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“A direct approach to the critical points
of the infrared problem in QED”

Status of the infrared problem...

A. How may asymptotic charged fields be con-
structed?

B. What can be said on - their dynamics
- their algebraic relations with the asymptotic
electromagnetic field?

Recall: Construction af massless asymptotic
fields done by Buchholz (in the vacuum sector)

But charged fields cannot be constructed a la

[.S7 (Haag-Ruelle)



Absence of a gap covered by Dybalski, but

Basic problem: the absence of 1 particle shell
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a consequence of Gauss’ law [Buchholz]

A recent advance on asymptotic charged states

in models of QED:

Chen, Frohlich, Pizzo: Non-relativistic QED

for one charged particle

- analysis based on the construction of pure
particle states

- main difficulty: energy-momentum relation
for charged particles

(bottom of energy spectrum, fundamental be-
cause photon emission depends on the asymp-
totic velocity).

However: for a relativistic theory, the relativis-
tic relation holds automatically |Borchers-Buchholz|

- modified LSZ formulas are given after and
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in terms of that construction (for one charged
particle)

We explore the possibility of a direct Scattering
Theory approach.

Failure of LSZ construction already for Coulomb
scattering
Solved by Dollard asymptotic dynamics

Do Dollard’s ideas really apply in field theory
models?

Kulish-Faddeev-Rohrlich approach

Dollard (Zwanziger) define asymptotic fields?
Dollard asymptotic dynamics is not a group!
In conclusion, the basic questions about the
Dollard approach are:

- Is Dollard scattering theory compatible with
space-time covariant asymptotic fields 7

- Can Kulish-Faddeev-Rohrlich be confronted
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with a Heisenberg formulation of scattering,
asymptotic fields and asymptotic condition?

Program: obtain information from:

1. A general analysis of “Dollard Scattering
Theories”

2. Their application in models of QED

1. Dollard Scattering Theories:

The problem: exhibit the implications on asymp-
totic fields and dynamics of Dollard approach:

U(t)y ~Up(t)p for t— +oo,

with Up(t) a (strongly continuous) family of
unitary operators (not a group), ¥ in a “scat-
tering subspace” of H, ¢ in H (or in a “reference
scattering space’), i.e.

U(—t)Up(t) converges strongly, t — to0

defining isometries €24

The results:



- Existence of Moller operators implies exis-
tence of (strongly continuous) groups, UL(s),
asymptotic on the right to the Dollard dynam-
1CS

Up(t+s)~ Up(t)U(s) for t — +o0
U.(s) are unique and given by

Us(s) = lim Up(t) 1 Up(t + s)

- The Mgller operators interpolate between U
and Uj:
U(S) Qi = Qj: Ui(8>

- Ewven if the Dollard Hamiltonian
id/dtUp(t) = Hp(t) Up(t),

is “asymptotic” to a free Hamiltonian for ¢ —
+00, U4 needs not to be the free. In this case
the free dynamics is asymptotic “on the left”,

a notion not implying uniqueness. (However,
this implies o(Hy) C o(Hy))

- Heisenberg asymptotic variables are defined
by
Aout/in = () AQi
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on the scattering subspace
- By the interpolation formulas

H = H.(asymptotic variables)

- Dollard corrections to LSZ formulas:

Agujin = lim U1 (Up(H) AU(1) U(t)

- The same results can be reproduced for an
adiabatic formulation of scattering, with some
care on ‘mass renormalization terms”

Conclusions on Dollard Scattering Theories:

- Distinction between “Dollard dynamics” and
“asymptotic dynamics”. The group property is
lost only at a “subleading” level

- Recovery of the “usual” asymptotic variables
and dynamics

- Reinterpretation of Dollard dynamics as cor-
rections to LSZ procedures



- Possibly, with consequences on the dynamics
of asymptotic fields

Notice: a non-free asymptotic dynamics is es-
sential for an application to models with vac-
uum and without (charged particle) states of
definite mass

2. Dollard’s approach to QED:

The problem: Control the application of the
above Dollard strategy in relevant field theory
models of QED.

Our model, with “heavy classical charged par-
ticles”

- 18 covariant under space-time translations

- has a non-trivial, non-soluble, dynamics of
charged particles

- has a realistic (velocity dependent) photon in-

teraction, reproducing the asymptotic coherent
states of FCP



- includes Coulomb interactions

- allows for a ‘relativistic” particle dynamics,
avoiding the necessity of constraints on veloci-
ties

The difficulties of the energy-momentum dis-
persion problem are avoided by neglecting pho-
ton recoil

Photon recoil whould give corrections to tra-
jectories of the same (logarithmic) asymptotic
form as the Coulomb effects.

