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�A direct approach to the critical points
of the infrared problem in QED�

Status of the infrared problem...

A. How may asymptotic charged �elds be con-
structed?

B. What can be said on - their dynamics
- their algebraic relations with the asymptotic
electromagnetic �eld?

Recall: Construction af massless asymptotic
�elds done by Buchholz (in the vacuum sector)
But charged �elds cannot be constructed a la
LSZ (Haag-Ruelle)
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Absence of a gap covered by Dybalski, but
Basic problem: the absence of 1 particle shell
p2 = m2,
a consequence of Gauss' law [Buchholz]

A recent advance on asymptotic charged states
in models of QED:

Chen, Frohlich, Pizzo: Non-relativistic QED
for one charged particle
- analysis based on the construction of pure
particle states
- main di�culty: energy-momentum relation
for charged particles
(bottom of energy spectrum, fundamental be-
cause photon emission depends on the asymp-
totic velocity).
However: for a relativistic theory, the relativis-
tic relation holds automatically [Borchers-Buchholz]
- modi�ed LSZ formulas are given after and
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in terms of that construction (for one charged
particle)

We explore the possibility of a direct Scattering
Theory approach.

Failure of LSZ construction already for Coulomb
scattering
Solved by Dollard asymptotic dynamics
Do Dollard's ideas really apply in �eld theory
models?
Kulish-Faddeev-Rohrlich approach
Dollard (Zwanziger) de�ne asymptotic �elds?
Dollard asymptotic dynamics is not a group!

In conclusion, the basic questions about the
Dollard approach are:
- Is Dollard scattering theory compatible with
space-time covariant asymptotic �elds ?
- Can Kulish-Faddeev-Rohrlich be confronted
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with a Heisenberg formulation of scattering,
asymptotic �elds and asymptotic condition?

Program: obtain information from:

1. A general analysis of �Dollard Scattering
Theories�

2. Their application in models of QED

1. Dollard Scattering Theories:
The problem: exhibit the implications on asymp-
totic �elds and dynamics of Dollard approach:

U(t)ψ ∼ UD(t)ϕ for t→ ±∞ ,

with UD(t) a (strongly continuous) family of
unitary operators (not a group), ψ in a �scat-
tering subspace� ofH, ϕ inH (or in a �reference
scattering space�), i.e.
U(−t)UD(t) converges strongly , t→ ±∞
de�ning isometries Ω±.

The results:
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- Existence of Moller operators implies exis-
tence of (strongly continuous) groups, U±(s),
asymptotic on the right to the Dollard dynam-
ics,

UD(t + s) ∼ UD(t)U±(s) for t→ ±∞
U±(s) are unique and given by

U±(s) = lim
t→±∞

UD(t)−1UD(t + s)

- The Møller operators interpolate between U
and U±

U(s) Ω± = Ω±U±(s)

- Even if the Dollard Hamiltonian
i d/dt UD(t) = HD(t)UD(t) ,

is �asymptotic� to a free Hamiltonian for t →
±∞, U± needs not to be the free. In this case
the free dynamics is asymptotic �on the left�,
a notion not implying uniqueness. (However,
this implies σ(H±) ⊂ σ(H0))
- Heisenberg asymptotic variables are de�ned
by

Aout/in ≡ Ω±AΩ∗±
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on the scattering subspace
- By the interpolation formulas

H = H±(asymptotic variables)

- Dollard corrections to LSZ formulas:
Aout/in ≡ lim

t→±∞
U(t)∗ (UD(t)AU ∗

D(t))U(t)

- The same results can be reproduced for an
adiabatic formulation of scattering, with some
care on �mass renormalization terms�

Conclusions on Dollard Scattering Theories:
- Distinction between �Dollard dynamics� and
�asymptotic dynamics�. The group property is
lost only at a �subleading� level
- Recovery of the �usual� asymptotic variables
and dynamics
- Reinterpretation of Dollard dynamics as cor-
rections to LSZ procedures
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- Possibly, with consequences on the dynamics
of asymptotic �elds

Notice: a non-free asymptotic dynamics is es-
sential for an application to models with vac-
uum and without (charged particle) states of
de�nite mass

