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Motivations

m Quantum filed theory - Incredible accordance with experiments.

m Rigorous theory only in the linear case
(or for some low dim. theories or some integrable models)

m Interacting theories treated by perturbation theory.

Problems:
m Ultraviolet divergences: Solved by local perturbation and
renormalization.
m Infrared problems: Local measurements, adiabatic limit.
m Solutions are given as a formal power series in the coupling
constants. (The series is at most an asymptotic expansion )

m Nowadays perturbative methods are well understood also on curved
spacetimes



Motivations

In any interacting theory treated perturbatively there is an ambiguity:
S=(S1+Q+V=85+(Q+V)
S; free action, @ quadratic perturbation, V' generic perturbation.

We might consider either V or @ + V as perturbation potential.
m The two perturbative constructions must agree
Principle of perturbative agreement
We might use this freedom:

m Move a quadratic part of the potential to the free one.

m Perturbative constructions around massless theories tend to have
severe infrared divergences.



Plan of the talk

m Perturbative algebraic quantum field theory.
m The principle of perturbative agreement and its generalization.

m An application: The thermal mass.

This talk is based on
m N. Drago, T.-P. Hack, NP, [arXiv:1502.02705].
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Perturbative algebraic quantum field theory.

AQFT in the local and covariant formulation

m On a globally hyperbolic spacetime (M, g), consider a theory
described by an action of the form

1
S(@0) =3 [ (V96V0+ 6 + V(2) dis
m Quantize that system on a curved background:

m No notion of energy, no notion of vacuum, no symmetry, many
inequivalent representations are possible.

m Algebraic approach: divide the problem in two parts:
m |dentify the observable and their algebraic structure &7 (implementing
the commutation relations)
m Once a state w : & — C is given the GNS theorem furnishes an
Hilbert space representation.



Perturbative algebraic quantum field theory.

Functional approach [Brunetti Duetsch Fredenhagen]

m (Off-shell) Field Configurations: ¢ € £(M;R)
m Observables: functionals over (off-shell) field configurations

F = {F : (M) = C, smooth , F{") € £'(M), ...}

® .z Regular functionals: F(") € D(M"), example
Fr ::/ o(x) f(x) dpg.
M
m %, Microcausal functionals:

Fue ={F e F |WF(FO)n (VI V") =0}
® 7o Local functionals: contains fields of the form [, ¢(x)" f(x) dug

m To get the x—Algebra of field observables we need a product
indicated by .
o = (F, %)

m The product needs to be compatible with local covariance.



Perturbative algebraic quantum field theory.

Linear theories

m In a free (linear) theory
Pp=—-C0¢p+m’p=0

m the product can be written explicitly by a contraction exponential

FxG(6) = F@)6(6) + 3 (a2 FO() @ 6 (9))

n>1

where A = AR — AA is the causal propagator,
m the resulting x is well defined on .#,¢,

m It implements the canonical commutation relations
m It is a formal deformation of the pointwise product,
— deformation quantization.



Perturbative algebraic quantum field theory.

Extension to encompass local fields

m Local non linear fields (like [;, ¢"f djig) can be added after deforming
the product: using A™ (a generic Hadamard function) instead of A
m AT characterized by microlocal spectrum condition [Radzikowski]

WF(AY) = {(x,x"; k, k') € T*M?\ {0} |(x, k) ~ (x', —K), k>0}

m A7 is non-unique, different propagators produces isomorphic algebras
At (xy) = o (54 i, y) log(A 20 (1)) + wix.y)
’ 872 \o4(x,y) ’ ’ ’

01 (x,y) = o(x,y) +ie(te — 1) + €

Its antisymmetric part coincides with A
The new product xa+ can be extended to microcausal functionals

Fue={Fe7 ‘ WF(F®) 0 (VI UV ) =0}

It is the algebra generated by Wick products of fields



Perturbative algebraic quantum field theory.

Time ordered products

m To construct an interacting theory by means of perturbation theory
we need to introduce the time ordered product -T.

m On regular functionals -t is the symmetric product characterized by
the causal factorization property:

FrG=FxG ifF>G,

m It is a contraction exponential constructed with the Feynman
propagator A in the place of A™.

87 ()= 5o (X)) og () + i)

UF(va) = U(X7Y) + i€



Perturbative algebraic quantum field theory.