The model:
In L*(T") x F, T the phase space, F the Fock

space of free photons

Classical eq. of motion for g;, p;, with Coulomb
interactions; the electromagnetic field interacts
with their current.

Koopman formulation of the dynamics, with

H=hy+h/+Hy+ H +AFE

oV
ho = Zvi B, hilg,Q) = 94, o
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Adiabatic formulation: e; — e; e €Il

Dollard Hamiltonians
H = hy+ h?(t) + Hy + HP (t) + AE(p)
hi = hi~(q = vt,Q = Q1)
HP = Hi(a,a*,v(p)t,p)
Explicit Dollard dynamics UP(t) = u” (t) UP(t)

Results:



Dynamics  U(t) = u(t) U(t)({qs})
Particle Mgller operators

wy = s — limu(t)*u”(t)

Adiabatic Mgller operators
Qy =s—lim lim U@)**UP(t) = Wiws

e—0t—+o0

W = lim W, (1953 (g, ) Wpi(p£(¢: )
well defined on w4 L*(T') x F = H4

Wi (p)) implementing shifts which converge
to

ags(a(k,\)) = a*(k, \) + Z JP (kX ;)

€ ex(k) n(k) v(p)
(2m)3/2 (2|k])'2(|k] — v(p)k)
Asymptotic dynamics

Ui(s) =lim lim Uy'(t) Up(t + s)

e—0t—to0

Ui(s) = U-(s) = uo(s) s (Uo(s))

Interpolation formulas
HQ:& — Q:t Has 9 Has — h() + Oé%»(H())
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JP(k, X\, p) =




The same for the generators of space transla-
tions, with

Pas = —1 Z 6)/aqn + aa3<Pph)

From Mgller operators and interpolation for-
mula, on Hy:

Heisenberg asymptotic canonical variables
afout/m<k) = () CL(k) fl; s Qout/in » Pout/in

Expression for the Hamiltonian in terms of asymp-
totic variables

H = Qi (ho + CYa3<H0)> Qi

— hO(Qout/imPout/in) T (aasHO) (ait/mapout/m)
The same for the generators of space transla-
tions

Field theory reformulation, LSZ asymptotic for-
mulas

'Two main points:
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- Convergence of the Dollard Mgller operators
implies a convergent modified (adiabatic) LSZ
formula for charged fields

- The asymptotic limit of the electromagnetic
fields does not need Dollard corrections

(Freedom: “The LSZ (Haag-Ruelle) construc-
tions have nothing to do with a reference uni-
tary evolution”)

Convergence of the ordinary (massless 1.SZ) con-
struction for the electromagnetic fields is easy
in the model:

W(f,A) = e N fik) = fk)e M
W(fret) =U{) W(f) US(2)

Introducing the Dollard dynamics and using,
on Hx, for F7(p) — Fiy(p) uniformly for
bounded p.

eipﬂth) N eipout/m(Fioo)

it follows

W(f_et)— QeWI(f,\) QL eipout/m(JD(f,A)Jrh.c.)
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defining
0ut/m<f )‘> — aout/m<f >‘> + pout/m( D><f7 )‘>
— O‘a8<p0ut/m)< 0ut/m<k )‘))

Implications on the Hamiltonian and on the
generators of space translations

H = hO(Qout/in:]%ut/in) (QCLSHO)( owﬁ/m’pm‘t/m>
— hO(Qout/z’napout/m) + HO(bout/in)
P=— Z a/aqOut/inn + Pph@it/m)

The photon fields b"

out /in
are free (canonical) fields

commute with hg and

Charged fields (fermion case) are defined on

ZLW (R & F

(P(f)" w“><q, qi---Gn,DsD1---Pn) =
(n T 1) <f<Q7p>¢n(Q1 .- -pn>>ant

with partial Fourier transform

U (P,p) = (27) " / dq ™ (g, p)
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They satisty
{V(P,p), V(P p)} = 6(P—P)ép—p)
{U(P,p), O(F,p)} =0
Heisenberg asymptotic charged fields:
outjin(f) = e UH(f) 2
on = Q4+ H
Asymptotic algebra: From

[ out/m(P p) 0ut/m<k A)] 0

[pout/m( )7 0ut/m<k A)] =0
[pout/in<p/>7 qjout/m(P p)] — 5<p p) 0ut/m<P7 p)

it follows

07, (k, N), W3 (Pop)] = TP (k, A, p) Uy (P p)

Even if

H = ho(T7

out /in

)+ Hy(b"

out/m>

\IJ# ut fin is not free, by its commutation relations
with b7

out/in
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Computation of the (Dollard) modified LSZ for-

mula:

