Modular Nuclearity: a generally covariant perspective

Ko Sanders

ko.sanders@itp.uni-leipzig.de

Workshop on QFT, Munich, 9 October 2015

based on joint work with Gandalf Lechner

UNIVERSITAT LEIPZIG

Inst. f. Theoretische Physik

- Introduction
- 2 Modular Nuclearity in Curved Spacetimes
- General Results
- Free Scalar Fields
- Conclusions

Nuclearity Conditions in QFT

Buchholz and Wichmann (1986) introduced a nuclearity condition in algebraic QFT (Minkowski space): [CMP **106**, 321]

For any $\beta > 0$ and bounded region O, the map

$$\Theta: \mathcal{A}(O) \to \mathcal{H}: \mathbf{A} \mapsto \mathbf{e}^{-\beta H} \mathbf{A} \Omega,$$

is nuclear, where H is the Hamiltonian and Ω the ground state.

This Hamiltonian nuclearity condition

- encodes good high energy behaviour in bounded spacetime regions, needed for good thermodynamical properties,
- holds for ground states of the massive free scalar field,
- was extended to static spacetimes by Verch [LMP 29, 297 (1993)], and for Dirac fields by D'Antoni, Hollands [CMP 261, 133 (2006)].

Modular Nuclearity in QFT

The modular nuclearity condition uses a modular operator instead of the Hamiltonian: [Buchholz, D'Antoni, Longo CMP 129, 115 (1990)]

For any $\alpha \in (0, \frac{1}{2})$ and bounded regions $\tilde{O} \in O$, the map

$$\Xi: \mathcal{A}(\tilde{\mathcal{O}}) \to \mathcal{H}: \mathcal{A} \mapsto \Delta^{\alpha} \mathcal{A}\Omega$$

is nuclear, where Δ is a modular operator of Ω for $\mathcal{A}(O)$.

The physical interpretation of Δ is unclear, but modular nuclearity

- is equivalent to Hamiltonian nuclearity, in the case of ground states, because the spectra of Δ and H are related,
- has a nice physical consequence: the split property,
- was used in constructive 2D integrable models to find local observables [Buchholz and Lechner, AHP 5, 1065 (2004)],
- can be generalised to other states and curved spacetimes.

Why use Modular Operators?

To avoid some of the following problems:

- Hamiltonians only exist in special spacetimes and for special states, and they contain global information,
- Ocally smeared energy densities are a good alternative, but they are difficult to handle, even for quasi-free states of a free scalar field (not of second quantised form, possibly not essentially self-adjoint),
- the Hadamard condition is local, generally covariant and encodes finite energy density for free fields, but is hard to generalise to an axiomatic setting Verch [CMP 205, 337(1999)].

Questions about Modular Nuclearity

What we would like to know about modular nuclearity:

- How far can we generalise the statement of the property?
- 4 How does it behave in the light of locality and general covariance?
- What does it mean physically?
- For a free scalar field, how many states satisfy it?
- Does it reduce to the Hadamard condition for free fields?

Modular Operators

To any state $\omega: \mathcal{A} \to \mathbb{C}$ one can associate:

- a GNS-representation $(\pi_{\omega}, \mathcal{H}_{\omega}, \Omega_{\omega})$,
- an orthogonal projection $Q_{\omega} \in \pi_{\omega}(\mathcal{A})''$ onto the subspace

$$\mathcal{H}'_{\omega} := \overline{\pi_{\omega}(\mathcal{A})'\Omega_{\omega}},$$

ullet a Tomita operator $\mathcal{S}_\omega:=J_\omega\Delta_\omega^{rac{1}{2}}$ (typically unbounded) with

$$S_{\omega}Q_{\omega}A\Omega_{\omega}:=Q_{\omega}A^*\Omega_{\omega},\qquad A\in\pi_{\omega}(\mathcal{A})''.$$

The modular operator Δ_{ω} is extended by 0 on $(\mathcal{H}'_{\omega})^{\perp}$.

