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Linear friction

Linear Friction

Many classical systems – e.g. an electron in a metal, a particle in a viscous medium –
obey an effective equation of motion of the form

mq̈(t) = −γq̇(t)−∇V (q(t)) (1)

where

• q(t) ∈ Rd is the position of the system

• m is the mass of the system

• γ > 0 is the friction coefficient

• V is an external potential

In particular, V = 0 =⇒ q̇(t) converges exponentially fast to 0

Interaction with the environment

• (1) = effective equation of motion

• Friction force due to the energy lost by the system, transferred to the
environment

• More fundamental approach : model describing both the system and its
environment with total energy conserved



Spectral
analysis of
a model for

quantum
friction

Jérémy
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A classical Hamiltonian model

[Bruneau, De Bièvre, 2002]

Particle of position q(t) ∈ Rd (mass m = 1, no external potential) coupled to
independent scalar vibration fields ψ(x , y , t) ∈ R at each point x ∈ Rd (y ∈ R3

accounts for the position variable in the “propagation space” of the fields)

xq(t)

R3 R3 R3 R3

Equations of motion

∂2
t ψ(x , y , t)− c2∆yψ(x , y , t) = −ρ1(x − q(t))ρ2(y)

q̈(t) = −
∫
Rd+3

ρ1(x − q(t))ρ2(y)(∇xψ)(x , y , t) dxdy
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A classical Hamiltonian model II

Equations of motion

∂2
t ψ(x , y , t)− c2∆yψ(x , y , t) = −ρ1(x − q(t))ρ2(y)

q̈(t) = −
∫
Rd+3

ρ1(x − q(t))ρ2(y)(∇xψ)(x , y , t) dxdy

Should be compared with

Classical Nelson model

Classical particle coupled to a scalar wave field

∂2
t ψ(x , t)− c2∆xψ(x , t) = −ρ1(x − q(t))

q̈(t) = −
∫
Rd
ρ1(x − q(t))(∇xψ)(x , t) dx

Other related classical models

See [Komech, Spohn, 1998], [Komech, Kunze, Spohn, 1998]
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A classical Hamiltonian model III

Equations of motion

∂2
t ψ(x , y , t)− c2∆yψ(x , y , t) = −ρ1(x − q(t))ρ2(y)

q̈(t) = −
∫
Rd+3

ρ1(x − q(t))ρ2(y)(∇xψ)(x , y , t) dxdy

Assumptions

• ρ1 ∈ S(Rd ), positive, radial

• ρ2 ∈ S(R3), positive, radial and ρ̂2(k) 6= 0 ∀k ∈ R3

Results [Bruneau, De Bièvre 2002]

For a large class of initial data, and for c large enough, the particle stops
exponentially fast, ∣∣q(t)− q∞

∣∣ ≤ Ce−γ̃t , t ≥ 0
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Hilbert space

Hilbert space for the particle and the field

H = L2(Rd )⊗Fs(L2(Rd+3))

Symmetric Fock space

•
Fs(L2(Rd+3)) =

⊕
n≥0

F (n)
s

where
F (0)

s := C, F (n)
s := L2

s (R(d+3)n)

• Creation and annihilation operators denoted by a∗(ξ, k), a(ξ, k) (momentum
variables) satisfy the canonical commutation relations

[a(ξ, k), a∗(ξ′, k ′)] = δ(ξ − ξ′)δ(k − k ′),

[a#(ξ, k), a#(ξ′, k ′)] = 0
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Total Hamiltonian

Total Hamiltonian acting on H = L2(Rd)⊗Fs(L2(Rd+3))

H :=
−∆q

2
⊗ 1 + 1⊗ Hf + gHI ,

where

• Hamiltonian for the particle : −∆q/2

• Hamiltonian for the field :

Hf =

∫
Rd+3
|k|a∗(ξ, k)a(ξ, k)dξdk

• Interaction Hamiltonian :

HI :=

∫
Rd+3

(
e−iq·ξ|k|µρ̂1(|ξ|)ρ̂2(|k|)a∗(ξ, k)

