(2)}\otimes\ldots\otimes f_{\sigma(N)}$$

for all $f_1, ..., f_{N+1}$ in \mathfrak{h} , and all N = 0, 1, 2, ...

► Canonical commutation relations:

$$[a(f),a(g)]=0,\quad [a^*(f),a^*(g)]=0,\quad [a(f),a^*(g)]=\langle f,g\rangle,\quad \forall f,g\in\mathfrak{h}.$$

Fock space formalism

Assume h > 0. Recall:

$$d\Gamma(h) = \sum_{m,n\geq 1} \langle f_m, h f_n \rangle a^*(f_m) a(f_n)$$

where $\{f_n\}_{n\geq 1}\subset D(h)$ is an arbitrary orthonormal basis for \mathfrak{h} .

General form of quadratic operator:

$$\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$$

Here:

- ▶ $k: \mathfrak{h} \to \mathfrak{h}^*$ is an (unbounded) linear operator with $D(h) \subset D(k)$ (called *pairing operator*), $k^* = J^*kJ^*$;
- lacksquare $J:\mathfrak{h} o\mathfrak{h}^*$ is the anti-unitary operator defined by

$$J(f)(g) = \langle f, g \rangle, \quad \forall f, g \in \mathfrak{h}.$$

$$\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$$

► Remark:

The above definition is formal! If k is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

- More general approach: definition through quadratic forms!
- ▶ One-particle density matrices: $\gamma_{\Psi}: \mathfrak{h} \to \mathfrak{h}$ and $\alpha_{\Psi}: \mathfrak{h} \to \mathfrak{h}^*$

$$\langle f, \gamma_{\Psi} g \rangle = \langle \Psi, a^*(g) a(f) \Psi \rangle \,, \quad \langle Jf, \alpha_{\Psi} g \rangle = \langle \Psi, a^*(g) a^*(f) \Psi \rangle \,, \quad \forall f, g \in \mathfrak{h}$$

▶ A formal calculation leads to the expression

$$|\langle \Psi, \mathbb{H}\Psi \rangle = \operatorname{Tr}(h^{1/2}\gamma_{\Psi}h^{1/2}) + \Re \operatorname{Tr}(k^*\alpha_{\Psi}).$$

Unitary implementability

Generalized creation and annihilation operators

$$A(f\oplus Jg)=a(f)+a^*(g),\quad A^*(f\oplus Jg)=a^*(f)+a(g),\quad \forall f,g\in\mathfrak{h}.$$

▶ <u>Definition</u>: A bounded operator $\mathcal V$ on $\mathfrak h \oplus \mathfrak h^*$ is *unitarily implemented* by a unitary operator $\mathbb U_{\mathcal V}$ on Fock space if

$$\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^*.$$

▶ General form of the transformation we have seen: Pick $F = f \oplus 0$. Then A(F) = a(f).

But
$$VF = f_1 \oplus Jf_2$$
 and thus $A(VF) = a(f_1) + a^*(f_2)$.

We get:

$$\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = \underbrace{\mathbb{U}_{\mathcal{V}}a(f)\mathbb{U}_{\mathcal{V}}^*}_{=: b(f)} = A(\mathcal{V}F) = a(f_1) + a^*(f_2).$$

Quadratic Hamiltonians as quantizations of block operators

Our goal: Find $\mathbb U$ such that $\mathbb U\mathbb H\mathbb U^*=E+\mathrm d\Gamma(\xi).$ Let

$$\mathcal{A} := \left(\begin{array}{cc} h & k^* \\ k & JhJ^* \end{array} \right)$$

and

$$\mathbb{H}_{\mathcal{A}} := \frac{1}{2} \sum_{m,n \ge 1} \langle F_m, \mathcal{A}F_n \rangle A^*(F_m) A(F_n).$$

Then a calculation gives

$$\mathbb{H} = \mathbb{H}_{\mathcal{A}} - \frac{1}{2}\operatorname{Tr}(h).$$

Thus, formally, \mathbb{H} can be seen as *quantization* of A.

Diagonalization

If
$$\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^*=A(\mathcal{V}F)$$
, then

$$\mathbb{U}_{\mathcal{V}}\mathbb{H}_{\mathcal{A}}\mathbb{U}_{\mathcal{V}}^{*}=\mathbb{H}_{\mathcal{V}\mathcal{A}\mathcal{V}^{*}}.$$

Thus, if \mathcal{V} diagonalizes \mathcal{A} :

$$\mathcal{V}\mathcal{A}\mathcal{V}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & J\xi J^* \end{array}\right)$$

for some operator $\xi:\mathfrak{h}\to\mathfrak{h}$, then

$$\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^* = \mathbb{U}_{\mathcal{V}}\left(\mathbb{H}_{\mathcal{A}} - \frac{1}{2}\operatorname{Tr}(h)\right)\mathbb{U}_{\mathcal{V}}^* = d\Gamma(\xi) + \frac{1}{2}\operatorname{Tr}(\xi - h).$$

These formal arguments suggest it is enough to consider the diagonalization of block operators.

