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Motivations

Quantum filed theory - Incredible accordance with experiments.

Rigorous theory only in the linear case
(or for some low dim. theories or some integrable models)

Interacting theories treated by perturbation theory.

Problems:
Ultraviolet divergences: Solved by local perturbation and
renormalization.
Infrared problems: Local measurements, adiabatic limit.
Solutions are given as a formal power series in the coupling
constants. (The series is at most an asymptotic expansion )

Nowadays perturbative methods are well understood also on curved
spacetimes



Motivations

In any interacting theory treated perturbatively there is an ambiguity:

S = (S1 + Q) + V = S1 + (Q + V )

S1 free action, Q quadratic perturbation, V generic perturbation.

We might consider either V or Q + V as perturbation potential.

The two perturbative constructions must agree

Principle of perturbative agreement

We might use this freedom:

Move a quadratic part of the potential to the free one.

Perturbative constructions around massless theories tend to have
severe infrared divergences.



Plan

Plan of the talk

Perturbative algebraic quantum field theory.

The principle of perturbative agreement and its generalization.

An application: The thermal mass.

This talk is based on

N. Drago, T.-P. Hack, NP, [arXiv:1502.02705].
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Perturbative algebraic quantum field theory.

AQFT in the local and covariant formulation

On a globally hyperbolic spacetime (M, g), consider a theory
described by an action of the form

S(�) = 1

2

Z

M

�rµ�rµ�+m2�2 + V (�)
�

dµg .

Quantize that system on a curved background:
No notion of energy, no notion of vacuum, no symmetry, many
inequivalent representations are possible.

Algebraic approach: divide the problem in two parts:
Identify the observable and their algebraic structure A (implementing
the commutation relations)
Once a state ! : A ! C is given the GNS theorem furnishes an
Hilbert space representation.



Perturbative algebraic quantum field theory.

Functional approach [Brunetti Duetsch Fredenhagen]

(O↵-shell) Field Configurations: � 2 E(M;R)
Observables: functionals over (o↵-shell) field configurations

F := {F : E(M) ! C, smooth ,F (n) 2 E 0(M), ....}
F

reg

Regular functionals: F (n) 2 D(Mn), example

Ff :=

Z

M
�(x) f (x) dµg .

Fµc Microcausal functionals:

Fµc =
n

F 2 F
�

�

�

WF(F (n)) \ (V
n
+ [ V

n
�) = ;

o

F
loc

Local functionals: contains fields of the form
R

M �(x)n f (x) dµg

To get the ⇤�Algebra of field observables we need a product
indicated by ?.

A = (F , ?, ⇤)
The product needs to be compatible with local covariance.



Perturbative algebraic quantum field theory.

Linear theories

In a free (linear) theory

P� = �⇤�+m2� = 0

the product can be written explicitly by a contraction exponential

F ? G (�) = F (�)G (�) +
X

n�1

~n
n!

D

�⌦n,F (n)(�)⌦ G (n)(�)
E

where � = �R ��A is the causal propagator,

the resulting ? is well defined on F
reg

It implements the canonical commutation relations
It is a formal deformation of the pointwise product,
=) deformation quantization.



Perturbative algebraic quantum field theory.

Extension to encompass local fields

Local non linear fields (like
R

M �nf dµg ) can be added after deforming
the product: using �+ (a generic Hadamard function) instead of �

�+ characterized by microlocal spectrum condition [Radzikowski]

WF(�+) =
�

(x , x 0; k , k 0) 2 T ⇤M2 \ {0} |(x , k) ⇠ (x 0,�k 0), k . 0
 

�+ is non-unique, di↵erent propagators produces isomorphic algebras

�+(x , y) :=
1

8⇡2

✓

u(x , y)

�+(x , y)
+ v(x , y) log(��2�+(x , y)) + w(x , y)

◆

�+(x , y) := �(x , y) + i✏(tx � ty ) + ✏2

Its antisymmetric part coincides with �
The new product ?�+ can be extended to microcausal functionals

Fµc =
n

F 2 F
�

�

�

WF(F (n)) \ (V
n
+ [ V

n
�) = ;

o

It is the algebra generated by Wick products of fields



Perturbative algebraic quantum field theory.

Time ordered products

To construct an interacting theory by means of perturbation theory
we need to introduce the time ordered product ·T .

On regular functionals ·T is the symmetric product characterized by
the causal factorization property:

F ·T G = F ? G if F & G ,

It is a contraction exponential constructed with the Feynman
propagator �F in the place of �+.

�F (x , y) :=
1

8⇡2

✓

u(x , y)

�F (x , y)
+ v(x , y) log(��2�F (x , y)) + w(x , y)

◆

�F (x , y) := �(x , y) + i✏



Perturbative algebraic quantum field theory.