Examples:

- **1** When ω is pure, Q_{ω} projects onto the span of Ω_{ω} , $\Delta_{\omega} = Q_{\omega}$.
- **②** When Ω_{ω} is cyclic and separating, $Q_{\omega} = 1$. (Reeh-Schlieder)

The /P Property

Instead of a nuclearity condition, we impose (stronger) *I*^p conditions:

For any map $\Xi: B_1 \to B_2$ between Banach spaces, $n \in \mathbb{N}$,

$$\alpha_n(\Xi) := \inf_{\Xi_n \text{ of rank } \le n} \|\Xi - \Xi_n\|$$

is the n^{th} approximation number. Ξ is called an l^p -map for p > 0 iff the p-quasi-norm is finite:

$$\|\Xi\|_{p} := \left(\sum_{n=1}^{\infty} \alpha_{n}(\Xi)^{p}\right)^{\frac{1}{p}} < \infty.$$

- For Hilbert spaces B_i , $\alpha_n(\Xi)$ are the decreasing eigenvalues of $|\Xi|$,
- I^p-maps are compact and they build a linear space,
- \odot the smaller p, the stronger the requirement.

Estimates for $\|.\|_p$

The p-quasi-norms satisfy

$$\begin{split} \|\Xi + \Theta\|_{p} &\leq \max\{2, 2^{\frac{2}{p}-1}\} (\|\Xi\|_{p} + \|\Theta\|_{p}) \\ \|\Xi \cdot \Theta\|_{p} &\leq \|\Xi\| \cdot \|\Theta\|_{p} \\ \|\Xi \cdot \Theta\|_{r} &\leq \|\Xi\|_{p} \cdot \|\Theta\|_{q}, \qquad r^{-1} = p^{-1} + q^{-1}. \end{split}$$

To obtain new I^p maps from old ones we will often use

Lemma

If $\Xi_2: B_1 \to B_2$ and $\Xi_3: B_1 \to B_3$ are linear maps such that

$$\|\Xi_3(b)\| \leq \|\Xi_2(b)\|, \qquad b \in B_1,$$

then $\|\Xi_3\|_p \leq \|\Xi_2\|_p$ for all p > 0.

Definition of Modular Nuclearity

A generally covariant QFT (GCQFT) is a functor: $M \to \mathcal{A}(M)$.

A state ω on $\mathcal{A}(M)$ satisfies the modular nuclearity condition iff for all causal embeddings $\tilde{O} \subseteq O \subseteq M$ with bounded range and all $\alpha \in (0, \frac{1}{2})$, the following maps are I^p for all p > 0:

$$\Xi_{\alpha}: \mathcal{A}(\tilde{O}) \to \mathcal{H}_{\omega|_{O}}: \mathbf{A} \mapsto \Delta_{\omega|_{O}}^{\alpha} \pi_{\omega|_{O}}(\mathbf{A}) \Omega_{\omega|_{O}},$$

where $\omega|_{\mathcal{O}}$ is the restriction of ω to $\mathcal{A}(\mathcal{O})$.

Our definition:

- differs slightly from previous ones,
- makes sense for all states in C*-algebraic GCQFT's,
- is preserved under pull-backs,
- may be supplemented by estimates on $\|\Xi_{\alpha}\|_{p}$.

A Useful Estimate

Shrinking \tilde{O} cannot increase $\|\Xi_{\alpha}\|_{p}$. The same holds for enlarging O:

Lemma

Let $\mathcal{B} \subset \mathcal{A}$ be an inclusion of C^* -algebras and ω be a state on \mathcal{A} . Then

$$\|\Delta_{\omega}^{\alpha}\pi_{\omega}(b)\Omega_{\omega}\| \leq \|\Delta_{\omega|_{\mathcal{B}}}^{\alpha}\pi_{\omega|_{\mathcal{B}}}(b)\Omega_{\omega|_{\mathcal{B}}}\|, \qquad b \in \mathcal{B}.$$

Main ingrediens of the proof:

- The GNS-representation of $\omega|_{\mathcal{B}}$ is contained in that of ω .
- We have $\Delta_{\omega} \leq \Delta_{\omega|_{\mathcal{B}}}$ on the form domain of $\Delta_{\omega|_{\mathcal{B}}}$, and
- $x \mapsto x^{\beta}$ is operator monotone on $x \ge 0$ for $\beta \in [0, 1]$, by Löwner's Theorem.
- Tricky part: $\mathcal{H}_{\omega|_{\mathcal{B}}} \subsetneq \mathcal{H}_{\omega}$ in general, so $\Delta_{\omega|_{\mathcal{B}}}$ and Δ_{ω} act on different spaces. Extending $\Delta_{\omega|_{\mathcal{B}}}$ by 0 may not preserve the estimate.

