A solvable quantum field theory in 4 dimensions

Harald Grosse

Faculty of Physics, University of Vienna

(based on joint work with Raimar Wulkenhaar, arXiv: 1205.0465, 1306.2816, 1402.1041, 1406.7755 & 1505.05161)

Introduction

Prove that a non-trivial toy model for a quantum field theory on \mathbb{R}^4 exists and satisfies [O-S, Wightman].

- Φ_4^4 is renormalizable, $\Phi_{4+\epsilon}^4$ trivial
- Φ₄⁴ on Moyal space is nonrenormalizable due to IR/UV mixing
- $(\Phi_4^4)_{modified}$ on Moyal space is renormalizable (HG+R Wulkenhaar, 2004)
- ullet function is perturbative zero (Rivasseau et al, 2006)
- Ward identities allow to decouple SD equs.
- → Can we construct it?

$$S[\phi] = \int_{\mathbb{R}^4} dx \left(\frac{1}{2} \phi \left(-\Delta + \mu^2 \right) \phi + \frac{\lambda}{4} \phi \phi \phi \right) (x)$$

$$S[\phi] = \int_{\mathbb{R}^4} d\mathbf{x} \left(\frac{1}{2} \phi \left(-\Delta + \Omega^2 (\mathbf{x})^2 + \mu^2 \right) \phi + \frac{\lambda}{4} \phi \phi \phi \right) (\mathbf{x})$$

$$S[\phi] = \int_{\mathbb{R}^4} dx \left(\frac{1}{2} \phi \star \left(-\Delta + \Omega^2 (2\Theta^{-1} x)^2 + \mu^2 \right) \phi + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi \right) (x)$$

with Moyal product
$$(f \star g)(x) = \int_{\mathbb{R}^4 \times \mathbb{R}^4} \frac{dy \ dk}{(2\pi)^4} f(x + \frac{1}{2}\Theta k) \ g(x + y) \ e^{i\langle k, y \rangle}$$

WI.SD

$$S[\phi] = \int_{\mathbb{R}^4} dx \left(\frac{Z_{\Lambda}}{2} \phi \star \left(-\Delta + \Omega^2 (2\Theta^{-1} x)^2 + \mu_{bare}^2 \right) \phi + \frac{\lambda Z_{\Lambda}^2}{4} \phi \star \phi \star \phi \star \phi \right) (x)$$

with Moyal product
$$(f \star g)(x) = \int_{\mathbb{R}^4 \times \mathbb{R}^4} \frac{dy \ dk}{(2\pi)^4} f(x + \frac{1}{2}\Theta k) \ g(x + y) \ e^{i\langle k, y \rangle}$$

WI.SD

Regularisation of $\lambda \phi_4^4$ on noncommutative space

$$S[\phi] = \int_{\mathbb{R}^4} d\mathbf{x} \left(\frac{Z_{\Lambda}}{2} \phi \star \left(-\Delta + \Omega^2 (2\Theta^{-1} \mathbf{x})^2 + \mu_{bare}^2 \right) \phi + \frac{\lambda Z_{\Lambda}^2}{4} \phi \star \phi \star \phi \star \phi \right) (\mathbf{x})$$

with Moyal product
$$(f \star g)(x) = \int_{\mathbb{R}^4 \times \mathbb{R}^4} \frac{dy \ dk}{(2\pi)^4} f(x + \frac{1}{2}\Theta k) \ g(x + y) \ e^{i\langle k, y \rangle}$$

matrix basis $f_{\underline{m}\underline{n}}(x) = f_{m_1 n_1}(x^0, x^1) f_{m_2 n_2}(x^3, x^4)$

$$f_{mn}(y^0, y^1) = 2(-1)^m \sqrt{\frac{m!}{n!}} \left(\sqrt{\frac{2}{\theta}}y\right)^{n-m} L_m^{n-m} \left(\frac{2|y|^2}{\theta}\right) e^{-\frac{|y|^2}{\theta}}$$

due to $f_{\underline{mn}} \star f_{\underline{kl}} = \delta_{\underline{nk}} f_{\underline{ml}}$ and $\int dx f_{\underline{mn}}(x) = V \delta_{\underline{mn}}$