2. Dollard's approach to QED:
The problem: Control the application of the
above Dollard strategy in relevant �eld theory
models of QED.
Our model, with �heavy classical charged par-
ticles�
- is covariant under space-time translations
- has a non-trivial, non-soluble, dynamics of
charged particles
- has a realistic (velocity dependent) photon in-
teraction, reproducing the asymptotic coherent
states of FCP
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- includes Coulomb interactions
- allows for a �relativistic� particle dynamics,
avoiding the necessity of constraints on veloci-
ties
The di�culties of the energy-momentum dis-
persion problem are avoided by neglecting pho-
ton recoil
Photon recoil whould give corrections to tra-
jectories of the same (logarithmic) asymptotic
form as the Coulomb e�ects.
The model:
In L2(Γ) × F , Γ the phase space, F the Fock
space of free photons
Classical eq. of motion for qi, pi, with Coulomb
interactions; the electromagnetic �eld interacts
with their current.
Koopman formulation of the dynamics, with

H = h0 + hI +H0 +HI + ∆E

h0 =
∑
i

vi Pi , hI(q,Q) =
∂V

∂qi
Qi
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Pi ≡ −i ∂
∂qi

, Qi ≡ i
∂

∂pi

v(p) = p/m or v(p) =
p

(p2 +m2)1/2

V (q) =
∑

j 6=i

eiej
8π(|qi − qj|2 + a2)1/2

HI(a, a
∗, q, p) =

1

(2π)3/2

∑

i, λ

ei

∫
d3k√
2|k| η(k) [a(k, λ) ε(λ) v(pi) e

ikqi + h.c.]

∆E(p) =
∑
i

e2
i δE(pi)

Adiabatic formulation: ei → ei e
−ε|t|

Dollard Hamiltonians
H = h0 + hDI (t) +H0 +HD

I (t) + ∆E(p)

hDI = ha=0
I (q = vt,Q = Q̇t)

HD
I = HI(a, a

∗, v(p)t, p)
Explicit Dollard dynamics UD(t) = uD(t)UD(t)

Results:
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Dynamics U(t) = u(t) U(t)({qs})
Particle Møller operators

ω± = s− limu(t)∗uD(t)

Adiabatic Møller operators
Ω± = s− lim

ε→0
lim

t→±∞
U(t)ε ∗UD ε(t) = W± ω±

W± = lim
ε→0

W ε
0±({qs}(q, p))W ε ∗

D±(p±(q, p))

well de�ned on ω±L2(Γ)×F ≡ H±

W ε
D±(p)) implementing shifts which converge

to
αas(a

∗(k, λ)) = a∗(k, λ) +
∑
i

JD(k, λ, pi)

JD(k, λ, p) =
e

(2π)3/2
ελ(k) η(k) v(p)

(2|k|)1/2(|k| − v(p)k)

Asymptotic dynamics
U±(s) ≡ lim

ε→0
lim

t→±∞
U ε ∗
D (t)U ε

D(t + s)

U+(s) = U−(s) = u0(s)αas(U0(s))

Interpolation formulas
H Ω± = Ω±Has , Has = h0 + αas(H0)
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The same for the generators of space transla-
tions, with

Pas = −i
∑
n

∂/∂qn + αas(Pph)

From Møller operators and interpolation for-
mula, on H±:
Heisenberg asymptotic canonical variables
aout/in(k) ≡ Ω± a(k) Ω∗± , qout/in , pout/in

Expression for the Hamiltonian in terms of asymp-
totic variables

H = Ω± (h0 + αas(H0)) Ω∗±

= h0(qout/in, pout/in) + (αasH0)(a
#
out/in, pout/in)

The same for the generators of space transla-
tions

Field theory reformulation, LSZ asymptotic for-
mulas
Two main points:
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- Convergence of the Dollard Møller operators
implies a convergent modi�ed (adiabatic) LSZ
formula for charged �elds
- The asymptotic limit of the electromagnetic
�elds does not need Dollard corrections
(Freedom: �The LSZ (Haag-Ruelle) construc-
tions have nothing to do with a reference uni-
tary evolution�)
Convergence of the ordinary (massless LSZ) con-
struction for the electromagnetic �elds is easy
in the model:
W (f, λ) ≡ e−i(a(f, λ)+h.c.) , ft(k) ≡ f (k)e−i |k| t

