On the improper ground state of Nelson's Massless Model

Vincent Beaud

Institute for Theoretical Physics ETH Zürich

October 17, 2015

Work in progress with G.M. Graf

"QFT: Infrared problems and constructive aspects", TU Munich

IR catastrophe illustration: van Hove model

van Hove Hamiltonians (van Hove '52, Dereziński '03) are a class of quadratic Hamiltonians on \mathcal{F} with linear perturbation in a and a^* :

$$\begin{split} H_{\rm vh} &= \,\mathrm{d}\Gamma(\omega) + a^*(\omega f) + a(\omega f) \\ &= \int_{\mathbb{R}^3} \mathrm{d}k \, \omega(k) \big(a^*(k) + \overline{f(k)}\big) \big(a(k) + f(k)\big) - \|\omega^{1/2} f\|_2^2 \,. \end{split}$$

Assumptions:

- ullet $\omega(k) = |k|$ (massless field),
- $\qquad \omega^{\alpha} f \in L^2(\mathbb{R}^3, \mathrm{d} k) \text{ for } \alpha = \tfrac{1}{2}, 1.$

If $f \in L^2(\mathbb{R}^3, \mathrm{d}k)$, apply the Weyl transformation

$$W(f)H_{\rm vh}W(f)^* = H_{\rm B} - \|\omega^{1/2}f\|_2^2$$
.

 $H_{\rm vh}$ has ground state $W(f)^*\Omega$ (coherent state). Mean number of photons in ground state is $\|f\|_2^2$ (IR catastrophe).

Nelson's massless model (N '64, Fröhlich '73, Pizzo '03)

One spinless non-relativistic particle (electron) coupled to a massless bosonic radiation field (photons): $\mathcal{H} = L^2(\mathbb{R}^3, \mathrm{d}x) \otimes \mathcal{F}$. Hamiltonian:

$$H = \frac{p^2}{2} \otimes 1 + 1 \otimes H_{\mathrm{B}} + g \int_{\mathbb{R}^3} \frac{\mathrm{d}k}{\sqrt{2|k|}} \left(e^{-ik \cdot x} \otimes a^*(k) + e^{ik \cdot x} \otimes a(k) \right) \kappa(k)$$

with $p=-i\nabla_x$, $H_{\rm B}={
m d}\Gamma(\omega)$, $\omega(k)=|k|$ and κ an UV cutoff (form factor of the electron).

- Interaction is infinitesimal wrt free Hamiltonian H_0 ⇒ H is self-adjoint on $D(H_0)$ and bounded below.
- lacksquare H is translation invariant: [H,P]=0 for $P=p\otimes 1+1\otimes P_{\mathrm{B}}.$
- Fibration of the Hilbert space: \exists a unitary I such that

$$\mathcal{H} = I^* \left(\int_{\mathbb{H}} d\xi \, \mathcal{H}(\xi) \right) I, \qquad \mathcal{H}(\xi) \cong \mathcal{F}.$$

Idea:
$$L^2(\mathbb{R}^3_x, \mathcal{F}) \rightsquigarrow L^2(\mathbb{R}^3_{\xi}, \mathcal{F})$$
.

Nelson's massless model: Fibre decomposition

Hamiltonian on $\mathcal{H}(\xi)$:

$$\begin{split} H(\xi) &= \, \frac{1}{2} (\xi - P_{\mathrm{B}})^2 + H_{\mathrm{B}} + g \int\limits_{\mathbb{R}^3} \frac{\mathrm{d}k}{\sqrt{2|k|}} \big(a^*(k) + a(k)\big) \kappa(k) \\ &= \, \frac{1}{2} (\xi - P_{\mathrm{B}})^2 + H_{\mathrm{B}} + a^*(\omega g) + a(\omega g) \,, \end{split}$$

with
$$P_{\rm B}=\int {\rm d}k\; k\; a^*(k)a(k)$$
, $\omega(k)=|k|$ and $g(k)=g\frac{\kappa(k)}{\sqrt{2|k|^3}}$.