Convex Combinations

Let ω_1, ω_2 be two states on \mathcal{A} and $\lambda_1, \lambda_2 \geq 0$ with $\lambda_1 + \lambda_2 = 1$.

Proposition

For $\omega := \lambda_1 \omega_1 + \lambda_2 \omega_2$ and $\alpha \in (0, \frac{1}{2})$:

$$\|\Delta_{\omega}^{\alpha}\pi_{\omega}(a)\Omega_{\omega}\| \leq \sum_{i=1}^{2}\sqrt{\lambda_{i}}\|\Delta_{\omega_{i}}^{\alpha}\pi_{\omega_{i}}(a)\Omega_{\omega_{i}}\|.$$

Proof:

We may identify $\pi_{\omega}(\mathbf{a}) := \pi_{\omega_1}(\mathbf{a}) \oplus \pi_{\omega_2}(\mathbf{a})$ in $\mathcal{H} := \mathcal{H}_{\omega_1} \oplus \mathcal{H}_{\omega_2}$, with $\Omega_{\omega} := \sqrt{\lambda_1} \Omega_{\omega_1} \oplus \sqrt{\lambda_2} \Omega_{\omega_2}$. We then have $\pi_{\omega}(\mathcal{A}) \subset \mathcal{R}$ for the algebra

$$\mathcal{R}:=\pi_{\omega_1}(\mathcal{A})''\oplus\pi_{\omega_2}(\mathcal{A})''.$$

Note that (\mathcal{R}, Ω) has $\Delta = \Delta_{\omega_1} \oplus \Delta_{\omega_2}$ and apply the previous lemma.

Convex Combinations

Let ω_1, ω_2 be two states on \mathcal{A} and $\lambda_1, \lambda_2 \geq 0$ with $\lambda_1 + \lambda_2 = 1$.

Proposition

For $\omega := \lambda_1 \omega_1 + \lambda_2 \omega_2$ and $\alpha \in (0, \frac{1}{2})$:

$$\|\Delta_{\omega}^{\alpha}\pi_{\omega}(a)\Omega_{\omega}\| \leq \sum_{i=1}^{2}\sqrt{\lambda_{i}}\|\Delta_{\omega_{i}}^{\alpha}\pi_{\omega_{i}}(a)\Omega_{\omega_{i}}\|.$$

Corollary

Modular nuclearity is preserved under convex combinations, with

$$\|\Xi_{\alpha;\omega}\|_{p} \leq \max\{2,2^{\frac{2}{p}-1}\}\sum_{i=1}^{2}\sqrt{\lambda_{i}}\|\Xi_{\alpha;\omega_{i}}\|_{p}.$$

Spacetime Deformation

Using the time-slice axiom we can perform spacetime deformations:

Given $\tilde{O} \subseteq O \subseteq M$ we can deform M in the past to some spacetime M' and find $\tilde{V} \subseteq V \subseteq M'$ as shown.

The causal propagation then implies

Theorem

Any state ω on $\mathcal{A}(M')$ with modular nuclearity for $\tilde{V} \in V \in M'$ propagates to a state on $\mathcal{A}(M)$ with modular nuclearity for $\tilde{O} \in O \in M'$.

Second Quantisation

Consider a massive free scalar field with Weyl algebra W(M).

• For a quasi-free state ω on $\mathcal{W}(O)$, $O \in M$, the operators

$$\mathcal{S}_{\omega} = \Gamma(\mathcal{S}_{\omega}), \qquad \mathcal{J}_{\omega} = \Gamma(j_{\omega}), \qquad \Delta_{\omega} = \Gamma(\delta_{\omega})$$

are second quantised, with $s_{\omega} = j_{\omega} \delta_{\omega}$.

• In the one-particle Hilbert space $\mathcal{H}_{1,O}$ we have

$$s_{\omega}\phi(f)\Omega_{\omega}=q_{\omega}\phi(\overline{f})\Omega_{\omega}$$

for all $f \in C_0^\infty(O)$ and a projection q_ω onto a subspace $\mathcal{H}'_{1,O}$.

ullet For any $ilde{O} \in O$ we let $ilde{E}$ denote the real orthogonal projection onto

$$ilde{H}:=q_{\omega}C_0^{\infty}(ilde{O})\Omega_{\omega}.$$

Second Quantisation - II

 δ_{ω} is typically unbounded, but $s_{\omega} \tilde{E} = \tilde{E}$, so

$$\|\delta_{\omega}^{\frac{1}{4}}\tilde{E}\|^{2} = \|\tilde{E}\delta_{\omega}^{\frac{1}{2}}\tilde{E}\| = \|\tilde{E}j_{\omega}\tilde{E}\| \leq 1.$$