Perturbative constructions of interacting theories

Interacting observables are represented over A by means of the
Bogoliubov formula which gives rise to the Møller operator

R~
V (F ) =

d

d�
S(V )�1 ? S(V + �F )

�

�

�

�

�=0

= S(V )�1 ? (S(V ) ·T F ),

Where the S�matrix is the time ordered exponential of V .

S(V ) = expT

✓

i

~V
◆

=
X

n�0

in

n!~n V ·T . . . ·T V
| {z }

n times

,

Used to represent the interacting algebra over the free one.



Perturbative algebraic quantum field theory.

Bogoliubov formula and interacting algebras

Linear fields are weak solutions of the equation of motion

R~
V (FPf ) = FPf + R~

V (hV (1), f i)

Pf = �⇤f +m2f

If R~
V can be inverted we obtain the interacting ?�product

F ?V G = (R~
V )

�1
⇣

R~
V (F ) ? R~

V (G )
⌘

and thus construct
fAV = (F , ?V , ⇤V )

For a generic local V the construction of ·T is more subtle.



Perturbative algebraic quantum field theory.

Time ordered maps

The extension to local functionals is not trivial:
(P�F ) = i� mod C1 hence �F n

is not well defined.
�F n

is well defined outside the diagonal M2 \ D.

The time ordered product among local functionals is constructed
introducing a time ordered map T : F⌦n

loc

! F

To construct T we need to employ renormalization. top

T is not unique.
T : F

loc

! F
loc

fixes the renormalization freedom.
F ·T G = T (T�1(F ),T�1(G )).
Satisfying a set of good axioms [Hollands, Wald]:
Causal factorization, covariance, ...

By covariance, it has to be understood as T (g ,m2, ?) namely the
evaluation of a map on the particular spacetime.



Perturbative algebraic quantum field theory.

Algebraic adiabatic limit [Brunetti Fredenhagen 2005]

Up to now we have considered interacting potential Vg with compact
support

Vg =

Z

gLIdµ

where LI is the interacting Lagrangean density and g is a compactly
supported smooth function.

To describe a physical theory we want to analyze the limit g ! 1.

The causal factorization property for the S�matrix

S(A+ B + C ) = S(A+ B) ? S(B)�1 ? S(B + C )

if J+(suppA) \ J�(suppC ) = ;.



Perturbative algebraic quantum field theory.

From the causal factorization property it follows that:
R~

Vg (F ) depends only on LI “restricted” to J�(suppF ).
Consider a double cone O and a functional F such that suppF ⇢ O.
Fix g = 1 and g 0 = 1 on O. It is possible to find an unitary operator
Ug ,g 0 such that

R~
g 0V (F ) = U�1

g ,g 0 ? R~
gV (F ) ? Ug ,g 0

for every F with suppF ⇢ O.
Hence AVg (O) are unitarily equivalent for every g = 1 on O.
We can define the bundle

[

g=1 on O

{g}⇥ Ag (O)

Then AV 1(O) is the set of “constant sections”
(whose components are connected by some unitary transformation).

This is the algebraic adiabatic limit.

The analysis of what happens to states is still di�cult.
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The principle of perturbative agreement

The principle of perturbative agreement

Quadratic potential over a linear theory

S1 + Q = S2, Q =
1

2

Z

M
�m2�2dµg

Q with compact support

We have A1, A2 and fA1,Q

Question

What is the relation between A2 and fA1,Q?



The principle of perturbative agreement

Classical Møller operator

fA1,Q is imbedded into A1 by the quantum Møller operator R~
1,Q .

We need to imbed A2 into A1.
Identify the algebras in the complement of J+(suppQ).
Using linear dynamics (time-slice axioms).

Formally the operator which realizes this imbedding is called classical
Møller operator and it is indicated by

R1,Q : A2 ! A1, R1,Q(F (�)) = F (RQ(�))

where RQ = I��R
2 � Q(1) intertwines between the two dynamics

(�⇤+m2 + �m2)RQ(�) = (�⇤+m2)(�)



The principle of perturbative agreement

A1
fA1,Q

A2

R~
1,Q

�1,Q = R�1
1,Q � R~

1,Q

R1,Q

Proposition

R1,Q is a ⇤�isomorphism

On F
reg

R~
1,Q can be inverted, hence fA reg

1,Q is well defined

fA reg

1,Q is ⇤�isomorphic to A reg

2

The isomorphism is realized by �1,Q = R�1
1,Q � R~

1,Q

�1,Q is a non trivial deformation of A reg

2

�1,Q = ↵d , ↵d(F ) =
X ~

n!
hd⌦n,F (2n)i, d = �F

2 ��F
1



The principle of perturbative agreement

The principle of perturbative agreement for mass pert.

Extension to more general functionals needs to be done
perturbatively because (�F

2 ��F
1 )

2 is not well defined.

