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Quantization

Adiabatic limit

Physical input

Spacetime M: a smooth manifold with a smooth
pseudo-Riemannian metric of the Lorentz signature (we choose
the convention (+,−,−, ...,−)). We also assume M to be
globally hyperbolic (has a Cauchy surface).

Configuration space: space of smooth sections of some vector
bundle E π−→ M over M. Examples:

scalar field: E ≡ C∞(M,R),
electromagnetism E = Ω1(M).
free Yang-Mills E = Ω1(M, k), where k is the Lie algebra of some
compact Lie group.

Lagrangian (will be defined later).
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Functionals

We model classical observables as functionals of field
configurations. The space of all the functionals on E is too big,
extra conditions needed.

The first step is to restrict oneself to functionals that are smooth.
Among all the smooth functionals we distinguish the local
functionals, i.e. ones that can be written in the form:

F(ϕ) =

∫
M

f (jkx(ϕ))(x) ,

where ϕ is a field configuration, f is a density-valued function on
the jet bundle over M and jkx(ϕ) is the jet of ϕ at x.
In classical theory it is enough to consider functionals that are
multilocal, i.e. they are sums of products of local functionals,
where (F · G)(ϕ)

.
= F(ϕ)G(ϕ). Let F denote the space of

multilocal functionals on E.
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Spacetime localization of a functional

Next we define the spacetime localization of a
functional.

For a point x ∈ M we want to know if our given
functional F is sensitive to fluctuations of field
configurations around this point.

If this is the case, we say that x belongs to the
spacetime support of F, i.e. x ∈ supp(F).

More precisely:
supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ1, ϕ2 configurations,

suppϕ2 ⊂ U such that F(ϕ1 + ϕ2) 6= F(ϕ1)} .

We assume our functionals to be compactly
supported.
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Dynamics

To implement dynamics we use a generalization of the Lagrange
formalism of classical mechanics.

For the real scalar field
L(f )[ϕ]

.
=

1
2

∫
(∇µϕ∇µϕ− m2ϕ2 + V(ϕ))f dµ, where ϕ ∈ E

and V is some potential, e.g. V(ϕ) = 1
4!ϕ

4.

We need the cutoff function f because M is not compact.

A generalized Lagrangian is a map L : D→ F, which is additive
(weaker than linearity) and supp(L(f )) ⊆ supp(f ).

An action S is an equivalence class of Lagrangians (i.e. S = [L])
under L ∼ L̃ if supp(L− L̃)(f ) ⊂ supp df (differ by a total
divergence).
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Equations of motion and symmetries

The Euler-Lagrange derivative of S = [L] is defined as〈
S′(ϕ0), h

〉
=
〈

L(f )(1)(ϕ0), ϕ
〉

, where f ≡ 1 on suppϕ.

M
supp(f )

supp(ϕ)
f ≡ 1

The field equation is: S′(ϕ0) = 0. The space of solutions is
denoted by ES and multilocal functionals on this space by FS.

A local symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ Γc(TE) such that
∂XS(ϕ0) ≡

〈
S′(ϕ0),X(ϕ0)

〉
= 0, ∀ϕ0 ∈ E.
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Implementing equations of motion

Geometrically, ES is the critical locus of S′.

In the spirit of algebraic geometry, we characterize ES by its
space of polynomials FS.

Define FS = F/F0, where F0 is the ideal generated by elements
of the form ϕ 7→

〈
S′(ϕ),X(ϕ)

〉
, where X is a multilocal vector

field on E.

Let V denote the space of multilocal vector fields on E. We
obtain a sequence:

0→ Ker(δ) ↪→ V
δ−→ F → 0,

with H0(δ) = FS.
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Symmetries and the kernel of δ

The kernel of δ consists of vector fields X ∈ V, which satisfy
∂XS ≡ 0, i.e. of local symmetries.

The space of symmetries includes elements of the form
δ(X ∧ Y) ∈ δ(Λ2V). Such symmetries are called trivial, because
they vanish on ES.

Hence H1(δ) characterizes non-trivial local symmetries.