Perturbative constructions of interacting theories

m Interacting observables are represented over ./ by means of the
Bogoliubov formula which gives rise to the Mgller operator

R (F) = C%\S(V)*l * S(V 4 \F) =S(V) 1% (S(V) -1 F),

A=0

m Where the S—matrix is the time ordered exponential of V.

in

i i
S(V) =expr <hv> :Zn!hn Vor....rV,

n>0

n times

m Used to represent the interacting algebra over the free one.



Perturbative algebraic quantum field theory.

Bogoliubov formula and interacting algebras

m Linear fields are weak solutions of the equation of motion
R)(Fer) = Fpr + 25 (VY. £))
Pf = —Of + m*f
m If ! can be inverted we obtain the interacting x—product
Fxv G = (#0) 7 (#5(F) = #4(G))

and thus construct .
Ay = (F,*v,*v)

m For a generic local V' the construction of -1 is more subtle.



Perturbative algebraic quantum field theory.

Time ordered maps

m The extension to local functionals is not trivial:

m (PAF)=i5 mod C> hence AF" is not well defined.
m AF" is well defined outside the diagonal M2\ D.

m The time ordered product among local functionals is constructed

introducing a time ordered map T : fﬁ’: — F

To construct T we need to employ renormalization.
T is not unique.

T : Foec — Froc fixes the renormalization freedom.
F-rG=T(T YF), T7Y(G)).

Satisfying a set of good axioms [Hollands, WaldJ:
Causal factorization, covariance, ...

m By covariance, it has to be understood as T(g, m?, ) namely the
evaluation of a map on the particular spacetime.



Perturbative algebraic quantum field theory.

Algebraic adiabatic limit [Brunetti Fredenhagen 2005]

m Up to now we have considered interacting potential V; with compact
support

Ve _/gﬁld,u

where L; is the interacting Lagrangean density and g is a compactly
supported smooth function.

m To describe a physical theory we want to analyze the limit g — 1.

m The causal factorization property for the S—matrix
S(A+ B+ C)=S(A+B)xS(B)"1xS(B + ()

if J*(suppA) N J~(suppC) = 0.



Perturbative algebraic quantum field theory.

m From the causal factorization property it follows that:
L] %’@g(F) depends only on L, “restricted” to J~(suppF).
m Consider a double cone O and a functional F such that suppF C O.
Fix g=1and g’ =1on O. Itis possible to find an unitary operator
Ug ¢ such that

Ry (F) = Ug b+ B (F) * Ug g0

for every F with suppF C O.
m Hence 2%, (0) are unitarily equivalent for every g =1 on O.
m We can define the bundle

U (&} x #%(0)

g=lon O
m Then &7,1(0) is the set of “constant sections”
(whose components are connected by some unitary transformation).
m This is the algebraic adiabatic limit.
m The analysis of what happens to states is still difficult.
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The principle of perturbative agreement

The principle of perturbative agreement

m Quadratic potential over a linear theory
1
Si+0=8 Q= [ smtitdy
M

Q@ with compact support
m We have &, @ and JZ%IQ

What is the relation between 2% and 42?1/’@?




The principle of perturbative agreement
Classical Mgller operator

[ 42/7\1/,@ is imbedded into @4 by the quantum Mgller operator %fQ.

m We need to imbed &% into 7.

m ldentify the algebras in the complement of J*(suppQ).
m Using linear dynamics (time-slice axioms).

m Formally the operator which realizes this imbedding is called classical
Mdgller operator and it is indicated by

H1,qQ o — h,  Hq(F(8)) = F(Ro(d))
where Rg =T — AF o Q) intertwines between the two dynamics

(04 m? + 6m*)Rq(¢) = (-0 + m*)(¢)



The principle of perturbative agreement

m %1,q is a x—isomorphism

reg

m On e %’ 1.Q ¢an be inverted, hence 42/ is well defined

n &fflvre(% is x—isomorphic to <7, *®
m The isomorphism is realized by 31, = %, é) o %{’ Q

m (1,¢ is a non trivial deformation of <7, *®

h n n
Bro = aq, ad(F):Zm(d‘@,F(z)), d=A5— Al



The principle of perturbative agreement

The principle of perturbative agreement for mass pert.

m Extension to more general functionals needs to be done
perturbatively because (A — AF)2 is not well defined.

m Logarithmic divergences pop up. Renormalization needs to be
employed.

m It can be chosen in such a way that the PPA of Hollands and Wald
can be satisfied:

[Hollands Wald 2005] The time ordered map T, considered as a map
T(g, M, ), is said to satisfy the Principle of Perturbative Agreement
(PPA) if,

T(g, M2,*2) = 517(3 o T(g, Ml,*l)-

on Foo".