W (f−t, ε, t) ≡ U ε ∗(t)W (f−t)U ε(t)

Introducing the Dollard dynamics and using,
on H±, for F ε

t (p) → F±∞(p) uniformly for
bounded p,

eiρ
ε
t (F

ε
t ) → eiρout/in(F±∞)

it follows
W (f−t, ε, t) → Ω±W (f, λ) Ω∗± e

iρout/in(J
D(f,λ)+h.c.)

12



de�ning
b∗out/in(f, λ) = a∗out/in(f, λ) + ρout/in(J

D)(f, λ)

= αas(pout/in) (a∗out/in(k, λ))

Implications on the Hamiltonian and on the
generators of space translations
H = h0(qout/in, pout/in)+(αasH0)(a

#
out/in, pout/in)

= h0(qout/in, pout/in) +H0(b
#
out/in)

P = −i
∑
n

∂/∂qout/in n + Pph(b
#
out/in)

The photon �elds b#out/in commute with h0 and
are free (canonical) �elds
Charged �elds (fermion case) are de�ned on∑

n

L2
ant(IR6n)⊕F

(Φ(f )∗ψn)(q, q1 . . . qn, p, p1 . . . pn) =

=
√

(n + 1) (f (q, p)ψn(q1 . . . pn))ant

with partial Fourier transform

Ψ∗(P, p) = (2π)−3/2

∫
d q eiqPΦ∗(q, p)
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They satisfy
{Ψ(P, p), Ψ∗(P ′, p′)} = δ(P − P ′) δ(p− p′)

{Ψ(P, p), Ψ(P ′, p′)} = 0

Heisenberg asymptotic charged �elds:
Ψ∗
out/in(f ) ≡ Ω±Ψ∗(f ) Ω∗±

on = Ω±H
Asymptotic algebra: From

[Ψ∗
out/in(P, p) , a

∗
out/in(k, λ)] = 0

[ρout/in(p) , a
∗
out/in(k, λ)] = 0

[ρout/in(p
′) , Ψ∗

out/in(P, p)] = δ(p′−p) Ψ∗
out/in(P, p)

it follows
[b#as(k, λ),Ψ∗

as(P, p)] = JD(k, λ, p) Ψ∗
as(P, p)

Even if
H = h0(Ψ

#
out/in) +H0(b

#
out/in)

Ψ#
out/in is not free, by its commutation relations

with b#out/in
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Computation of the (Dollard) modi�ed LSZ for-
mula:
The Dollard dynamics of the charged �elds is

Ψε ∗
D (f, t) =

∫
dP dp f−t(P, p) Ψ∗(P, p)

e−i[a(F
Dε
t (p),t)+h.c.] eiρ (χεt (P,p))

with
ft(P, p) = eiPvt f (P, p)

FDε
t (k, λ, p) → −iJD(k, λ, p)

χεt(P, p, P
′, p′) = Lεt(p, p

′) + Ct(P, p, P
′, p′)

The strong convergence of the (adiabatic) Møller
operators then implies, on Ω±H,

Ψ∗
out/in(f ) = lim

∫
dP dp f−t(P, p) Ψε ∗

t (P, p)

eiρ
ε
t (χεt (P, p)) e−i

∫ t
0 dsA

ε
t (
↔
∂tGt−s∗jε(v(p);s))

with
jεµ(v;x, s) ≡ e vµη̃(x− vs) e−ε|s| , vµ ≡ (1, v)

All the corrections to the LSZ formula are giv-
en by the Dollard dynamics. The Weyl expo-
nential is the x space expression for the above
exponential of a, a∗.