We obtain a complex (Koszul complex):

. . .→ Λ2V
δ−→ V

δ−→ F → 0,

For the scalar field there ar no non-trivial local symmetries, so
the differential graded algebra (ΛV, δ) is a resolution of FS.
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Local symmetries in Yang-Mills theories

For Yang-Mills theories local symmetries arise from
infinitesimal gauge symmetries. Let g .

= C∞(M, k).

The action of g is given by ρ(ξ)A = DAξ = dA + [A, ξ], ξ ∈ g.

On the level of functionals we obtain
ρ(ξ)F[A]

.
=
〈

F(1)(A),DAξ
〉

.

A general method to quantize theories with local symmetries is
the so called Batalin-Vilkovisky (BV) formalism. Here we
present its version proposed by [K. Fredenhagen, K.R., 2011].

Objective: characterize Finv
S , the space of gauge equivariant

functionals on the space of solutions to EOM’s.
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Classical theory
Quantization

Adiabatic limit

The Chevalley-Eilenberg complex

The space of invariants under a Lie algebra action is given by the
0th cohomology of the Chevalley-Eilenberg complex.

The underlying algebra of this complex is F⊗̂Λg′ which is
essentially the space of multilocal functionals on the graded
manifold E = E[0]⊕ g[1].

For functions we set γF(ξ)
.
= ρ(ξ)F, i.e. γF = ρ(c)F, where

cµ(x) is the evaluation functional on g (ghost). For forms
γc = 1

2 [c, c]. Next we extend γ by the graded Leibniz rule.

We obtain a complex :

0→ F
γ−→ F⊗̂g′ γ−→ . . .

Note that the kernel of γ in degree 0 contains F ∈ F such that
γF(ξ) = 0 for all ξ ∈ g. Hence

Finv = H0(F⊗̂Λg′, γ).
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Classical theory
Quantization

Adiabatic limit

BV complex

The underlying algebra of the BV complex, BV, is the algebra of
covariant functionals on ΠT∗E (or in other words, the space of
multilocal multivector fields on E).

Equip BV with with the Schouten bracket:

{X,F} = ∂XF for X a vector field and F function,
{X,Y} = [X,Y] for X,Y a vector fields,
graded Leibniz rule.

BV is equipped with two differentials: γ and δ. δ encodes the
equations of motion and γ encodes the symmetries.
The classical BV differential is defined as s = δ + γ. It is
implemented by the action S + γ, so that
sF = {F, S + γ} ≡ {F,L(f ) + θ(f )}, where f ≡ 1 on suppF and
L, θ are generalized Lagrangians.
A standard result from homological algebra allows to conclude
that H0(BV, s) = H0(H0(BV, δ), γ) = Finv

S .
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Classical theory
Quantization

Adiabatic limit

More about the bracket

{., .} is of degree −1 and it satisfies the graded Jacobi identity.

For X ∈ Vreg: ∂XF(ϕ) =

∫
Xx(ϕ)

δF
δϕ(x)

dµ(x). Hence the

notation X =

∫
Xxϕ

‡dµ with ϕ‡(x) ≡ δ

δϕ(x)
.

In this notation:

{X,Y} = −
∫ (

δX
δϕ(x)

δY
δϕ‡(x)

+ (−1)|X|
δX

δϕ‡(x)

δY
δϕ(x)

)
dµ.

The structure (ΛV, {., .}) is an example of a Gerstenhaber
algebra. To get a BV algebra we need to construct a certain
nilpotent differential4.
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Classical theory
Quantization

Adiabatic limit
Non-renormalized theory
Renormalization

?-product

Let Freg be the space of functionals whose derivatives are test
functions, i.e. F(n)(ϕ) ∈ C∞c (Mn),

Let S0 be the action of the free (i.e. quadratic) theory. We define
the ?-product (deformation of the pointwise product):

F ? G .
= m ◦ exp(i~Γ∆)(F ⊗ G) ,

where m is the pointwise multiplication and Γ∆ is the functional
differential operator

Γ∆(F⊗G)
.
=

1
2

∫
∆(x, y)

δF
δϕ(x)

