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Bosonic Nordheim equation (spatially homogeneous).
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Weak Turbulence Equation:
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Nordheim equation (1928).

Kinetic equation describing the evolution of the distribution of
momentum of a dilute gas of bosons.

Similar derivation to Boltzmann, except for that it uses Bose-Einstein
statistics to compute the number of particles changing their state in the
collisions.



Weak Turbulence Equation (Hasselmann, Zakharov)
(1963-1965).

Physical motivation. Description of a random field of waves which
satisfy an equation with weak nonlinearities. (Example: Water waves).

i t | |2 , x, 0 "Random"

x, t a k, t e ikxdk

F p. t |a k, t |2

F satisfies the Weak Turbulence equation.
Rigorous results:

Benedetto, Castello, Esposito, Pulvirenti.
Lukharinen, Spohn.



Nordheim equation (1928).

Stationary solutions: Bose-Einstein distributions.

FBE p m0 p p0
1

exp |p p0 |2

2 1

where m0 0, 0, , 0 and m0 0, p0 R3.

m0 0 , Bose-Einstein condensation



Scenario for the formation of Bose-Einstein condensates.

D.V. Semikov and I.I. Tkachev. (1995)

R. Lacaze, P. Lallemand, Y. Pomeau and S. Rica. (2001)

H. Spohn. (2010)



Numerical simulations combined with physical arguments suggest
that:

(1) The formation of Bose-Einstein condensates takes place by
means of a blow-up of the solutions of Nordheim equation.

(2) Blow-up is self-similar. (Second kind self-similarity). At the
blow-up time F t,p develops an integrable power law singularity.

(3) The number of particles at the condensate begins to increase as
a power law after the blow-up time.



Isotropic Nordheim equation.

f t, F t,p , |p|2
2
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Reformulation of the equation using the particle density in the
energy space:

g t, 4 2 f t,

We can rewrite the equation using the density g :

tg1 32 3
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q g
4 2

d 3d 4

min 1 , 2 , 3 , 4 , 2 3 4 1



Main result: Finite time blow-up.

Theorem Let M 0, E 0, 0, 3. There exist
M,E, 0, K K M,E, 0, T0 T0 M,E and a

numerical constant 0 independent of M, E, such that for any
f0 L R ; 1 satisfying

4 2
R

f0 d M , 4 2
R

f0
3 d E

0

R
f0 d R 3

2 , 0 R ,
0

f0 d K

there exists a unique mild solution
f Lloc 0,Tmax ; L R ; 1 defined for a maximal existence
time Tmax T0. The solution f satisfies:

lim sup
t Tmax

f , t L R



Bosonic Nordheim (-Boltzmann) equation vs. the classical
Boltzmann equation.

tF1
R3 R3 R3

q2 F Md3p2d3p3d3p4 , p1 R3 , t 0

F1 0,p F0 p , p1 R3 , |p|2
2
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Global existence of solutions for the classical homogeneous
Boltzmann equation (Carleman, 1933).



Condensate formation.
Theorem Let M 0, E 0, 0, 3. There exist

M,E, 0, K K M,E, 0, T0 T0 M,E and a
numerical constant 0 independent of M, E, such that for any
f0 L R ; 1 satisfying

4 2
R

f0 d M , 4 2
R

f0
3 d E

0

R
f0 d R 3

2 , 0 R ,
0

f0 d K

there exists a weak solution f Lloc 0,Tmax ; L R ; 1
globally defined in time. There exists Tcon 0 such that:

0

R
f t, d 0 if t Tcon



Proof of the results.(Difficult to compute explicit solutions):

Weak formulation:

t
R

g d
R

g t d 1
2 5

2 R R R

g1g2g3

1 2 3
Q d 1d 2d 3

2 R R R

g1g2

1 2
Q d 1d 2d 3 , a.e. t 0, T

where:
min 1 , 2 , 3 , 1 2 3

Q 3 1 2 3 2 1



Monotonicity estimate:

R R R
Q

j 1

3 gjd j

j R 3
G

j 1

3 gjd j

j

where:
G 1, 2, 3

1
6

S3

H 1 , 2 , 3 1 , 2 ; 3

H x,y, z z x y z x y
with:

min 1 , 2 , 3 , 4 , 2 3 4 1

G 1, 2, 3 G 1 , 2 , 3 for any S3

is convex G 1, 2, 3 0 , is concave G 1, 2, 3 0



Estimating the concentration properties of g.
(A general Measure Theory result).

