Jérémy Faupin

The mo

Main results

Ingredients of the proof

Spectral analysis of a model for quantum friction

Jérémy Faupin

Université de Lorraine

Workshop on "Quantum Field Theory: Infrared Problems and Constructive Aspects", München, October 2015

Joint work with S. De Bièvre and B. Schubnel

Spectral analysis of a model for quantum friction Jérémy Faupin

The model

Main results

Ingredients of the proof

1 The model

2 Main results

3 Ingredients of the proof

Jérémy Faupin

The model

Quantum model

Main results

Ingredients of the proof

The model

> Jérémy Faupin

The mode Classical Hamiltonian model

model

iviain resu

of the proof

Linear friction

Linear Friction

Many classical systems – e.g. an electron in a metal, a particle in a viscous medium – obey an effective equation of motion of the form

$$m\ddot{q}(t) = -\gamma \dot{q}(t) - \nabla V(q(t)) \tag{1}$$

where

- $q(t) \in \mathbb{R}^d$ is the position of the system
- *m* is the mass of the system
- $\gamma > 0$ is the friction coefficient
- V is an external potential

In particular, $V=0 \implies \dot{q}(t)$ converges exponentially fast to 0

Interaction with the environment

- (1) = effective equation of motion
- Friction force due to the energy lost by the system, transferred to the environment
- More fundamental approach : model describing both the system and its environment with total energy conserved

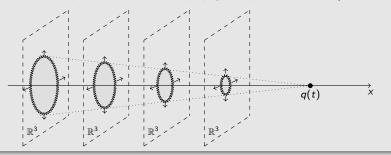
Main result

Ingredients of the proof

A classical Hamiltonian model

[Bruneau, De Bièvre, 2002]

Particle of position $q(t) \in \mathbb{R}^d$ (mass m=1, no external potential) coupled to independent scalar vibration fields $\psi(x,y,t) \in \mathbb{R}$ at each point $x \in \mathbb{R}^d$ ($y \in \mathbb{R}^3$ accounts for the position variable in the "propagation space" of the fields)



Equations of motion

$$\begin{split} \partial_t^2 \psi(x,y,t) - c^2 \Delta_y \psi(x,y,t) &= -\rho_1 (x - q(t)) \rho_2(y) \\ \ddot{q}(t) &= -\int_{\mathbb{R}^{d+3}} \rho_1 (x - q(t)) \rho_2(y) (\nabla_x \psi)(x,y,t) \, dx dy \end{split}$$

Jérémy Faupin

The mode Classical Hamiltonian model

model

iviain resu

Ingredients of the proof

A classical Hamiltonian model II

Equations of motion

$$\partial_t^2 \psi(x,y,t) - c^2 \Delta_y \psi(x,y,t) = -\rho_1(x - q(t))\rho_2(y)$$

$$\ddot{q}(t) = -\int_{\mathbb{R}^{d+3}}
ho_1(x-q(t))
ho_2(y)(
abla_x\psi)(x,y,t)\,dxdy$$

Should be compared with

Classical Nelson model

Classical particle coupled to a scalar wave field

$$\partial_t^2 \psi(x,t) - c^2 \Delta_x \psi(x,t) = -\rho_1(x-q(t))$$

$$\ddot{q}(t) = -\int_{\mathbb{R}^d}
ho_1(x - q(t))(\nabla_x \psi)(x, t) dx$$

Other related classical models

See [Komech, Spohn, 1998], [Komech, Kunze, Spohn, 1998]

Ingredients of the proof

A classical Hamiltonian model III

Equations of motion

$$\begin{split} \partial_t^2 \psi(x,y,t) - c^2 \Delta_y \psi(x,y,t) &= -\rho_1 (x - q(t)) \rho_2(y) \\ \ddot{q}(t) &= -\int_{\mathbb{D}^{d+3}} \rho_1 (x - q(t)) \rho_2(y) (\nabla_x \psi)(x,y,t) \, dx dy \end{split}$$

Assumptions

- $\rho_1 \in \mathcal{S}(\mathbb{R}^d)$, positive, radial
- $\rho_2 \in \mathcal{S}(\mathbb{R}^3)$, positive, radial and $\hat{\rho}_2(k) \neq 0 \quad \forall k \in \mathbb{R}^3$

Results [Bruneau, De Bièvre 2002]