⊗ δG
δϕ(y)

dx dy, ∆ = ∆A−∆R ,

∆R, ∆A are the retarded and advanced Green functions
corresponding to S′′0 seen as a linear operator on E.
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Classical theory
Quantization

Adiabatic limit
Non-renormalized theory
Renormalization

Time-ordered product

The time-ordering operator T is defined as:

T(F)
.
= ei~Γ∆D (F) ,

where Γ∆DF =

∫
∆D(x, y)

δ2F
δϕ(x)δϕ(y)

dxdy and

∆D =
1
2

(∆R + ∆A) is the Dirac propagator.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure with covariance i~∆D,

TF(ϕ)
formal

=

∫
F(ϕ− φ)dµi~∆D(φ) .

Define the time-ordered product ·T on T(Freg[[~]]) by:

F ·T G .
= T(T−1F · T−1G) .

T allows us to transport the classical structure into the quantum
algebra.
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Classical theory
Quantization

Adiabatic limit
Non-renormalized theory
Renormalization

Interaction

For V ∈ Freg the formal S-matrix is defined as the time-ordered
exponential:

S(V)
.
= eV

T = T(eT
−1V) .

We can now define the relative S-matrix by the formula of
Bogoliubov:

SV(F)
.
= S(V)?−1 ? S(V + F) .

SV(F) is the generating functional for the interacting fields:

d
dλ

∣∣∣
λ=0

SiV/~(λF) ≡ RV(F) ,

All these structures extend to ΛVreg.
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Classical theory
Quantization

Adiabatic limit
Non-renormalized theory
Renormalization

QME and the quantum BV operator

The quantum master equation is the condition

{eiV/~
T , S0} = 0 ,

This is equivalent to the following condition on the S-matrix:
1
2
{S + V, S + V}T = i~4 (S + V) ,

where4 is explicitely given as:

4X = (−1)(1+|X|)
∫

dx
δ2X

δϕ‡(x)δϕ(x)
, X ∈ ΛVreg .

(ΛVreg, {., .},4) is a BV algebra.
The quantum BV operator ŝ is defined as:

ŝ .
= R−1

V ◦ {., S} ◦ RV .

Equivalently: ŝ = {., S0 + V}T − i~4.
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Renormalized time-ordered products

First define an equivalent ?-product by replacing
i
2

∆ with a

Hadamard 2-point function
i
2

∆ + H.

The product can be extended to a larger space Fµc (certain
condition on the wavefront set of F(n)(ϕ)).

The time-ordered product T n of n local functionals is well
defined if their supports are disjoint.

To extend T n to T n
r , which is well defined for arbitrary local

functionals we use the causal approach of Epstein and Glaser
(see the talk of Nicola).

It was shown in [K. Fredenhagen, KR, 2011] that T n
r ’s define a binary

product ·T r on an appropriate domain.
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Renormalized QME and the quantum BV operator

·Tr is an associative, commutative product, we can use it in place
of ·T and define the renormalized QME and the quantum BV
operator as:

{eiV/~
Tr , S0} = 0

ŝ(X)
.
= e−iV/~

Tr ·Tr

(
{eiV/~

Tr ·Tr X, S0}
)
,

These formulas get even simpler if we use the anomalous Master
Ward Identity ([Brenecke-Dütsch 08, Hollands 08]):

0 =
1
2
{V + S0,V + S0}Tr −4V ,

ŝX = {X,V + S0}Tr −4
(1)
V (X) ,

where4V is a local functional depending on the interaction V .
4(1)

V is well defined on local vector fields in contrast to4 and
we interpret it as the renormalized BV Laplacian.
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Classical theory
Quantization

Adiabatic limit
Non-renormalized theory
Renormalization

Renormalized QME and the quantum BV operator

·Tr is an associative, commutative product, we can use it in place
of ·T and define the renormalized QME and the quantum BV
operator as:

{eiV/~
Tr , S0} = 0
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Algebraic adiabatic limit

Assume that we have unitaries S(f ), f ∈ Dn with S(0) = 0,
which generate a *-algebra A and satisfy for f , g, h ∈ D

Bogoliubov’s factorization relation

S(f + g + h) = S(f + g)S(g)−1S(g + h)

if the past J− of supph does not intersect suppf .