Questions

Question 1:

what are the conditions on $\mathcal V$ so that $\mathbb U_{\mathcal V}A(F)\mathbb U_{\mathcal V}^*=A(\mathcal VF)$?

Question 2:

what are the conditions on $\mathcal A$ so that there exists a $\mathcal V$ that diagonalizes $\mathcal A$?

Question 1 - symplectic transformations

Recall $A(f \oplus Jg) = a(f) + a^*(g)$ and $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$.

Conjugate and canonical commutation relations:

$$A^*(F_1) = A(\mathcal{J}F_1), \quad [A(F_1), A^*(F_2)] = (F_1, \mathcal{S}F_2), \quad \forall F_1, F_2 \in \mathfrak{h} \oplus \mathfrak{h}^*$$

where

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathcal{J} = \begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix}.$$

- lacksquare $S=S^{-1}=S^*$ is unitary, $\mathcal{J}=\mathcal{J}^{-1}=\mathcal{J}^*$ is anti-unitary.
- Compatibility (wrt implementability) conditions

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V}, \quad \mathcal{V}^*S\mathcal{V} = S = \mathcal{V}S\mathcal{V}^*.$$
 (1)

▶ Any bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^*$ satisfying (1) is called a *symplectic transformation*.

Question 1 - implementability

ightharpoonup Symplecticity of $\mathcal V$ implies

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V} \qquad \Rightarrow \qquad \mathcal{V} = \left(egin{array}{cc} U & J^*VJ^* \\ V & JUJ^* \end{array}
ight)$$

Fundamental result:

Shale's theorem ('62)

A symplectic transformation $\mathcal V$ is unitarily implementable (i.e. $\mathbb U_{\mathcal V} A(F) \mathbb U_{\mathcal V}^* = A(\mathcal V F)$), if and only if

$$||V||_{\mathrm{HS}}^2 = \mathrm{Tr}(V^*V) < \infty.$$

 $\mathbb{U}_{\mathcal{V}}$, a unitary implementer on the Fock space of a symplectic transformation \mathcal{V} , is called a *Bogoliubov transformation*.

Question 2 - example: commuting operators in ∞ dim

▶ h > 0 and k be commuting operators on $\mathfrak{h} = L^2(\Omega, \mathbb{C})$

$$\mathcal{A}:=\left(egin{array}{cc} h & k \\ k & h \end{array}
ight)>0 \quad ext{on } \mathfrak{h}\oplus \mathfrak{h}^*.$$

if and only if G < 1 with $G := |k|h^{-1}$.

 $ightharpoonup \mathcal{A}$ is diagonalized by the linear operator

$$\mathcal{V} := \sqrt{\frac{1}{2} + \frac{1}{2\sqrt{1 - G^2}}} \left(\begin{array}{cc} 1 & \frac{-G}{1 + \sqrt{1 - G^2}} \\ \frac{-G}{1 + \sqrt{1 - G^2}} & 1 \end{array} \right)$$

in the sense that

$$\mathcal{VAV}^* = \left(\begin{array}{cc} \xi & 0 \\ 0 & \xi \end{array} \right) \quad \text{with} \quad \xi := h \sqrt{1 - G^2} = \sqrt{h^2 - k^2} > 0.$$

- $ightharpoonup \mathcal V$ satisfies the compatibility conditions and is bounded (and hence a symplectic transformation) iff $\|G\| = \|kh^{-1}\| < 1$
- \triangleright V is unitarily implementable iff kh^{-1} is Hilbert-Schmidt

Historical remarks

- ▶ For dim \mathfrak{h} < ∞ this follows from Williamson's Theorem ('36);
- ► Friedrichs ('50s) and Berezin ('60s): $h \ge \mu > 0$ bounded with gap and k Hilbert-Schmidt;
- ▶ Grech-Seiringer ('13): h > 0 with compact resolvent, k Hilbert-Schmidt;
- ▶ Lewin-Nam-Serfaty-Solovej ('15): $h \ge \mu > 0$ unbounded, k Hilbert-Schmidt;
- ▶ Bach-Bru ('16): h > 0, $||kh^{-1}|| < 1$ and kh^{-s} is Hilbert-Schmidt for all $s \in [0, 1 + \epsilon]$ for some $\epsilon > 0$.
- Our result: essentially optimal conditions

Theorem [Diagonalization of block operators]