WI.SD

$$S[\phi] = \int_{\mathbb{R}^4} d\mathbf{x} \left(\frac{Z_{\Lambda}}{2} \phi \star \left(-\Delta + \Omega^2 (2\Theta^{-1} \mathbf{x})^2 + \mu_{bare}^2 \right) \phi + \frac{\lambda Z_{\Lambda}^2}{4} \phi \star \phi \star \phi \star \phi \right) (\mathbf{x})$$

with Moyal product
$$(f\star g)(x)=\int_{\mathbb{R}^4\times\mathbb{R}^4}\frac{dy\ dk}{(2\pi)^4}f(x+\frac{1}{2}\Theta k)\ g(x+y)\ e^{\mathrm{i}\langle k,y\rangle}$$
 takes at $\Omega=1$ in $\int_{\mathbb{R}^4\times\mathbb{R}^4}\frac{dy\ dk}{(2\pi)^4}f(x+\frac{1}{2}\Theta k)\ g(x+y)\ e^{\mathrm{i}\langle k,y\rangle}$

$$f_{mn}(y^0, y^1) = 2(-1)^m \sqrt{\frac{m!}{n!}} \left(\sqrt{\frac{2}{\theta}}y\right)^{n-m} L_m^{n-m} \left(\frac{2|y|^2}{\theta}\right) e^{-\frac{|y|^2}{\theta}}$$

$$f = \int_{\mathbb{R}^{n}} f \operatorname{and} \left(\operatorname{dyf} \left(\mathbf{y} \right) \right) = \int_{\mathbb{R}^{n}} \left(\operatorname{dyf} \left(\mathbf{y} \right) \right) = \int_{$$

due to $f_{\underline{m}\underline{n}} \star f_{\underline{k}\underline{l}} = \delta_{\underline{n}\underline{k}} f_{\underline{m}\underline{l}}$ and $\int dx f_{\underline{m}\underline{n}}(x) = V \delta_{\underline{m}\underline{n}}$ the form

• $V = \left(\frac{\theta}{4}\right)^2$ is for $\Omega = 1$ the volume of the nc manifold.

Euclidean quantum field theory

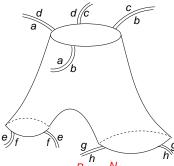
- action $S[\Phi] = V \operatorname{tr}(E\Phi^2 + P[\Phi])$ for unbounded positive selfadjoint operator E with compact resolvent, and $P[\Phi]$ a polynomial
- partition function $\mathcal{Z}[J] = \int \mathcal{D}[\Phi] \exp(-S[\Phi] + V \operatorname{tr}(\Phi J))$
- For $P[\Phi] = \frac{\mathrm{i}}{6}\Phi^3$ this is the Kontsevich model which computes the intersection theory on the moduli space of complex curves. We choose $P[\Phi] = \frac{\lambda}{4}\Phi^4$.
- Perturbative expansion $e^{-V \operatorname{tr}(P[\Phi])} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (V \operatorname{tr}(P[\Phi]))^n$ leads to ribbon graphs. They encode genus-g Riemann surface with B boundary components.
- We avoid the expansion, but keep the topological structure:

Topological expansion

• Choosing $H = diag(H_a)$, matrix index conserved along every strand.

WI.SD

• The kth boundary component carries a cycle $J_{p_1...p_{N_k}}^{N_k} := \prod_{j=1}^{N_k} J_{p_j p_{j+1}}$ of N_k external sources, $N_k + 1 \equiv 1$.



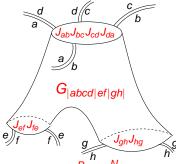
- Expand $\log \mathcal{Z}[J] = \sum \frac{1}{S} V^{2-B} G_{|p_1^1 \dots p_{N_1}^1| \dots |p_1^B \dots p_{N_R}^B|} \prod_{\beta=1}^B J_{p_1^\beta \dots p_{N_L}^\beta}^{N_\beta}$ according to the cycle structure.
- QFT of matrix models determines the weights of Riemann surfaces with decorated boundary components compatible with **(1)** gluing (of fringes)
 - covariance (under $\Phi \mapsto U^* \Phi U$, which is not a symmetry!)

Topological expansion

• Choosing $H = diag(H_a)$, matrix index conserved along every strand.

WI.SD

• The kth boundary component carries a cycle $J_{p_1...p_{N_k}}^{N_k} := \prod_{j=1}^{N_k} J_{p_j p_{j+1}}$ of N_k external sources, $N_k + 1 \equiv 1$.