We can obtain these as formal S-matrices S(f )
.
= S(V(f )),

discussed previously for a generalized Lagrangian

V(f ) =
n∑

j=1

∫
Aj(x)f j(x)dµ(x), where f ∈ Dn and each Aj(x) is

a local function on E.

Kasia Rejzner CME and QME 19 / 27
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Adiabatic limit

S-matrices

the map f 7→ S(f ) induces a large family of objects that satisfy
Bogoliubov’s factorisation relation, which are labeled by test
functions g ∈ Dn, namely the relative S-matrices

f 7→ Sg(f ) = S(g)−1S(g + f ) .

In the next step we want to remove the restriction to interactions
with compact support. Let G : M → Rn be smooth and O be
bounded. Set

[G]O = {g ∈ Dn|g ≡ G on a neighborhood of J+(O) ∩ J−(O)} .

We consider the A-valued maps

SG,O(f ) : [G]O 3 g 7→ Sg(f ) ∈ A .

The local algebra AG(O) is defined to be the algebra generated
by SG,O(f ), suppf ⊂ O.
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Relative S-matrices

Crucial results:

supp(g− g′) ∩ J−(suppf ) = ∅ implies

Sg(f ) = Sg′(f ) .

supp(g− g′) ∩ J+(suppf ) = ∅ implies

Sg(f ) = AdSg′(g− g′)−1(Sg′(f )) .

Colloraly (see e.g. [K. Fredenhagen, KR 2015])

The interacting local net O 7→ AG(O) is well defined and satisfies the
axioms of locality, covariance and the time-slice axiom.
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QME in the algebraic adiabatic limit

In non-abelian gauge theories the cutoff introduced into the
interaction Lagrangian affects the gauge transformation, so the
QME cannot hold in the naïve sense.

We have to go to more abstract level and formulate the QME on
the level of natural Lagrangians.

Let S0 be the free generalized Lagrangian and and S1 the
interaction term (including θ). The QME on the level of
generalized Lagrangians reads [K. Fredenhagen, K.R. 2011]:

e−iS1/~
Tr ·Tr

(
{eiS1/~

Tr , S0}?
)
∼ 0 ,

Physical interpretation: invariance ot the S-matrix in the
adiabatic limit.

Kasia Rejzner CME and QME 22 / 27



Classical theory
Quantization

Adiabatic limit

QME in the algebraic adiabatic limit

In non-abelian gauge theories the cutoff introduced into the
interaction Lagrangian affects the gauge transformation, so the
QME cannot hold in the naïve sense.

We have to go to more abstract level and formulate the QME on
the level of natural Lagrangians.

Let S0 be the free generalized Lagrangian and and S1 the
interaction term (including θ). The QME on the level of
generalized Lagrangians reads [K. Fredenhagen, K.R. 2011]:

e−iS1/~
Tr ·Tr

(
{eiS1/~

Tr , S0}?
)
∼ 0 ,

Physical interpretation: invariance ot the S-matrix in the
adiabatic limit.

Kasia Rejzner CME and QME 22 / 27



Classical theory
Quantization

Adiabatic limit

QME in the algebraic adiabatic limit

In non-abelian gauge theories the cutoff introduced into the
interaction Lagrangian affects the gauge transformation, so the
QME cannot hold in the naïve sense.

We have to go to more abstract level and formulate the QME on
the level of natural Lagrangians.

Let S0 be the free generalized Lagrangian and and S1 the
interaction term (including θ). The QME on the level of
generalized Lagrangians reads [K. Fredenhagen, K.R. 2011]:

e−iS1/~
Tr ·Tr

(
{eiS1/~

Tr , S0}?
)
∼ 0 ,

Physical interpretation: invariance ot the S-matrix in the
adiabatic limit.

Kasia Rejzner CME and QME 22 / 27



Classical theory
Quantization

Adiabatic limit

QME in the algebraic adiabatic limit

In non-abelian gauge theories the cutoff introduced into the
interaction Lagrangian affects the gauge transformation, so the
QME cannot hold in the naïve sense.

We have to go to more abstract level and formulate the QME on
the level of natural Lagrangians.