Logarithmic divergences pop up. Renormalization needs to be
employed.

It can be chosen in such a way that the PPA of Hollands and Wald
can be satisfied:

[Hollands Wald 2005] The time ordered map T , considered as a map
T (g ,M, ?), is said to satisfy the Principle of Perturbative Agreement
(PPA) if,

T (g ,M2, ?2) = �1,Q � T (g ,M1, ?1).

on F
loc

⌦n.



The principle of perturbative agreement

Proposition

T2 = �1,Q � T1 defines a time ordered map for A2 for every T1 on
A1.

�1,Q satisfies a cocycle condition

�1,Q3 = �2,Q3 � �1,Q2

Hence to get a map T which satisfies the perturbative agreement in
the sense of Hollands and Wald for mass variations we operate as
follows

Fix T = T1(M1 = 0, g)
Consider T (M2 = M, g) = �1,QT (0, g)



The principle of perturbative agreement

Generalization to interacting theories

Proposition

The map �1,Q to connects S1 + (Q + V ) to S2 + V

R~
1,Q+V = R1,Q � R~

2,V � �1,Q .
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KMS states over massless solutions

An application: the thermal mass

Perturbative construction of a thermal (KMS) state for a massless
��4 theory in Minkowski spacetime.

For massive theories this is done by [Fredenhagen and Lindner 2014],
using ideas coming from statistical mechanics and translating them
in the language of pertrubative quantum field theory:

!I
�(A) =

!�(AU(i�))

!�(U(i�))

!� the KMS state at inverse temperature � w.r.t. to a Minkowskian
time for the free theory.
U is the intertwiner of ↵I

t and ↵t the interacting and free dynamics:

In ordinary statistical mechanics U(t) = e it(H0+HI )e�itH0

In QFT it is not possible to construct exp iHI (t)t at fixed time.

Circumvent the problem analyzing directly the intertwiner.



KMS states over massless solutions

Restrict the algebra in a timeslab T . (Done by the time slice axiom).
Restrict the interaction in a neighborhood of T . (With a time cuto↵ �)

Consider a space compact interaction (inserting a spatial cuto↵ h).

V =

Z

h�HIdµ

(the adiabatic limit correspond to the removal of the spatial cuto↵)
With � and h, the causal factorization property of S permits

to construct U(t)

↵I
t(A) = U(t)↵t(A)U(t)�1

to show the cocycle relation

U(t + s) = U(t)↵t(U(s))

to write its generator.
to show that U(t) state does not depend on �.

Construct the state !I
�,h with U(t). = !�(AU(i�))/!�(U(i�))

The thermal correlation functions decay exponentially for large
spatial separations.
We can take the adiabatic limit h ! 1.



KMS states over massless solutions

Generalization to massless interacting theories

The di�culty in the construction of this state over massless theories
is in the adiabatic limit.

For perturbations over massless theories the decay of thermal
correlations does not permit to take the adiabatic limit.

To obtain the interacting KMS state over a massless theory we
proceed as follows:

When represented in (A , ?!� ) �
4 acquires e↵ectively a mass:

�4 +M2
��

2 + C .
Move this mass to the free theory by means of the map �1,Q

constructed above. (Generalized principle of perturbative agreement)
Construct there the KMS state for the interacting theory as shown
before.



Conclusion

Summary

Perturbative algebraic quantum field theory.

Mass perturbations can be treated in two ways. The resulting
algebras are ⇤�homeomorphic. The homomorphism is not trivial.

It can be used to add “virtual masses” to interacting field theories.

KMS states for massless interacting theories can be constructed also
in the adiabatic limit.

Thanks a lot for your attention!



Conclusion

Expansion in terms of Feynman graphs

V1 ·T · · · ·T Vn = Tn(V1 ⌦ · · ·⌦ Vn)

Tn = e

P
1i<jn

⌧
�F , �2

��i ��j

�

=
X

�2Gn

1

N(�)

*

⌧�,
�2|E(�)|

Q

i2V (�)

Q

E(�)3e�i ��i (xi )

+

,

where Gn is the set of graphs with n vertices

⌧� =
Y

1i<jn

�F (xi , xj)
lij .

and lij counts the number of edges joining the vertices i , j .



Conclusion

Epstain Glaser recursive construction

Epstein and Glaser used a recursive procedure over the number of
local fields to construct the time ordered products among elements of
Floc .

At step n we need to construct all the possible “Feynman
diagrams” with n vertices. These are distributions formed with �F .

causal factorization F ·T G = F ?H G if F & G fixes these products
“up to the total diagonal” D ⇢ M n.

Extension is in general not unique =) renormalization freedom.

Requiring that the extension preserves the Steinmann scaling degree
the freedom is largely restricted. [Brunetti Fredenhagen 2000,
Hollands Wald 2002] back
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