- Expand $\log \mathcal{Z}[J] = \sum \frac{1}{S} V^{2-B} G_{|p_1^1...p_{N_1}^1|...|p_1^B...p_{N_D}^B|} \prod_{\beta=1}^B J_{p_4^\beta...p_{N_D}^\beta}^{N_\beta}$ according to the cycle structure.
- QFT of matrix models determines the weights of Riemann surfaces with decorated boundary components compatible with **(1)** gluing (of fringes)
 - covariance (under $\Phi \mapsto U^* \Phi U$, which is not a symmetry!)

Ward identity

Matrix Base

$$H_{nm} = Z_{\Lambda}(\frac{(n+m)}{V} + \frac{\mu_{bare}^2}{2})$$

$$S[\Phi] = \sum_{n,m} rac{1}{2} \Phi_{nm} H_{nm} \Phi_{mn} + rac{\lambda}{4} \sum_{nmpq} Z_{\Lambda}^2 \Phi_{nm} \Phi_{mp} \Phi_{pq} \Phi_{qn}$$

inner automorphism $\phi \mapsto U^* \Phi U$ of M_{Λ} , infinitesimally, not a symmetry of the action, but invariance of measure

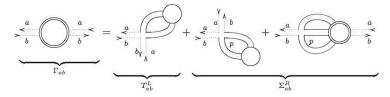
Interpretation

Insertion of special vertex $V_{ab}^{ins} := \sum_{n} (H_{an} - H_{nb}) \phi_{bn} \phi_{na}$

into external face equals the difference between the exchanges of external sources $J_{nb}\mapsto J_{na}$ and $J_{an}\mapsto J_{bn}$

The dots stand for the remaining face indices.

SD equation 2



- vertex is $Z_{\Lambda}^2 \lambda$, connected two-point function is G_{ab} : first graph equals $Z_{\Lambda}^2 \lambda \sum_{q} G_{aq}$
- open p-face in Σ^R and compare with insertion into connected two-point function

$$G_{[ap]b}^{ins} = \left(\begin{array}{c} a \\ b \\ \end{array} \right) \left(\begin{array}{c} a$$

gives for 2 point function:

$$Z_{\Lambda}^{2}\lambda\sum G_{aq}-Z_{\Lambda}\lambda\sum (G_{ab})^{-1}\frac{G_{bp}-G_{ba}}{|p|-|a|}=H_{ab}-G_{ab}^{-1}$$
.

Schwinger-Dyson equations (for $S_{int}[\Phi] = \frac{\lambda}{4} tr(\Phi^4)$)

In a scaling limit $V \to \infty$ and $\frac{1}{\sqrt{V}} \sum_{p \in I}$ finite, we have:

1. A closed non-linear equation for $G_{|ab|}$

$$G_{|ab|} = \frac{1}{E_a + E_b} - \frac{\lambda}{(E_a + E_b)} \frac{1}{V} \sum_{p \in I} \left(G_{|ab|} G_{|ap|} - \frac{G_{|pb|} - G_{|ab|}}{E_p - E_a} \right)$$

2. For $N \ge 4$ a universal algebraic recursion formula

$$\begin{split} &G_{|b_0b_1...b_{N-1}|}\\ &=(-\lambda)\sum_{l=1}^{\frac{N-2}{2}}\frac{G_{|b_0b_1...b_{2l-1}|}G_{|b_2lb_{2l+1}...b_{N-1}|}-G_{|b_2lb_1...b_{2l-1}|}G_{|b_0b_{2l+1}...b_{N-1}|}}{(E_{b_0}-E_{b_{2l}})(E_{b_1}-E_{b_{N-1}})} \end{split}$$

- scaling limit corresponds to restriction to genus g = 0
- similar formulae for B > 2
- no index summation in $G_{|abcd|} \Rightarrow \beta$ -function zero!