Let S0 be the free generalized Lagrangian and and S1 the
interaction term (including θ). The QME on the level of
generalized Lagrangians reads [K. Fredenhagen, K.R. 2011]:

e−iS1/~
Tr ·Tr

(
{eiS1/~

Tr , S0}?
)
∼ 0 ,

Physical interpretation: invariance ot the S-matrix in the
adiabatic limit.

Kasia Rejzner CME and QME 22 / 27



Classical theory
Quantization

Adiabatic limit

QME in the algebraic adiabatic limit

The QME can be related to the BRST current J. Classically we
have

dJ(x) =
∑
α

θα0 (x) · δ(S0 + SI + θ)

δϕα(x)
,

Write L(f0, f1, f2) = L0(f0) + LI(f1) + θ(f2), where f1 ≡ 1 on
supp f0 and f2 ≡ 1 on supp f1. Then

{eiV/~
Tr ,L0(f0)}? = eiV/~

Tr ·Tr dJ(f2) +4V ,

where V = LI(f1) + θ(f2).

Result of [Hollands 08]: 4V can be removed, so RV(dJ(f2))
o.s.
= 0

(conservation of the current).
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Quantum BV operator in the algebraic adiabatic limit

Assume that4V can be removed. Define

ŝV(X)
.
= R−1

V ({RV(X), S0}+ RV(dJ(f2)) ? RV(X)− RV(dJ(f2) ·Tr X)) .

A straightforward computation shows that

ŝV(X) = s(X) +4V(X) .

At this point it is not even clear that ŝV is nilpotent! However, if
we can remove the anomaly4V(X), then

ŝV(X) = s(X) ,

so we reduce the problem to the classical one.
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ŝV(X)
.
= R−1

V ({RV(X), S0}+ RV(dJ(f2)) ? RV(X)− RV(dJ(f2) ·Tr X)) .

A straightforward computation shows that
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Quantum observables

The idea presented on the previous slide doesn’t provide
nilpotent ŝV in the general case. However, ŝV is nilpotent modulo
higher orders in ~, so there might be a suitable algebraic
structure to deal with the issue.

The standard way to proceed is to replace ŝV with the
commutator with the interacting charge Q. It was shown in [KR

13] that
RV(ŝV(X)) = [RV(X),RV(Q)]? + I0 ,

where I0 is an element of the ideal generated by the free EOM’s.
This implies that if X ∈ ker(ŝV) then [RV(X),RV(Q)]?

o.s.
= 0. This

generalizes the result of [Hollands 08] to the case with
non-vanishing anomaly.
However, the opposite implication doesn’t work, so the
interpretation of this result is unclear.
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higher orders in ~, so there might be a suitable algebraic
structure to deal with the issue.
The standard way to proceed is to replace ŝV with the
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RV(ŝV(X)) = [RV(X),RV(Q)]? + I0 ,

where I0 is an element of the ideal generated by the free EOM’s.

This implies that if X ∈ ker(ŝV) then [RV(X),RV(Q)]?
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RV(ŝV(X)) = [RV(X),RV(Q)]? + I0 ,

where I0 is an element of the ideal generated by the free EOM’s.
This implies that if X ∈ ker(ŝV) then [RV(X),RV(Q)]?
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Summary

Summary

The algebraic adiabatic limit works fine for theories without
gauge symmetries.

In the presence of gauge theoires one can use the BV formalism
combined with the Epstein-Glaser renormalization to construct
the theory.

The gauge invariance of the S-matrix (QME) can be obtained
only in the adiabatic limit.

The standard solution to use the commutator with the conserved
charge has a clear mathematical meaning only in the situation
where the anomaly4V(X) can be removed.

Proposal: take the adiabatic limit seriously and give sense to the
renormalized QME in this limit.
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The gauge invariance of the S-matrix (QME) can be obtained
only in the adiabatic limit.

The standard solution to use the commutator with the conserved
charge has a clear mathematical meaning only in the situation
where the anomaly4V(X) can be removed.

Proposal: take the adiabatic limit seriously and give sense to the
renormalized QME in this limit.
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Summary

Thank you for your attention!
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