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1. Introduction: Band spectra

I H0 = −∆x on L2(R2
x)

I HΓ = −∆x + VΓ(x)

with VΓ(x + γ) = VΓ(x) for all x ∈ R2, γ ∈ Γ ∼ Z2

I HB0 = (−i∇x + A0(x))2

with dA0 = B0 = const.

I HΓ,B0 = (−i∇x + A0(x))2 + VΓ(x)
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1. Introduction: Peierls substitution

I H0 is unitarily equivalent by Fourier transformation to
multiplication by the function k2 on L2(R2,C),

H0 ∼ k2 .



1. Introduction: Peierls substitution

I HΓ is unitarily equivalent by a Bloch-Floquet transformation to
a fibred operator
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I We have exactly the same structure for HΓ,B0 up to one caveat:

There is no natural isomorphism between PnH and L2(T2)
anymore.

Instead PnH is naturally isomorphic to a space of L2-sections
L2(Ξn) of a certain vector bundle Ξn over the torus T2.
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One would like to understand the effect of additional (non-periodic)
electric and magnetic potentials W and A that give rise to small
electric and magnetic fields E = −∇W and B = curlA.

Let
W : R2 → R and A : R2 → R2

be smooth functions that are bounded and have bounded derivatives
of all orders.

For ε > 0 let

W ε(x) := W (εx) and Aε(x) = A(εx)

be the scaled potentials. For ε� 1 they are slowly varying on the
scale of the lattice and give rise to small fields.
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2. Bloch bundles and Wannier functions

Gapped group of bands: Let I ⊂ N be a finite index set such that

{En(k) | n ∈ I} ⊂ σ(H(k))

is separated uniformly in k by a gap from the rest of the spectrum
of H(k). Typically {En(k) | n ∈ I} are the bands below the Fermi
energy.

Put PI (k) =
∑

n∈I Pn(k) and PI :=
∫ ⊕

PI (k)dk, then ranPI is an

invariant subspace for ĤΓ and F−1ranPI is an invariant subspace
for HΓ.
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πI−→ T2 given by
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where

(k , ϕ) ∼ (k ′, ϕ′) :⇔ k ′ − k ∈ Γ∗ and ϕ′ = τ(k ′ − k)ϕ .
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2. Bloch bundles and Wannier functions

Theorem (Monaco, Panati, Pisante, T. 16’)

In dimensions d = 2, 3

I either the Bloch bundle is trivializable and exponentially
localized composite Wannier functions exist,

I or the Bloch bundle is non-trivial and no composite Wannier
functions with finite second moment exist, i.e. any set of
composite Wannier functions (w1, . . . ,wm) satisfies∫

Rd

|x |2|wj(x)|2 dx =∞ for at least one j ∈ {1, . . . ,m} .

Composite Wannier functions (w1, . . . ,wm) satisfying∫
Rd

|x |2s |wj(x)|2 dx <∞

for all j = 1, . . . ,m and any 0 < s < 1 always exist.
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Composite Wannier functions (w1, . . . ,wm) satisfying∫
Rd

|x |2s |wj(x)|2 dx <∞

for all j = 1, . . . ,m and any 0 < s < 1 always exist.



3. Peierls substitution for magnetic subbands

The Hofstadter model is the simplest example of a periodic system with
magentic field. Its Hamiltonian HHof is just the discrete Laplacian with
costant magnetic field on the square lattice.

After Bloch-Floquet
transformation and for “rational” magnetic field B0 = 2π p

q its fibres are

HB0 (k) =


2 cos(k2) 1 0 · · · eiqk1

1 2 cos(k2 + B0) 1 · · · 0

0 1 2 cos(k2 + 2B0) · · · 0

.

.

.
. . .

. . .
. . . 0

0 1

e−iqk1 0 · · · 1 2 cos(k2 + (q − 1)B0)

 .

Alternatively, the Hofstadter model can be obtained from Peierls
substitution applied to the band function E (k) = 2 cos(k1) + 2 cos(k2), i.e.

ĤHof = E (k − A0(i∇k)) .

The Hofstadter Hamiltonian can thus also be regarded as the canonical
effective Hamiltonian for a Bloch band perturbed by a constant magnetic
field B0 (see De Nittis, Panati ’10).
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3. Peierls substitution for magnetic subbands

For B0 /∈ 2πQ the spectrum of HB0 is of Cantor type (a closed
nowhere dense set without isolated points) and has zero Lebesgue
measure.

The proof of this so called Ten Martini Problem was given by Avila
and Jitomirskaya (Ann. Math. 2009) and, among other results,
earned Avila the fields medal 2014.

While this is a beautiful mathematical result, it is not too relevant
from the physics point of view.

Our aim is to prove “Peierls substitution”, i.e. the stability of the
block decomposition for rational values of B0 under certain types of
perturbations and to construct explicit effective operators that are
unitarily equivalent to the blocks of the perturbed periodic operator.
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3. Peierls substitution for magnetic subbands

One would like to understand the effect of additional (non-periodic)
electric and magnetic potentials W and A that give rise to small
electric and magnetic fields E = −∇W and B = curlA.

Let
W : R2 → R and A : R2 → R2

be smooth functions that are bounded and have bounded derivatives
of all orders.