Assumptions and properties:

- Restrict to $|\xi| < 1 2a$ for (small) a > 0 (non-relativistic electron).
- lacksquare $\omega^{\alpha}g\in L^2(\mathbb{R}^3,\mathrm{d}k)$ for $\alpha=\frac{1}{2},1$, but $g\not\in L^2(\mathbb{R}^3,\mathrm{d}k)$.
- For $\xi \neq 0$, $H(\xi)$ has purely ac spectrum (\Rightarrow no ground state) (Fröhlich '73, Hasler-Herbst '08)

Nelson's massless model: improper ground state

Hamiltonian on $\mathcal{H}(\xi)$:

$$H(\xi) = \frac{1}{2}(\xi - P_{\rm B})^2 + H_{\rm B} + a^*(\omega g) + a(\omega g),$$

with
$$\omega(k) = |k|$$
 and $g(k) = g \frac{\kappa(k)}{\sqrt{2|k|^3}}$.

■ Assume anyway: \exists ground state $\Phi(\xi)$: $H(\xi)\Phi(\xi) = E(\xi)\Phi(\xi)$ and it is coherent for $|k| \to 0$, i.e. $a(k)\Phi(\xi) \sim -f(k)\Phi(\xi)$, then

$$f(k) \underset{|k| \to 0}{\approx} g \frac{\kappa(k)}{\sqrt{2|k|} (|k| - k \cdot v)}, \qquad v = \nabla E(\xi).$$

- \bullet For $|k| \to 0$, ground state has formal expression $\Phi(\xi) = W(f)^*\Omega.$
- $f \notin L^2(\mathbb{R}^3, \mathrm{d}k) \Rightarrow \Phi(\xi)$ is not normalizable (improper).

Goal: $H(\xi)$ has ground state after (formal) Weyl transformation W(f). (Fröhlich '73, Pizzo '03)

Existence of ground state: Step 1

Set IR cutoffs $\sigma > 0$ on interaction and $\sigma \geqslant \tau \geqslant 0$ on Fock space:

$$H_{\tau}^{\sigma}(\xi) = \frac{1}{2}(\xi - P_{\text{B},\tau})^2 + H_{\text{B},\tau} + a^*(\omega g_{\sigma}) + a(\omega g_{\sigma}),$$

and $H_{\sigma}(\xi) \equiv H_{\sigma}^{\sigma}(\xi)$.

Let $\frac{1}{2} < q < 1$ be arbitrary, but fixed along with (small) a > 0.

Theorem

For sufficiently small g (depending on a and q, but not on σ), $H_{\sigma}(\xi)$ has a non-degenerate ground state $\left(E_{\sigma}(\xi), P_{\sigma}(\xi)\right)$ with gap

$$\Delta_{\sigma}(\xi) \geqslant qa\sigma$$
,

for all $\sigma>0$ and $|\xi|\leqslant 1-2a$. $(E_{\sigma}(\xi),P_{\sigma}(\xi))$ are real-analytic in such ξ .

The proof is inductive in $\sigma = \sigma^*/2^n$ for σ^* large enough and $n \in \mathbb{N}_0$.

Existence of ground state: Step 1

Base case: $g_{\sigma} \equiv 0$ for large $\sigma > 0 \quad \Rightarrow \quad$ ground state is vacuum Ω_{σ} .

Induction step: $H_{\sigma}(\xi)$ has GS $\Psi_{\sigma}(\xi)$ with energy $E_{\sigma}(\xi)$ and gap $\geqslant qa\sigma$. $\sigma \leadsto \sigma/2 = \tau$.

■ Lower cutoff of Fock space: $H_{\sigma}(\xi) \equiv H_{\sigma}^{\sigma}(\xi) \leadsto H_{\tau}^{\sigma}(\xi)$. GS $\Omega_{\tau,\sigma} \otimes \Psi_{\sigma}(\xi)$ with energy $E_{\sigma}(\xi)$ and gap $\geqslant a\tau$.