For a large class of initial data, and for c large enough, the particle stops exponentially fast,

$$|q(t)-q_{\infty}| \leq Ce^{-\tilde{\gamma}t}, \quad t \geq 0$$

Quantum model

Main results

Ingredients of the proof

Hilbert space

Hilbert space for the particle and the field

$$\mathcal{H} = L^2(\mathbb{R}^d) \otimes \mathcal{F}_s(L^2(\mathbb{R}^{d+3}))$$

Symmetric Fock space

•

$$\mathcal{F}_s(L^2(\mathbb{R}^{d+3})) = \bigoplus_{n \geq 0} \mathcal{F}_s^{(n)}$$

where

$$\mathcal{F}_{\mathfrak{s}}^{(0)} := \mathbb{C}, \quad \mathcal{F}_{\mathfrak{s}}^{(n)} := L_{\mathfrak{s}}^2(\mathbb{R}^{(d+3)n})$$

• Creation and annihilation operators denoted by $a^*(\xi, k)$, $a(\xi, k)$ (momentum variables) satisfy the canonical commutation relations

$$[a(\xi, k), a^*(\xi', k')] = \delta(\xi - \xi')\delta(k - k'),$$

$$[a^{\#}(\xi, k), a^{\#}(\xi', k')] = 0$$

Quantum model

iviain resui

Ingredients of the proof

Total Hamiltonian

Total Hamiltonian acting on $\mathcal{H} = L^2(\mathbb{R}^d) \otimes \mathcal{F}_s(L^2(\mathbb{R}^{d+3}))$

$$H:=\frac{-\Delta_q}{2}\otimes \mathbb{1}+\mathbb{1}\otimes H_f+gH_I,$$

where

- Hamiltonian for the particle : $-\Delta_q/2$
- Hamiltonian for the field :

$$H_f = \int_{\mathbb{R}^{d+3}} |k| a^*(\xi, k) a(\xi, k) d\xi dk$$

• Interaction Hamiltonian :

$$H_{l} := \int_{\mathbb{R}^{d+3}} \left(e^{-iq \cdot \xi} |k|^{\mu} \hat{\rho}_{1}(|\xi|) \hat{\rho}_{2}(|k|) a^{*}(\xi, k) \right. \\ \left. + e^{iq \cdot \xi} |k|^{\mu} \overline{\hat{\rho}_{1}(|\xi|) \hat{\rho}_{2}(|k|)} a(\xi, k) \right) d\xi dk$$

- $g \in \mathbb{R}$: coupling constant
- \bullet $\mu \geq -1/2$: infrared regularization
- $\rho_1 \in \mathcal{S}(\mathbb{R}^d)$, $\rho_2 \in \mathcal{S}(\mathbb{R}^3)$

Properties

Self-adjointness

For all $g \in \mathbb{R}$ and $\mu > -1$, H is a self-adjoint operator with domain

$$\mathcal{D}(H)=\mathcal{D}(H_0),$$

where $H_0 := H|_{g=0}$

Translation invariance

• Let

$$P_f = \int_{\mathbb{R}^{d+3}} \xi a^*(\xi, k) a(\xi, k) d\xi dk$$

Then

$$[(-i\nabla_q \otimes \mathbb{1} + \mathbb{1} \otimes P_f)_j, H] = 0, \quad j = 1, \dots, d$$

• Unitary transformation $U: \mathcal{H} \to \int_{\mathbb{R}^d}^{\oplus} \mathcal{H}_p dp$, $\mathcal{H}_p = \mathcal{F}_s(L^2(\mathbb{R}^{d+3}))$, such that

$$UHU^* = \int_{\mathbb{R}^d}^{\oplus} H(p)dp$$

The fiber Hamiltonian

Fiber Hamiltonian acting on $\mathcal{F}_s(L^2(\mathbb{R}^{d+3}))$

• For all $p \in \mathbb{R}^d$,

$$H(p) := (p - P_f)^2/2 + H_f + gH_{I,0},$$

Interaction Hamiltonian at fixed total momentum :

$$H_{I,0} := \int_{\mathbb{R}^{d+3}} |k|^{\mu} \left(\hat{\rho}_1(|\xi|) \hat{\rho}_2(|k|) a^*(\xi,k) + \overline{\hat{\rho}_1(|\xi|) \hat{\rho}_2(|k|)} a(\xi,k) \right) d\xi dk$$