Summary

Graphical realisation

Φ⁴ on Moyal space

$$G_{b_0b_1b_2b_3} = (-\lambda) \frac{G_{b_0b_1}G_{b_2b_3} - G_{b_0b_3}G_{b_2b_1}}{(b_0 - b_2)(b_1 - b_3)} = -\lambda \left\{ + \left(-\lambda \right) + \left($$

leads to non-crossing chord diagrams; these are counted by the Catalan number $C_{\frac{N}{2}} = \frac{N!}{(\frac{N}{2}+1)!\frac{N}{2}!}$

$$b_i \xrightarrow{b_j} = \frac{1}{b_i - b_i}$$

leads to rooted trees connecting the even or odd vertices, intersecting the chords only at vertices

Back to $\lambda \Phi_4^4$ on Moyal space

Φ₄ on Moyal space

- Infinite volume limit (i.e. θ → ∞) turns discrete matrix indices into continuous variables a, b, · · · ∈ R₊ and sums into integrals
- Need energy cutoff $a, b, \dots \in [0, \Lambda^2]$ and normalisation of lowest Taylor terms of two-point function $G_{|nm|} \mapsto G_{ab}$
- Carleman-type singular integral equation for G_{ab}-G_{a0}

Theorem (2012/13) (for $\lambda < 0$, using $G_{b0} = G_{0b}$)

Let
$$\mathcal{H}_{a}^{\Lambda}(f) = \frac{1}{\pi} \mathcal{P} \int_{0}^{\Lambda^{2}} \frac{f(p) \, dp}{p-a}$$
 be the finite Hilbert transform.
$$G_{ab} = \frac{\sin(\tau_{b}(a))}{|\lambda| \pi a} e^{\operatorname{sign}(\lambda)(\mathcal{H}_{0}^{\Lambda}[\tau_{0}(\bullet)] - \mathcal{H}_{a}^{\Lambda}[\tau_{b}(\bullet)])}$$

where
$$\tau_b(a) := \arctan_{[0,\pi]} \left(\frac{|\lambda| \pi a}{b + \frac{1 + \lambda \pi a \mathcal{H}_a^{\wedge}[G_{\bullet 0}]}{G_{a0}}} \right)$$
 and G_{a0} solution of

$$G_{b0} = G_{0b} = \frac{1}{1+b} \exp\left(-\lambda \int_{0}^{b} dt \int_{0}^{\Lambda^{2}} \frac{dp}{(\lambda \pi p)^{2} + (t + \frac{1 + \lambda \pi p \mathcal{H}_{p}^{\Lambda}[G_{\bullet 0}]}{G_{p0}})^{2}}\right)^{2}$$

Discussion

Together with explicit (but complicated for $G_{ab|cd}$, $G_{ab|cd|ef}$, ...) formulae for higher correlation functions, we have exact solution of $\lambda \phi_4^4$ on extreme Moyal space in terms of

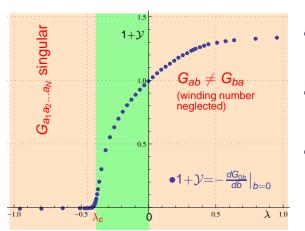
$$G_{b0} = G_{0b} = \frac{1}{1+b} \exp\left(-\lambda \int_0^b dt \int_0^{\Lambda^2} \frac{dp}{(\lambda \pi p)^2 + \left(t + \frac{1 + \lambda \pi p \mathcal{H}_p^{\Lambda}[G_{\bullet 0}]}{G_{p0}}\right)^2}\right)$$

Possible treatments

- perturbative solution: reproduces all Feynman graphs, generates polylogarithms and ζ -functions
- iterative solution on computer: nicely convergent, find interesting phase structure
- 3 rigorous existence proof of a solution
- work in progress: (guess); should give uniqueness

Computer simulation: evidence for phase transitions

piecewise linear approximation of G_{0b} , G_{ab} for $\Lambda^2=10^7$ and 2000 sample points. Consider $1+y:=-\frac{d\vec{G}_{0b}}{db}\Big|_{b=0}$



- \bullet $(1+\mathcal{Y})'(\lambda)$ discontinuous at $\lambda_c = -0.39$
- order parameter $b_{\lambda} = \sup\{b : G_{0b} = 1\}$ non-zero for $\lambda < \lambda_c$
- A key property for Schwinger functions is realised in $[\lambda_c, 0]$, outside?

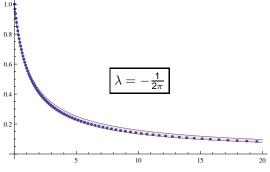
Fixed point theorem

Theorem (2015)

Φ₄ on Moyal space

Let $-\frac{1}{6} \le \lambda \le 0$. Then the equation has a C_0^1 -solution

the equation has a
$$C_0$$
-solution $\frac{1}{(1+b)^{1-|\lambda|}} \leq G_{0b} \leq \frac{1}{(1+b)^{1-\frac{|\lambda|}{1-2|\lambda|}}}$



Proof via Schauder fixed point theorem.