For ε > 0 let

W ε(x) := W (εx) and Aε(x) = A(εx)

be the scaled potentials. For ε� 1 they are slowly varying on the
scale of the lattice and give rise to small fields.
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Theorem (Freund, T. ’13)

Let {En(k) | n ∈ I} be a gapped group of bands with projection PI .
Then there exist an orthogonal projection Πε

I ∈ L(L2(T2;Hf)) such
that ∥∥∥[H̃Γ,Π

ε
I ]
∥∥∥ = O(ε∞) .

Moreover, Πε
I is close to a pseudodifferential operator Op(PεI ),

‖Πε
I −Op(PεI )‖ = O(ε∞) , (∗)

with principal symbol equal to PI (k − A(r)).
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If ‖W ‖∞ is small enough, the spectral gaps remain open for
ε ∈ (0, ε0] and (∗) holds for Πε

I being the corresponding spectral
projection of Hε.



3. Peierls substitution for magnetic subbands

Theorem (Freund, T. ’13)

Let {En(k) | n ∈ I} be a gapped group of bands with projection PI .
Then there exist an orthogonal projection Πε

I ∈ L(L2(T2;Hf)) such
that ∥∥∥[H̃Γ,Π

ε
I ]
∥∥∥ = O(ε∞) .

Moreover, Πε
I is close to a pseudodifferential operator Op(PεI ),

‖Πε
I −Op(PεI )‖ = O(ε∞) , (∗)

with principal symbol equal to PI (k − A(r)).

The construction is based on methods developed by Helffer and
Sjöstrand in ’89 that were applied in similar ways by Martinez,
Nenciu, Sordoni ’03, Panati, Spohn, T. ’03, and many others.
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To prove Peierls substitution, we need to show that Πε
jH

εΠε
j is

unitarily equivalent to an operator of the form

Heff
j = Ej

(
k + A(iε∇k)

)
+ W (iε∇k) +O(ε)

acting on some suitable space of “scalar functions” of k .

The first step is the construction of a unitary

Ũε
j : ranΠε

j → ranPj .

which can again be done by known techniques [PST03].

As discussed before, a unitary map from ranPj to scalar functions
over the torus can be obtained from a trivialising section of this
bundle.

However, magnetic Bloch bundles in the Hofstadter model are never
trivialisable, i.e. such a trivialising section does not exist.
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This can be seen by computing the Chern number θj of the jth
Bloch bundle. Coloring the nth gap in the spectrum by the sum θ̃n of
the underlying Chern numbers,

θ̃n =
n∑

j=1

θj ,

yields a colored version of the Hofstadter butterfly.
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Images by Nicolai Rothe.
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Theorem (Freund, T. ’13)

Let {En(k) | n ∈ I} be a gapped group of bands with projection PI .
Then there exists a unitary

Uε
I : ranΠε

I → HθI
such that Heff

I := Uε
I Πε

I H̃ΓΠε
IU

ε∗
I satisfies

Heff
I = EI

(
k + A(iε∇θIk )

)
+ W (iε∇θIk ) +O(ε) .

Here HθI is a space of L2-section of a rank m vector bundle with
connection ∇θI .

In the case of a single band I = {j} of the Hofstadter
model at B0 = p

q2π they are given by

HθI :=
{
f ∈ L2

loc(R2)
∣∣∣ f (k − n) = e

iθj k2qn1
2π f (k) for all n ∈ Γ∗q

}
and ∇θj = (∂k1 , ∂k2 + i

qθjk1

2π ).



3. Peierls substitution for magnetic subbands

Theorem (Freund, T. ’13)

Let {En(k) | n ∈ I} be a gapped group of bands with projection PI .
Then there exists a unitary

Uε
I : ranΠε

I → HθI
such that Heff

I := Uε
I Πε

I H̃ΓΠε
IU

ε∗
I satisfies

Heff
I = EI

(
k + A(iε∇θIk )

)
+ W (iε∇θIk ) +O(ε) .

Here HθI is a space of L2-section of a rank m vector bundle with
connection ∇θI . In the case of a single band I = {j} of the Hofstadter
model at B0 = p

q2π they are given by

HθI :=
{
f ∈ L2

loc(R2)
∣∣∣ f (k − n) = e

iθj k2qn1
2π f (k) for all n ∈ Γ∗q

}
and ∇θj = (∂k1 , ∂k2 + i

qθjk1

2π ).



3. Peierls substitution for magnetic subbands

For the case of a perturbation by a constant magnetic field B = 2π
q2

p̃
q̃ ,

W = 0, and Ej(k) = 2 cos(qk1) + 2 cos(qk2), one can represent Heff
j

again as a Hofstadter-type matrix

Heff
q,θ,B(k) =

2 cos(qk2) e
iq(k1−θ

p̃
q̃

)
0 · · · e

−iq(k1−θ
p̃
q̃

)

e
−iq(k1−θ

p̃
q̃

)
2 cos(q(k2 + qB)) e

iq(k1−θ
p̃
q̃

)
· · · 0

0 e
−iq(k1−θ

p̃
q̃

)
2 cos(q(k2 + 2qB)) · · · 0

.

.

.
. . .

. . .
. . . 0

0 e
iq(k1−θ

p̃
q̃

)

e
iq(k1−θ

p̃
q̃

)
0 · · · e

−iq(k1−θ
p̃
q̃

)
2 cos(q(k2 + (q̃ − 1)qB))


.

Here θ is the Chern number of the perturbed band and q the
denominator in q the denominator in B0 = 2π p

q .
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σ(Heff
3,−2)
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σ(Heff
3,−1)
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