• For all $p \in \mathbb{R}^d$, $g \in \mathbb{R}$ and $\mu > -1$, H(p) is a self-adjoint operator with domain

$$\mathcal{D}(H(p)) = \mathcal{D}(H_f) \cap \mathcal{D}(P_f^2)$$

Spectrum of the non-interacting Hamiltonian

$$\sigma(H_0(p)) = \sigma_{\text{ess}}(H_0(p)) = \sigma_{\text{ac}}(H_0(p)) = [0, \infty),$$

$$\sigma_{\text{pp}}(H_0(p)) = \{p^2/2\}, \qquad \sigma_{\text{sc}}(H_0(p)) = \emptyset$$

Moreover $p^2/2$ is a simple eigenvalue associated to the vacuum $\Omega \in \mathcal{F}_s(L^2(\mathbb{R}^{d+3}))$

Faupin
The model

Main results

Ingredients of the proof

Main results

```
Spectral
analysis of
a model for
quantum
friction
```

Jérémy Faupin

The mo

Main results

Ingredients of the proof

Theorem [De Bièvre, Faupin, Schubnel]

i) Suppose that $\mu>-1.$ For all $g\in\mathbb{R}$, there exists $\mathit{E}_{g}\leq0$ such that $\sigma(\mathit{H}(p))=\sigma_{\mathrm{ess}}(\mathit{H}(p))=[\mathit{E}_{g},\infty),$

for all $p \in \mathbb{R}^d$. In particular, $E_g = \inf \sigma(H(p))$ does not depend on p

- ii) Suppose that $\mu>-1/2.$ There exists $g_c=g_c(\mu)>0$ such that, for all $0\leq |g|\leq g_c,$
 - H(0) admits a unique ground state,

namely E_g is a simple eigenvalue of H(0)

- ii') Suppose that $-1<\mu\leq -1/2$ and that $\hat{\rho}_1(0)\neq 0$, $\hat{\rho}_2(0)\neq 0$. For all $p\in\mathbb{R}^d$ and $g\in\mathbb{R}$,
 - H(p) does *not* have a ground state
- iii) Suppose that $\mu > 1/2$. There exists $g_c = g_c(\mu) > 0$ such that, for all $0 \le |g| \le g_c$,

$$\sigma_{\mathrm{pp}}(H(0)) = \{ E_g \}, \quad \sigma_{\mathrm{ac}}(H(0)) = [E_g, \infty), \quad \sigma_{\mathrm{sc}}(H(0)) = \emptyset.$$

Suppose in addition that $\hat{\rho}_1$ and $\hat{\rho}_2$ do not vanish and let ν_1 , ν_2 be such that $0 < \nu_1 < \nu_2$. Then there exists $g_c = g_c(\mu, \nu_1, \nu_2) > 0$ such that, for all $0 < |g| \le g_c$ and $p \in \mathbb{R}^d$, $|p| \in (\nu_1, \nu_2)$,

$$\sigma_{\mathrm{DD}}(H(p)) = \emptyset, \quad \sigma_{\mathrm{ac}}(H(p)) = [E_{g}, \infty), \quad \sigma_{\mathrm{sc}}(H(p)) = \emptyset.$$

In particular, for $|p| \in (\nu_1, \nu_2)$, H(p) does not have a ground state and the unperturbed eigenvalue $p^2/2$ disappears as the coupling is turned on

> Jérémy Faupin

The mod

Main results

of the proof

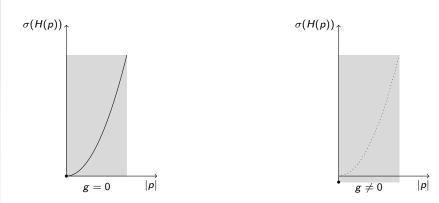


FIGURE: Grey : absolutely continuous spectrum If the coupling constant g=0, inf $\sigma(H_0(p))=0$ for all p; $p^2/2$ is a simple eigenvalue of H(p)

If the coupling constant $g \neq 0$, inf $\sigma(H(p)) = E_g < 0$ for all p; E_g is an eigenvalue if and only if p = 0; If $p \neq 0$, the spectrum is purely absolutely continuous

Faupin
The model

Main results

Ingredients of the proof

Ingredients of the proof

Location of the spectrum

Theorem

Let $\mu > -1$ and $g \in \mathbb{R}$. There exists $E_g \leq 0$ such that

$$\sigma(H(p))=[E_g,\infty),$$

for all $p \in \mathbb{R}^d$

Idea

- Localization techniques ([Derezinski, Gérard, 1998])
- General idea : To any state φ with total momentum p, sufficiently localized in x-space, we can add a one-particle state $a^*(f)\Omega$, with f localized near infinity in x-space, such that $a^*(f)\Omega$ has a momentum close to $\xi=-p$ and an energy close to |k|=0. Then $a^*(f)\varphi$ (which can be defined in a proper sense) has an energy arbitrary close to φ and a momentum arbitrary close to 0. \Longrightarrow inf $\sigma(H(0)) <$ inf $\sigma(H(p))$
- Difficulty: estimate localization errors, in particular control the number of particles in the minimizing sequence