This involves continuity and compactness of a certain operator (in norm topology)

Summary

An analogy

2D Ising model	4D nc ϕ^4 -theory
temperature T , $K = \frac{J}{k_B T}$	frequency Ω
Kramers-Wannier duality	Langmann-Szabo duality
$sinh(2K) sinh(2K^*) = 1$	$\Omega\Omega^*=1$
solvable at $K = K^*$	solvable at $\Omega = \Omega^*$
scale-invariant	almost scale-invariant
CFT minimal model ($m=3$)	matrix model
operator product expansion	Schwinger-Dyson equation
Virasoro constraints	Ward identities
critical exponents	critical exponents
$G_{n0}^{\sigma\sigma}\propto rac{1}{n^{d-2+\eta}}, \qquad \qquad \eta=rac{1}{4}$	$G_{n0}^{\phi\phi} \propto rac{1}{n^{2+\eta}}, \qquad \lambda \in \left]\lambda_c, 0 ight]$
Virasoro algebra, CFT,	???
subfactors,	• • •

Relativistic and Euclidean quantum field theory

- We define a QFT by Wightman distributions $W_N(x_1,...,x_N) = W_N(x_1-x_2,...,x_{N-1}-x_N)$
- Theorem: The W_N are boundary values of holomorphic functions (on permuted extended forward tube ⊂ C^{4(N-1)})
 Euclidean points (minus diagonals) defines Schwinger functions
- Schwinger functions inherit properties such as real analyticity,
 Euclidean invariance and complete symmetry
- Hence, moments of probability distributions provide candidate Schwinger functions (link to statistical physics)

Theorem (Osterwalder-Schrader, 1974)

One additional requirement, reflection positivity, leads back to Wightman theory

From matrix model to Schwinger functions on \mathbb{R}^4

reverting harmonic oscillator basis , $1+y:=-\frac{dG_{0b}}{db}\Big|_{b=0}$...

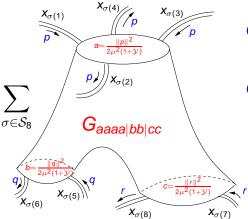
Theorem (2013): connected Schwinger functions

$$\begin{split} & = \frac{1}{64\pi^{2}_{N_{1}+\ldots+N_{B}=N}} \sum_{\sigma \in \mathcal{S}_{N}} \left(\prod_{\beta=1}^{B} \frac{4^{N_{\beta}}}{N_{\beta}} \int_{\mathbb{R}^{4}} \frac{d^{4}p_{\beta}}{4\pi^{2}\mu^{4}} e^{i\left\langle \frac{p_{\beta}}{\mu}, \sum_{i=1}^{N_{\beta}} (-1)^{i-1}\mu x_{\sigma(N_{1}+\ldots+N_{\beta-1}+i)} \right\rangle \right) \\ & \times G_{\underbrace{\frac{\|p_{1}\|^{2}}{2\mu^{2}(1+\mathcal{Y})}, \cdots, \frac{\|p_{1}\|^{2}}{2\mu^{2}(1+\mathcal{Y})}}_{N_{1}} \left| ... \left| \frac{\|p_{\beta}\|^{2}}{2\mu^{2}(1+\mathcal{Y})}, \cdots, \frac{\|p_{B}\|^{2}}{2\mu^{2}(1+\mathcal{Y})} \right. \end{split}$$

Hidden noncommutativity: have internal interaction of matrices; commutative subsector propagates to outside world

- Schwinger functions are symmetric and invariant under full Euclidean group (completely unexpected for NCQFT!)
- remains: reflection positivity
- finally: Is it non-trivial?

Connected (4+2+2)-point function



- individual Euclidean symmetry in every boundary component (no clustering)
- particle scattering without momentum exchange
- in 4D a sign of triviality (mind assumptions!)
- familiar in 2D models with factorising S-matrix
- a consequence of integrability

Is there a precise link between exact solution of our 4D model and traditional integrability known from 2D?