+e iq·ξ|k|µρ̂1(|ξ|)ρ̂2(|k|)a(ξ, k)
)
dξdk

• g ∈ R : coupling constant

• µ ≥ −1/2 : infrared regularization

• ρ1 ∈ S(Rd ), ρ2 ∈ S(R3)
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Properties

Self-adjointness

For all g ∈ R and µ > −1, H is a self-adjoint operator with domain

D(H) = D(H0),

where H0 := H|g=0

Translation invariance

• Let

Pf =

∫
Rd+3

ξa∗(ξ, k)a(ξ, k)dξdk

Then
[(−i∇q ⊗ 1 + 1⊗ Pf )j ,H] = 0, j = 1, . . . , d

• Unitary transformation U : H →
∫⊕
Rd Hpdp, Hp = Fs(L2(Rd+3)), such that

UHU∗ =

∫ ⊕
Rd

H(p)dp
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The fiber Hamiltonian

Fiber Hamiltonian acting on Fs(L2(Rd+3))

• For all p ∈ Rd ,
H(p) := (p − Pf )2/2 + Hf + gHI ,0,

• Interaction Hamiltonian at fixed total momentum :

HI ,0 :=

∫
Rd+3
|k|µ

(
ρ̂1(|ξ|)ρ̂2(|k|)a∗(ξ, k) + ρ̂1(|ξ|)ρ̂2(|k|)a(ξ, k)

)
dξdk

• For all p ∈ Rd , g ∈ R and µ > −1, H(p) is a self-adjoint operator with domain

D(H(p)) = D(Hf ) ∩ D(P2
f )

Spectrum of the non-interacting Hamiltonian

σ(H0(p)) = σess(H0(p)) = σac(H0(p)) = [0,∞),

σpp(H0(p)) = {p2/2}, σsc(H0(p)) = ∅

Moreover p2/2 is a simple eigenvalue associated to the vacuum Ω ∈ Fs(L2(Rd+3))
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Theorem [De Bièvre, Faupin, Schubnel]

i) Suppose that µ > −1. For all g ∈ R, there exists Eg ≤ 0 such that

σ(H(p)) = σess(H(p)) = [Eg ,∞),

for all p ∈ Rd . In particular, Eg = inf σ(H(p)) does not depend on p

ii) Suppose that µ > −1/2. There exists gc = gc (µ) > 0 such that, for all
0 ≤ |g | ≤ gc ,

H(0) admits a unique ground state,

namely Eg is a simple eigenvalue of H(0)

ii’) Suppose that −1 < µ ≤ −1/2 and that ρ̂1(0) 6= 0, ρ̂2(0) 6= 0. For all p ∈ Rd

and g ∈ R,
H(p) does not have a ground state

iii) Suppose that µ > 1/2. There exists gc = gc (µ) > 0 such that, for all
0 ≤ |g | ≤ gc ,

σpp(H(0)) = {Eg}, σac(H(0)) = [Eg ,∞), σsc(H(0)) = ∅.

Suppose in addition that ρ̂1 and ρ̂2 do not vanish and let ν1, ν2 be such that
0 < ν1 < ν2. Then there exists gc = gc (µ, ν1, ν2) > 0 such that, for all
0 < |g | ≤ gc and p ∈ Rd , |p| ∈ (ν1, ν2),

σpp(H(p)) = ∅, σac(H(p)) = [Eg ,∞), σsc(H(p)) = ∅.

In particular, for |p| ∈ (ν1, ν2), H(p) does not have a ground state and the
unperturbed eigenvalue p2/2 disappears as the coupling is turned on
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g = 0 g 6= 0 |p||p|

σ(H(p)) σ(H(p))

Figure: Grey : absolutely continuous spectrum
If the coupling constant g = 0, inf σ(H0(p)) = 0 for all p ; p2/2 is a simple
eigenvalue of H(p)
If the coupling constant g 6= 0, inf σ(H(p)) = Eg < 0 for all p ; Eg is an eigenvalue if
and only if p = 0 ; If p 6= 0, the spectrum is purely absolutely continuous
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Location of the spectrum