Jérémy Faupin

The mod

Main results

Ingredients of the proof

Existence of a ground state for H(0)

Theorem

Let $\mu > -1/2$. There is $g_c > 0$ such that for all $|g| \leq g_c$, H(0) has a ground state

Idea

- Spectral renormalization group ([Bach, Fröhlich, Sigal 1998])
- Iterative version introduced in ([Ballesteros, Faupin, Fröhlich, Schubnel 2015])
- Important new feature: control first and second derivatives of Wick monomial kernels. Use rotation invariance

Remark

- [Gérard 2000], [Griesemer, Lieb, Loss 2001] : compactness argument (not satisfied here)
- [Pizzo 2003] : iterative perturbation theory (not applicable here)

Jérémy Faupin

The m

Main results

Ingredients of the proof

Infrared problem : absence of ground state for $\mu \le -1/2$

Theorem

Suppose that $-1 < \mu \le -1/2$ and that $\hat{\rho}_1(0) \ne 0$, $\hat{\rho}_2(0) \ne 0$. For all $p \in \mathbb{R}^d$ and $g \in \mathbb{R}$,

H(p) does *not* have a ground state

Idea

- Argument by contradiction
- Use the pull-through formula
- Adapt a simple argument of [Derezinski, Gérard 2004]

Jérémy Faupin

The mo

Main results

Ingredients of the proof

Absolutely continuous spectrum, Local decay

Theorem

Suppose that $\mu>1/2$. There exists $g_c>0$ such that, for all $|g|\leq g_c$ and $p\in\mathbb{R}^d$, the following holds: Let $J\subset [E_g,\infty)$ be a compact interval such that $\sigma_{\mathrm{pp}}(H(p))\cap J=\emptyset$. Then

$$\sup_{z\in S}\|\langle A\rangle^{-s}(H(p)-z)^{-1}\langle A\rangle^{-s}\|<\infty,$$

for any $1/2 < s \le 1$, with $A = \mathrm{d}\Gamma(ik \cdot \nabla_k/|k| + h.c.)$, $\langle A \rangle = (1 + A^*A)^{1/2}$ and $S = \{z \in \mathbb{C}, \mathrm{Re}(z) \in J, 0 < |\mathrm{Im}(z)| \le 1\}.$

In particular, the spectrum of H(p) in J is purely absolutely continuous. Moreover,

$$\|\langle A \rangle^{-s} e^{-itH(p)} \chi(H(p)) \langle A \rangle^{-s} \| \lesssim t^{-s+\frac{1}{2}}, \quad t \to \infty,$$

for any $1/2 < s \le 1$ and $\chi \in \mathrm{C}_0^\infty(J;\mathbb{R})$

Idea

- Mourre's commutator method [Mourre 1981]
- Extension with a non self-adjoint conjugate operator, and a first commutator not controllable by the Hamiltonian [Georgescu, Gérard, Møller 2004]

Absence of eigenvalues for H(p), $p \neq 0$, $g \neq 0$

Theorem

Let $\mu>1/2$ and ν_1 , ν_2 be such that $0<\nu_1<\nu_2$. There exists $g_c=g_c(\mu,\nu_1,\nu_2)>0$ such that, for all $0<|g|\leq g_c$ and $p\in\mathbb{R}^d$, $|p|\in(\nu_1,\nu_2)$,

$$\sigma_{\mathrm{pp}}(H(p)) = \emptyset$$

Idea

- Mourre's commutator method [Georgescu, Gérard, Møller 2004]
- Fermi Golden Rule criterion ([Hunziker, Sigal 2000], [Faupin, Møller, Skibsted 2011])

$$\Pi_{\Omega}H_{I,0}\operatorname{Im}\left((H_{0}(p)-p^{2}-i0^{+})^{-1}\bar{\Pi}_{\Omega}\right)H_{I,0}\Pi_{\Omega}\geq \underline{c(p)}\Pi_{\Omega},$$

where Π_Ω is the projection onto the Fock vacuum and $\bar{\Pi}_\Omega:=1\!\!1-\Pi_\Omega$

Faupin

The model

Main results

Ingredients of the proof

Thank you!