The Dollard dynamics of the charged fields is
V(£ = [ dPdp f(P.p) V(P

o~ ila(FP*(p)t)+he] Lip (G (Pp))
with
fi(P,p) =" f(P,p)
EP(k, X\, p) — —iJ"(k,\, p)
X;(P,p, P",p) = Li(p,p") + C¢(P,p, P', p')

The strong convergence of the (adiabatic) Mgller
operators then implies, on ()4 H,

@mqwﬂm/ﬁP@ﬁARmW?Wm>

Gitf (G (P.p) =i i ds A7 (04Gr— o7 (0(p):s))
with

ju(vim, s) = evyi(z — vs) oelsl

) UM = (17 U)
All the corrections to the LSZ formula are giv-
en by the Dollard dynamics. The Weyl expo-
nential is the x space expression for the above
exponential of a, a*.
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Alternative version in terms of asymptotic elec-
tromagnetic fields

The above corrections can be written (i.e. the
same limit is obtained) in terms of asymptot-
ic (free) electromagnetic potentials B, /;, and
asymptotic particle density:

‘i f) = lim / AP dp f(P,p) V*(P.p)

eiPi (CuP.P)) giPoutjin (L2 (P)+e(P)) o= Bout/in (12(0(p)))

Heisenberg fields without adiabatic switching

Asymptotic limit of electromagnetic fields: a
time smearing (Herbst, Buchholz)

hr(t) = 1/e(T) Wt =T)/c(T)) , (T) — o0
gives the same (free) asymptotic fields Bo, /in

For charged fields:

Non trivial role of Coulomb logarithmic contri-
butions to {qs(q, p)} for photon emission, not
canceled by the photon Dollard dynamics, con-
structed on straight lines
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In presence of momentum exchange, similar log-
arithmic distortions of trajectories are also pro-
duced by photon emission

No solution from hp(t)

Solution: modification to the LSZ formula, us-
ing position variables

Replace in the electromagnetic corrections to

the LSZ formula,
pr— q/t
Equivalently, replace the string
(sv(pe),s) — (sv(@/t),s) . s €0,

The same replacement, together with P, —
Q):/t, can be done in the Coulomb and Lienard-
Wiechert terms, with no effect in the asymptot-
ic limit
Resulting LSZ formulas:

sl £) =t [ 4Qda f-1(Q.0) ¥i(Qua)

oot ((Q/t.0/1)) =i Ji ds Ay (Gr—oxj(v(a/1):s))
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Convergence to W7 . (f):

- The coordinate space LSZ formulas are the
result of a modified “coordinate space Dollard
dynamics” (c.s.D.d. also applies to quantum
Coulomb scattering )

UP(t) = v”(t) VP (t) uo(t )Uo(t)
5(@-)

o2
i:00: (& signt In|t|t 2
vP(t)y=e T =

VP(t) = et dalal FDg(q/t))+hc) o(q)
o5 dadd L(a/t.d /1) o(a)o(d)+i [ dao(a) SE(aft) fydse 1)
- The modified Dollard dynamics gives rise to

the same Mgller operators as strong limits (no
adiabatic switching!)

- If a different, generic cutoft is used for the
Dollard dynamics, then a smearing with hp(t)
IS necessary

q space LSZ formulas with corrections in asymp-
totic form:

() = lim / 1Q dq F-(Q.q) V(. q)
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eipout/m (xt(Q/t,q/t)) G_i f()t ds Bout/in<j(U(Q/t>;S))

No change for the asymptotic field algebra and
dynamics

Interpretation in terms of gauge invariant bi-
linears: the argument of the exponential co-
incides, up to a correction which converges for
t — £oo (and neglecting a substitution ¢ — @
in the formula for the Ay component), with

— / ds A (j(vla/t); s)

This implies convergence of

[ aQdai-i@.0
U(g) e~ o s AR g, q)

i.e. the ordinary LSZ formula (also needing a
hp(t) smearing in general), applied to one of
the two variables of a gauge invariant bilinear

Similar (x space) gauge invariant fermion loops
have been shown by Stapp to exhibit particle-
like decay at large distances
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Main conclusions on the LSZ procedure for charged

fields:

- Realistic coordinate space modified LSZ for-
mulas

- With the same results as the adiabatic pro-
cedure of Feynman diagrams with momentum
space subtractions (of the Kulish-Faddev form)

- With an interpretation in terms of gauge in-
variant bilinears

- Asymptotic charged fields depend from a sec-
ond space-time variable, “the origin of the string”

- Free particle spectrum appears at fixed “origin
of the string”

- Asymptotic commutation relations between
charged fields and e.m. fields are explicitely
given by “the string”
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