Theorem

Let µ > −1 and g ∈ R. There exists Eg ≤ 0 such that

σ(H(p)) = [Eg ,∞),

for all p ∈ Rd

Idea

• Localization techniques ([Derezinski, Gérard, 1998])

• General idea : To any state ϕ with total momentum p, sufficiently localized in
x-space, we can add a one-particle state a∗(f )Ω, with f localized near infinity in
x-space, such that a∗(f )Ω has a momentum close to ξ = −p and an energy
close to |k| = 0. Then a∗(f )ϕ (which can be defined in a proper sense) has an
energy arbitrary close to ϕ and a momentum arbitrary close to 0.
=⇒ inf σ(H(0)) ≤ inf σ(H(p))

• Difficulty : estimate localization errors, in particular control the number of
particles in the minimizing sequence
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Existence of a ground state for H(0)

Theorem

Let µ > −1/2. There is gc > 0 such that for all |g | ≤ gc , H(0) has a ground state

Idea

• Spectral renormalization group ([Bach, Fröhlich, Sigal 1998])

• Iterative version introduced in ([Ballesteros, Faupin, Fröhlich, Schubnel 2015])

• Important new feature : control first and second derivatives of Wick monomial
kernels. Use rotation invariance

Remark

• [Gérard 2000], [Griesemer, Lieb, Loss 2001] : compactness argument (not
satisfied here)

• [Pizzo 2003] : iterative perturbation theory (not applicable here)
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Infrared problem : absence of ground state
for µ ≤ −1/2

Theorem

Suppose that −1 < µ ≤ −1/2 and that ρ̂1(0) 6= 0, ρ̂2(0) 6= 0. For all p ∈ Rd and
g ∈ R,

H(p) does not have a ground state

Idea

• Argument by contradiction

• Use the pull-through formula

• Adapt a simple argument of [Derezinski, Gérard 2004]
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Absolutely continuous spectrum, Local
decay

Theorem

Suppose that µ > 1/2. There exists gc > 0 such that, for all |g | ≤ gc and p ∈ Rd ,
the following holds : Let J ⊂ [Eg ,∞) be a compact interval such that
σpp(H(p)) ∩ J = ∅. Then

sup
z∈S
‖〈A〉−s(H(p)− z)−1〈A〉−s‖ <∞,

for any 1/2 < s ≤ 1, with A = dΓ(ik · ∇k/|k|+ h.c.), 〈A〉 = (1 + A∗A)1/2 and

S = {z ∈ C,Re(z) ∈ J, 0 < |Im(z)| ≤ 1}.

In particular, the spectrum of H(p) in J is purely absolutely continuous. Moreover,∥∥〈A〉−se−itH(p)χ(H(p))〈A〉−s
∥∥ . t−s+ 1

2 , t →∞,

for any 1/2 < s ≤ 1 and χ ∈ C∞0 (J;R)

Idea

• Mourre’s commutator method [Mourre 1981]

• Extension with a non self-adjoint conjugate operator, and a first commutator
not controllable by the Hamiltonian [Georgescu, Gérard, Møller 2004]
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Absence of eigenvalues for H(p), p 6= 0,
g 6= 0

Theorem

Let µ > 1/2 and ν1, ν2 be such that 0 < ν1 < ν2. There exists gc = gc (µ, ν1, ν2) > 0
such that, for all 0 < |g | ≤ gc and p ∈ Rd , |p| ∈ (ν1, ν2),

σpp(H(p)) = ∅

Idea

• Mourre’s commutator method [Georgescu, Gérard, Møller 2004]

• Fermi Golden Rule criterion ([Hunziker, Sigal 2000], [Faupin, Møller, Skibsted
2011])

ΠΩHI ,0Im
(
(H0(p)− p2 − i0+)−1Π̄Ω

)
HI ,0ΠΩ ≥ c(p)ΠΩ,

where ΠΩ is the projection onto the Fock vacuum and Π̄Ω := 1− ΠΩ
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Thank you !
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