We also have $\|\delta_{\omega}^{\alpha}\tilde{E}\| \leq 1$ for $\alpha \in [0, \frac{1}{2}]$. Moreover:

Theorem

For all $\alpha \in (0, \frac{1}{2})$ the following two statements are equivalent:

• For all p > 0 the following map is I^p :

$$\Xi_{\alpha}: \mathcal{W}(\tilde{\textit{O}}) \rightarrow \mathcal{H}_{\omega|_{\textit{O}}}: \textit{A} \mapsto \Delta_{\omega|_{\textit{O}}}^{\alpha} \pi_{\omega|_{\textit{O}}}(\textit{A}) \Omega_{\omega|_{\textit{O}}}.$$

② For all p > 0 the real linear operator $\delta_{\omega}^{\alpha} \tilde{E}$ is l^{p} on $\mathcal{H}_{1,O}$.

This reduces the problem to one-particle modular nuclearity.

Relation to the Symplectic Form

• Using ω_{2+} we define the Hilbert space

$$\mathcal{K}_O = \overline{C_0^{\infty}(O)/\{\omega_{2+}(\overline{f},f)=0\}}.$$

For $O \in M'$, P_O projects orthogonally onto $\mathcal{K}_O \subset \mathcal{K}_M$.

• The symplectic form $\sigma = -2i\omega_{2-}$ is expressed by an operator

$$\Sigma_{\mathcal{O}}: \mathcal{K}_{\mathcal{O}} \to \mathcal{K}_{\mathcal{O}}, \qquad \langle f, \Sigma f' \rangle = \frac{i}{2} \sigma(\overline{f}, f').$$

 $\Sigma_O = P_O \Sigma_M P_O$ is bounded.

Proposition

One-particle modular nuclearity is equivalent to

$$(P_O - \Sigma_O^2)^{\beta} P_{\tilde{O}} : \mathcal{K} \to \mathcal{K}$$

being I^p iff $\beta, p > 0$, for all bounded diamond regions $\tilde{O} \subseteq O \subseteq M$.

Modular Nuclearity for Ground States

In ground states, $\Sigma_M = \text{sign}(H)$ with Hamiltonian H related to $-\Delta + m^2$ on a Cauchy surface C. Note:

$$1 - \Sigma_M^2 = 0$$
, but $P_O - \Sigma_O^2 \neq 0$ in general.

To establish one-particle nuclearity we proved:

Theorem

For any complete Riemannian manifold C, m > 0, $a, b, c \in \mathbb{R}$ and $\tilde{\chi}, \chi \in C_0^{\infty}(\Sigma)$ with $\chi \equiv 1$ on a nbhd. of $\operatorname{supp}(\tilde{\chi})$,

$$(-\Delta + m^2)^a (1 - \chi)(-\Delta + m^2)^b \tilde{\chi} (-\Delta + m^2)^c$$
.

is I^p on $L^2(\mathcal{C})$ for all p > 0.

The proof uses finite propagation speeds. [Cheeger, Gromov, Taylor J.Diff.Geom. **17**, 15 (1982)]

Quasi-free Hadamard States

For general quasi-free Hadamard states:

- In static spacetimes, we improved the analysis of their local quasi-equivalence. [Verch, CMP 160, 507 (1994)]
 The Hadamard property implies modular nuclearity (but not vice-versa!)
- In general globally hyperbolic space times, we used spacetime deformation to reduce to the static case.

Our main result:

Theorem

A quasi-free Hadamard state of a free scalar quantum field in any globally hyperbolic space-time (with any mass, scalar curvature coupling or external potential energy) satisfies modular nuclearity.

Conclusions and Outlook

Modular nuclearity

- is well-defined and well-behaved for generally covariant QFT,
- for quasi-free states is equivalent to one-particle modular nuclearity, related to the symplectic form, and
- strictly weaker than the Hadamard condition for free scalar fields.

Future directions:

- When is modular nuclearity equivalent to Hamiltonian nuclearity?
- Can we obtain good estimates for $\|\Xi_{\alpha}\|_{p}$?
- Apply these estimates to estimate entanglement entropy.
- Does modular nuclearity help to construct non-trivial GCQFT's?