Some notation:

Ik b b k 1
b , 1 , k 0,1,2, . . . , b 1

Ik
E b Ik 1 b Ik b Ik 1 b , k 0,1, 2, . . .

Pb A 0,1 : A
j

Ikj b for some set k j 1,2, . . .

A E

j 1
Ikj

E b



Lemma Suppose that b 1. Given 0 2
3 , there exists 0 such

that, for any g M 0, 1 satisfying
0

gd 0, at least one of the
following statements is satisfied:

(i) There exist an interval Ik b such that:

Ik
E b

gd 1
0,1

gd

(ii) There exist two sets U1,U2 Pb such that U2 U1
E

and:

min
U1

gd ,
U2

gd
0,1

gd



Blow-up for general supercritical data.
Theorem Suppose that f0 L R ; 1 with 3. Let us denote

as M, E the numbers:

4
0

f0 2 d M , 4
0

f0 2 3 d E

Let us denote as f Lloc 0,Tmax ; L R ; 1 the
unique mild solution of the Nordheim equation where Tmax is the
maximal existence time. Suppose that:

M
3
2

5
2

3
5

4
3

3
5 E 3

5

Then:
Tmax and Tcon



Main ideas in the Proof:

An "smoothing" effect for Boltzmann equation.

0

R
g , t d KR 3

2 for R small and t T0 E,M .

Entropy dissipation formula implies (in a weak form) that an amount
of mass of order one concentrates near 0.

We then apply the previous Theorem.



Qualitative information about the blow-up. (Not much rigorous
information available).

Numerical simulations by Semikov-Tkachev and
Lacaze-Lallemand-Pomeau-Rica suggest a self-similar behaviour:

f t, T t
T t

, 1
2 ,

f T, 1 , 1. 234. .

Theorem (J. Bandyopadhyay, V):
lim sup

0
f T,



Weak Turbulence Equation.

tg1 32 3
0 0

q3
g

4 2
d 3d 4

min 1 , 2 , 3 , 4 , 2 3 4 1

q3 g g3g4 g1 g2 g1g2 g3 g4

Blow-up in finite time.
Nonuniqueness (depending on how is the interaction between the
condensate and the noncondensated part).
Pulsating solutions: There exist measure solutions of this equation
such that g , t M as t but

0
g d , t 0 for t large.

Characterization of the long time asymptotics for general initial data:
"Almost" always g t, M as t



A seemingly paradoxical situation:

Mass and energy conserved:

t g t,d t g t,d 0

g t, M as t

If g 0,d 0 : where does the energy go?.

The only possibility is to .
The transfer of energy towards infinity is dominated by the
interactions between two large particles and one small particle.



The equation describing the transfer of energy towards infinity is:

tG t, 1
2 0

G G d G
0

G d

1
2

G
0

G G d

0

G G G d



Some interesting properties .

Instantaneous condensation.

Existence of self-similar solutions with constant energy.

(A. Kierkels, V)



We have obtained so far two types of self-similar solutions:

(1) Energy conserving:

G t, 1
t t

, decreases exponentially as

(2) Power law behaviour:

G t, 1
t t 1 , 1, 2 , 1 as

If 1
2 , 1 all the terms of the original cubic equation are

expected to be relevant.



Conclusions

Blow-up for all the "sufficiently concentrated" solutions of the
isotropic bosonic Nordheim equation .

Blow-up for all the supercritical data (Nordheim equation).

Very few information about the behaviour of the solutions near the
blow-up time.

Self-similar behaviour for the solutions describing the long time
asymptotics of the Weak Turbulence Equation.
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(3) Estimating the reaction rate.

Test function s s
R , s R, s 1 if s 1.