(i) (Existence). Let $h:\mathfrak{h}\to\mathfrak{h}$ and $k:\mathfrak{h}\to\mathfrak{h}^*$ be (unbounded) linear operators satisfying $h=h^*>0$, $k^*=J^*kJ^*$ and $D(h)\subset D(k)$. Assume that the operator $G:=h^{-1/2}J^*kh^{-1/2}$ is bounded and $\|G\|<1$. Then we can define the self-adjoint operator

$$\mathcal{A} := \left(\begin{array}{cc} h & k^* \\ k & JhJ^* \end{array} \right) > 0 \quad \text{on } \mathfrak{h} \oplus \mathfrak{h}^*$$

by Friedrichs' extension. This operator can be diagonalized by a symplectic transformation $\mathcal V$ on $\mathfrak h\oplus\mathfrak h^*$ in the sense that

$$\mathcal{V}\mathcal{A}\mathcal{V}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & J\xi J^* \end{array}\right)$$

for a self-adjoint operator $\xi > 0$ on \mathfrak{h} . Moreover, we have

$$\|\mathcal{V}\| \le \left(\frac{1 + \|G\|}{1 - \|G\|}\right)^{1/4}.$$

Theorem [Diagonalization of block operators]

(ii) (Implementability). Assume further that G is Hilbert-Schmidt. Then $\mathcal V$ is unitarily implementable and

$$\|V\|_{\mathrm{HS}} \leq \frac{2}{1-\|G\|} \|G\|_{\mathrm{HS}}.$$

(ii) (Boundedness from below). Assume further that $kh^{-1/2}$ is Hilbert-Schmidt. Then the quadratic Hamiltonian \mathbb{H} , defined before as a quadratic form, is bounded from below and closable, and hence its closure defines a self-adjoint operator which we still denote by \mathbb{H} . Moreover, if $\mathbb{U}_{\mathcal{V}}$ is the unitary operator on Fock space implementing the symplectic transformation \mathcal{V} , then

$$\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^* = d\Gamma(\xi) + \inf \sigma(\mathbb{H})$$

and

$$\inf \sigma(\mathbb{H}) \ge -\frac{1}{2} ||kh^{-1/2}||_{HS}^2.$$

Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J}B\mathcal{J}=-B$, then there exists a unitary operator $\mathcal U$ on $\mathfrak h\oplus\mathfrak h^*$ such that $\mathcal J\mathcal U\mathcal J=\mathcal U$ and

$$\mathcal{U}B\mathcal{U}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & -J\xi J^* \end{array}\right).$$

Step 2. Apply Step 1 to $B = A^{1/2}SA^{1/2}$.

Step 3. Explicit construction of the symplectic transformation \mathcal{V} :

$$\mathcal{V} := \mathcal{U}|B|^{1/2}\mathcal{A}^{-1/2}.$$

Step 4. A detailed study of $\mathcal{V}^*\mathcal{V} = \mathcal{A}^{-1/2}|B|\mathcal{A}^{-1/2}$.

Analysis of $\mathcal{V}^*\mathcal{V} = \mathcal{A}^{-1/2}|B|\mathcal{A}^{-1/2}$.

Step 4a. If $V^*V - 1$ is Hilbert-Schmidt, then V is implementable.

Step 4b. Using functional calculus

$$\mathcal{V}^*\mathcal{V}-1=\frac{1}{\pi}\int_0^\infty\frac{1}{t+\mathcal{A}^2}\underbrace{(S\mathcal{A}S-\mathcal{A})}_{=:E}\mathcal{A}^{1/2}\frac{1}{t+B^2}\mathcal{A}^{-1/2}\sqrt{t}dt.$$

Then use Cauchy-Schwarz with

$$X := \frac{1}{t + \mathcal{A}^2} E \mathcal{A}^{1/2} |B|^{-1}, \quad Y := |B| \frac{1}{t + B^2} \mathcal{A}^{-1/2}.$$

This gives

$$\pm 2(\mathcal{V}^*\mathcal{V} - 1) \le \epsilon^{-1}K + \epsilon \mathcal{A}^{-1/2}|B|\mathcal{A}^{-1/2} = \epsilon^{-1}K + \epsilon \mathcal{V}^*\mathcal{V}$$

where

$$K := \frac{2}{\pi} \int_0^\infty \frac{1}{t + \mathcal{A}^2} E S \mathcal{A}^{-1} S E \frac{1}{t + \mathcal{A}^2} \sqrt{t} dt.$$

Step 4c. We rewrite

$$\pm 2(\mathcal{V}^*\mathcal{V} - 1) \le \epsilon^{-1}K + \epsilon \mathcal{V}^*\mathcal{V} \le \epsilon^{-1}K + C\epsilon.$$

Step 4d. $\operatorname{Tr} K < \infty$.

Step 4e. Lemma: If $L=L^{\ast}$ boundedand there exists a trace class operator $K\geq 0$ such that

$$\pm 2L \le \epsilon^{-1}K + \epsilon, \quad \forall \epsilon > 0,$$

then L is Hilbert-Schmidt and $\|L\|_{\mathrm{HS}}^2 \leq \mathrm{Tr}(K)$.

Thank you for your attention and, last but not least,

HAPPY BIRTHDAY HERBERT!