15



Alternative version in terms of asymptotic elec-
tromagnetic �elds
The above corrections can be written (i.e. the
same limit is obtained) in terms of asymptot-
ic (free) electromagnetic potentials Bout/in and
asymptotic particle density:

Ψ∗
out/in(f ) = lim

∫
dP dp f−t(P, p) Ψε ∗

t (P, p)

eiρ
ε
t (Ct(P, p)) eiρout/in (Lε±(p)+c(p)) e−iBout/in(j

ε±(v(p)))

Heisenberg �elds without adiabatic switching
Asymptotic limit of electromagnetic �elds: a
time smearing (Herbst, Buchholz)
hT (t) ≡ 1/c(T )h((t−T )/c(T )) , c(T ) →∞
gives the same (free) asymptotic �elds Bout/in

For charged �elds:
Non trivial role of Coulomb logarithmic contri-
butions to {qs(q, p)} for photon emission, not
canceled by the photon Dollard dynamics, con-
structed on straight lines
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In presence of momentum exchange, similar log-
arithmic distortions of trajectories are also pro-
duced by photon emission
No solution from hT (t)

Solution: modi�cation to the LSZ formula, us-
ing position variables
Replace in the electromagnetic corrections to
the LSZ formula,

pt → qt/t

Equivalently, replace the string
(sv(pt), s) → (sv(qt/t), s) , s ∈ [0, t]

The same replacement, together with Pt →
Qt/t, can be done in the Coulomb and Lienard-
Wiechert terms, with no e�ect in the asymptot-
ic limit
Resulting LSZ formulas:

Ψ∗
out/in(f ) = lim

t

∫
dQdq f̃−t(Q, q) Ψ∗

t (Q, q)

eiρt (χt(Q/t, q/t)) e−i
∫ t
0 dsAt (

↔
∂tGt−s∗j(v(q/t);s))
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Convergence to Ψ∗
out/in(f ):

- The coordinate space LSZ formulas are the
result of a modi�ed �coordinate space Dollard
dynamics� (c.s.D.d. also applies to quantum
Coulomb scattering )

UD(t) = vD(t)V D(t)u0(t)U0(t)

vD(t) = e
i :σσ:( e

2

8π sign t ln |t| t q−q′
|q−q′|3 (Q−Q′))

V D(t) = e−i
∫
dq (a(FDεt (q/t))+h.c.)σ(q)

e( i2
∫
dq dq′ Lεt (q/t,q′/t)σ(q)σ(q′)+i

∫
dq σ(q) δE(q/t)

∫ t
0 ds e

−2ε|s|)

- The modi�ed Dollard dynamics gives rise to
the same Møller operators as strong limits (no
adiabatic switching!)
- If a di�erent, generic cuto� is used for the
Dollard dynamics, then a smearing with hT (t)
is necessary

q space LSZ formulas with corrections in asymp-
totic form:

Ψ∗
out/in(f ) = lim

t

∫
dQdq f̃−t(Q, q) Ψ∗

t (Q, q)

18



eiρout/in (χt(Q/t, q/t)) e−i
∫ t
0 dsBout/in(j(v(q/t);s))

No change for the asymptotic �eld algebra and
dynamics

Interpretation in terms of gauge invariant bi-
linears: the argument of the exponential co-
incides, up to a correction which converges for
t→ ±∞ (and neglecting a substitution q → Q
in the formula for the A0 component), with

−i
∫ t

0

dsA (j(v(q/t); s))

This implies convergence of∫
dQdq f̃−t(Q, q)

Ψ(g) e−i
∫ t
0 dsA (j(v(q/t);s))) Ψ∗

t (Q, q)

i.e. the ordinary LSZ formula (also needing a
hT (t) smearing in general), applied to one of
the two variables of a gauge invariant bilinear
Similar (x space) gauge invariant fermion loops
have been shown by Stapp to exhibit particle-
like decay at large distances
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Main conclusions on the LSZ procedure for charged
�elds:
- Realistic coordinate space modi�ed LSZ for-
mulas
- With the same results as the adiabatic pro-
cedure of Feynman diagrams with momentum
space subtractions (of the Kulish-Faddev form)
- With an interpretation in terms of gauge in-
variant bilinears
- Asymptotic charged �elds depend from a sec-
ond space-time variable, �the origin of the string�
- Free particle spectrum appears at �xed �origin
of the string�
- Asymptotic commutation relations between
charged �elds and e.m. �elds are explicitely
given by �the string�
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