Osterwalder-Schrader reflection positivity

Proposition (2013)

 $S(x_1, x_2)$ is reflection positive iff $a \mapsto G_{aa}$ is a Stieltjes function,

$$G_{aa} = \int_0^\infty \frac{d(\rho(t))}{a+t}$$
, ρ – positive measure.

Excluded for any $\lambda > 0$ (unless rescued by winding number)

- naïve anomalous dimension η positive for $\lambda > 0$,
- renormalisation oversubtracts: η_{ren} , λ of opposite sign
- p-space 2-point function $\frac{1}{(p^2+m^2)^{1-\eta/2}}$ Positivity and convergence contradict each other!
- Need (analytical?) continuation between
 - one regime where existence can be proved and
 - another regime where positivity holds.

Reflection positivity simplifies the problem

If G_{x0} is Stieltjes, then Hilbert transform can be avoided:

$$\frac{G_{xy}}{G_{x0}} = \exp\left(-\frac{1}{\pi}\int_{1}^{\infty}\frac{dt}{t+x} \arctan\left(\frac{y \operatorname{Im}(\mathbf{G}_{-(t+i\epsilon),0})}{1 - \lambda t \int_{0}^{\infty} ds \frac{G_{s0}}{t+s} + y \operatorname{Re}(\mathbf{G}_{-(t+i\epsilon),0})}\right)\right)$$

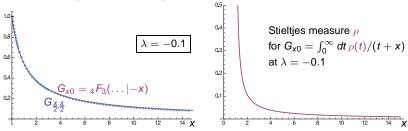
Which class of functions has desired analyticity+holomorphicity and manageable integral transforms?

hypergeometric functions $G_{x0} = {}_{n}F_{n-1} \left(\left. \begin{smallmatrix} a,b_1,\dots b_{n-1} \\ c_1,\dots,c_{n-1} \end{smallmatrix} \right| - x \right)$ if $a \in [0,1]$ and $c_i > b_i > a$

- holomorphicity at y > 0: determine a, b_i, c_i by $G_{0y}^{(k)} = G_{y0}^{(k)}$
- find: $a = 1 + \frac{1}{\pi} \arcsin(\lambda \pi)$, $\prod_{i=1}^{n} \frac{c_i 1}{b_i 1} = \frac{\arcsin(\lambda \pi)}{\lambda \pi}$
- critical coupling constant is $\lambda_c = -\frac{1}{\pi} = -0.3183...$

Källén-Lehmann spectrum

- Numerics makes it completely clear (but doesn't prove) that G_{x0} is Stieltjes
- reflection positivity equivalent to G_{xx} a Stieltjes function
- the shape makes this plausible:



- measure for G_{x0} has mass gap [0, 1[, but no further gap (remnant of UV/IR-mixing)
- absence of the second gap (usually]1,4[) circumvents triviality theorems

Summary

- **1** $\lambda \phi_4^4$ on nc Moyal space is, at infinite noncommutativity, exactly solvable in terms of a fixed point problem
 - theory defined by quantum equations of motion (= Schwinger-Dyson equations)
 - existence proved for $-\frac{1}{6} < \lambda \le 0$
 - phase transitions and critical phenomena
- $\ensuremath{ \ \, }$ Projection to Schwinger functions for scalar field on \mathbb{R}^4
 - = hidden noncommutativity
 - full Euclidean symmetry (completely unexpected)
 - no momentum exchange (close to triviality), possibly a consequence of integrability
 - numerical approach with tiny error: leaves no doubt that Schwinger 2-point function is reflection positive for $-\frac{1}{\pi}<\lambda\leq 0$

Summary

- $\lambda \phi_4^4$ on nc Moyal space is, at infinite noncommutativity, exactly solvable in terms of a fixed point problem
 - theory defined by quantum equations of motion (= Schwinger-Dyson equations)
 - existence proved for $-\frac{1}{6} < \lambda \le 0$
 - phase transitions and critical phenomena
- $oldsymbol{oldsymbol{arphi}}$ Projection to Schwinger functions for scalar field on \mathbb{R}^4
 - = hidden noncommutativity
 - full Euclidean symmetry (completely unexpected)
 - no momentum exchange (close to triviality), possibly a consequence of integrability
 - numerical approach with tiny error: leaves no doubt that Schwinger 2-point function is reflection positive for $-\frac{1}{\pi} < \lambda \le 0$
- ready to embark on higher Schwinger functions