Suppose that
0

g , t d 0 for any t 0,T . Then:

B
0

T
dt

SR, m 1

3

gmd m
R

3 2
0

T
dt

0,1
g d

2
M

where B 0, 0 small, 0 R 1
2 and:



max 1, 2, 3 , min 1, 2, 3

0 Intermediate value

SR, 1, 2, 3 0, R 3 : | 0 | 0 , 0 R 1, 0 1



An obstacle for the Proof:
There exist a family of stationary solutions of the isotropic cubic
equation:

tg1 32 3
0 0

q3
g

4 2
d 3d 4

min 1 , 2 , 3 , 4 , 2 3 4 1

q3 F F3F4 F1 F2 F1F2 F3 F4

Stationary solutions:
gs M 0 , 0 0

If g t, is close to one of these stationary solutions, the reaction
would stop. ( A possible behaviour for global solutions).



General strategy for the Proof.

If g does not behave like a Dirac mass solution during most times,
the reaction rate estimate would give a contradiction.

If g behaves like a Dirac mass solution during most times, it is
possible to approximate the dynamics of the equation.



Lemma



An alternative. Either:
(a) During a significant fraction of the times in 0,Tmax we have that
g is concentrated in a "dyadic" peak. (The position of the peak could



change in time).

(b) During a significant fraction of the times in 0,Tmax we have that
g is not concentrated in one small "dyadic" peak.



Both possibilities yield contradictions:

Alternative (a) will imply a very fast transfer of particles towards the
region 0. This will contradict mass conservation.
Alternative (b) contradicts the reaction rate estimate.

Solutions can be extended in time and they satisfy
0

gd 0 as
long as f t, remains bounded. (Local existence result).

Therefore, the only alternative left is blow-up of f t, as t Tmax.



Mass cannot move away from the region 0.
Lemma Suppose that

0, 2
g0d m0 0,

0
g0d M m0,

0
g0d E 0 where 0 1. There exists

T0 T0 M,E 0 independent on and m0, such that for every
solution f L 0,T0 ; R of the Nordheim equation such that
f , 0 g0

4 2
we have

0,
g , t d m0

4
for t 0,T0 , g f

4 2
.

Proof: Monotonicity formula Rough estimates of the quadratic
(Boltzmann) terms.



Alternative (b) gives a contradiction:
Lemma There exists 0 independent on R and such that, for

any g M 0,R satisfying
0

gd 0 if the alternative (ii) in the
Measure Theory Lemma takes place we have:

SR, m 1

3

gmd m
0,R

gd
3



Then, the reaction rate estimate implies:

AT 0,R
gd

3
dt CR 2

0

T
dt

0,1
g d

2
M

AT Subset of 0,T where (ii) holds.

|AT | T
2 , C C E,M,m0

T m0
3

2 CR

Contradiction if R is small



Alternative (a) gives a contradiction:

If (a) takes place there is a very fast transfer of mass towards the
region 1.
(This is due to the fact that reactions are faster for small and the
lower estimate for the mass in the region of small).

This contradicts mass conservation.



Mass transfer is controlled using the adjoint equation. If the adjoint
equation is chosen in the correct form, it is possible to see precisely
that particles move approximately according to a transport equation:

t g d g t L d



If the mass of g is concentrated near a peak, the adjoint equation
can be approximated by a transport equation with small velocity.
Given 1 0, 2 0 such that 1 2 1 2 0, let us assume that

there exists T0 0, Tmax such that

0

T0

A t
IN t

E b ,R
g t, d

2

dt K2 R 1 2 , K2
2 1

2

(Condition which guarantees that g is concentrated near a peak for a
significant amount of time).



Lemma If alternative (a) holds, there exists a function
L 0,T0 ,C1 R satisfying the following properties:
(i) 0 t, 1 for t, 0,T0 R .
(ii) t, is convex in R for each t 0,T0 .
(iii) supp t, 0, R

4 for each t 0,T0 .

(iv) , t 1
2 for 0 2 1

2
R
8 , 0 t T0.

(v) The following inequality holds for 0 t T0, 0 :

t
A t

2 3
2 R U t

g2g3 1 3 2 1 d 2d 3 0

U t 2 3, 2, 3 IN t
E b ,R



Quantitative estimate for the blow-up time.

The previous arguments allow to estimate the measure of the set of
times where the alternatives (a) and (b) hold. If the initial data is
"concentrated enough" the sum of these measures is smaller than
T0 T0 E,M . Therefore Tmax T0.