The principle of perturbative agreement

m T = 1,9 o T1 defines a time ordered map for o7 for every Ty on
.
m (31 q satisfies a cocycle condition

B1,es = B2,0; © b1,

m Hence to get a map T which satisfies the perturbative agreement in
the sense of Hollands and Wald for mass variations we operate as
follows

m Fix T=T(M =0,g)
m Consider T(M, =M, g) = 31,07(0,g)



The principle of perturbative agreement

Generalization to interacting theories

The map f31 q to connects S1 + (Q + V) to S, + V

h h
K qrv = F1,Q0 K3y 0 P1Q-
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KMS states over massless solutions

An application: the thermal mass

m Perturbative construction of a thermal (KMS) state for a massless
A¢* theory in Minkowski spacetime.

m For massive theories this is done by [Fredenhagen and Lindner 2014],
using ideas coming from statistical mechanics and translating them
in the language of pertrubative quantum field theory:

/ ~ wg(AU(iB))
sl = (UGiB))

m wg the KMS state at inverse temperature § w.r.t. to a Minkowskian
time for the free theory.
m U is the intertwiner of a! and «; the interacting and free dynamics:
m In ordinary statistical mechanics U(t) = e't(HotHi) g—itho
m In QFT it is not possible to construct exp iH,(t)t at fixed time.

m Circumvent the problem analyzing directly the intertwiner.



KMS states over massless solutions

m Restrict the algebra in a timeslab 7. (Done by the time slice axiom).
m Restrict the interaction in a neighborhood of 7. (With a time cutoff x)
m Consider a space compact interaction (inserting a spatial cutoff h).

V = /hx?—l/du

(the adiabatic limit correspond to the removal of the spatial cutoff)
m With x and h, the causal factorization property of S permits
m to construct U(t)

ay(A) = U(t)a(A)U(t) ™
m to show the cocycle relation
U(t +s) = U(t)ar(U(s))

m to write its generator.
m to show that U(t) state does not depend on .
m Construct the state wé,h with U(t). = wg(AU(iB))/ws(U(iB))
m The thermal correlation functions decay exponentially for large
spatial separations.
m We can take the adiabatic limit h — 1.



KMS states over massless solutions

Generalization to massless interacting theories

m The difficulty in the construction of this state over massless theories
is in the adiabatic limit.

m For perturbations over massless theories the decay of thermal
correlations does not permit to take the adiabatic limit.

m To obtain the interacting KMS state over a massless theory we
proceed as follows:

m When represented in (47, %,,) ¢* acquires effectively a mass:
¢t + M3p% + C .

m Move this mass to the free theory by means of the map 1 ¢
constructed above. (Generalized principle of perturbative agreement)

m Construct there the KMS state for the interacting theory as shown
before.



Summary
m Perturbative algebraic quantum field theory.

m Mass perturbations can be treated in two ways. The resulting
algebras are x—homeomorphic. The homomorphism is not trivial.

m It can be used to add ‘“virtual masses” to interacting field theories.

m KMS states for massless interacting theories can be constructed also
in the adiabatic limit.

Thanks a lot for your attention!



Conclusion
Expansion in terms of Feynman graphs

Vierooor Vo=Ta(V1®---@ V)

. F_o% 2|E(N)|
T, = eZISI<an<A ’6¢i5¢f> = Z Nlr T 0 ) )
(1 Hiev(r) HE(F)BeDi oi(xi)

regn

where G, is the set of graphs with n vertices

™= H AF(XhXj)/ij'

1<i<j<n

and /;j counts the number of edges joining the vertices i/, j.



Conclusion

Epstain Glaser recursive construction

m Epstein and Glaser used a recursive procedure over the number of
local fields to construct the time ordered products among elements of
y/oc-

m At step n we need to construct all the possible “Feynman
diagrams” with n vertices. These are distributions formed with AF.

m causal factorization F -+ G = F xy G if F 2 G fixes these products
“up to the total diagonal” D C .Z".

m Extension is in general not unique = renormalization freedom.

m Requiring that the extension preserves the Steinmann scaling degree
the freedom is largely restricted. [Brunetti Fredenhagen 2000,
Hollands Wald 2002]



	Plan
	Perturbative algebraic quantum field theory.
	The principle of perturbative agreement
	KMS states over massless solutions
	Conclusion