Only need:
$$E_{\sigma}(\xi - p) + h - E_{\sigma}(\xi) \geqslant \frac{3}{2}ah$$
, $(|p| \leqslant h)$.

■ Lower cutoff of interaction: $H^{\sigma}_{\tau}(\xi) \leadsto H_{\tau}(\xi)$. $E_{\sigma}(\xi) + qa\tau$ is in a gap for $H^{\sigma}_{\tau}(\xi)$ and $E_{\tau}(\xi) \leqslant E_{\sigma}(\xi)$.

Show that $E_{\sigma}(\xi) + qa\tau$ is still in a gap for $H_{\tau}(\xi)$.

$$A + B - z = (A - z)^{1/2} (1 + (A - z)^{-1/2} B(A - z)^{-1/2}) (A - z)^{1/2}$$

is still invertible if $||(A-z)^{-1/2}B(A-z)^{-1/2}|| < 1$.

Existence of ground state: Step 2

Define the transformed Hamiltonian

$$H_{\sigma}^{W}(\xi, v) := W(g_{\sigma, v})H_{\sigma}(\xi)W(g_{\sigma, v})^{*},$$

with

$$g_{\sigma,v}(k) = g \frac{\kappa_{\sigma}(k)}{\sqrt{2|k|}(|k| - k \cdot v)} \in L^2(\mathbb{R}^3, dk).$$

- For $v = \nabla E_{\sigma}(\xi)$ and $\sigma = 0$ we have $g_{\sigma,v} \equiv f$.
- $H_{\sigma}^{\mathrm{W}}(\xi, v)$ has ground state energy $E_{\sigma}(\xi)$ with gap $\geqslant qa\sigma$ and associated projection $P_{\sigma}^{\mathrm{W}}(\xi, v)$.

Theorem

Let $\sigma(n) = \sigma/2^n$. For sufficiently small g, the limit

$$P^{W}(\xi) := \lim_{n \to \infty} P^{W}_{\sigma(n)}(\xi, \nabla E(\xi))$$

exists for all $|\xi| \le 1 - 2a$ and is independent of σ . It satisfies $(H^{\mathrm{W}}(\xi) - E(\xi)) \mathrm{P}^{\mathrm{W}}(\xi) = 0$, where $H^{\mathrm{W}} \equiv H^{\mathrm{W}}_{\sigma=0}$ and $E \equiv E_{\sigma=0}$.

Step 2: Estimates on $P_{\sigma}^{W}(\xi, v)$ and $\nabla E_{\sigma}(\xi)$

The proof relies on the following two estimates for any $\sigma>0$

Theorem.

Let $\tau=\sigma/2$. There exists C>0 (independent of σ and g) such that for small enough g and under suitable assumptions

(i)
$$\|P_{\sigma}^{W}(\xi, v) - P_{\tau}^{W}(\xi, v)\| \le Cg\sigma^{(1-\alpha)/2}$$
,

(ii)
$$|\nabla E_{\sigma}(\xi) - \nabla E_{\tau}(\xi)| \leqslant Cg\sigma^{(1-\alpha)/2}$$
,

for all $|\xi| \leq 1 - 2a$ and some $0 < \alpha < 1$.

If (i) holds for all $\sigma > 0$ and $v = \nabla E(\xi)$, then convergence follows.

What are the "suitable assumptions"? The first is

$$v \in \mathcal{I}_{\sigma} \quad \Leftrightarrow \quad |v - \nabla E_{\sigma}(\xi)| \leqslant c\sigma^{(1-\alpha)/2}$$

for some $0 < \alpha < 1$ and (small) c > 0.

Hence, $\nabla E(\xi) \in \mathcal{I}_{\sigma}$ for all $\sigma > 0$ and small enough g.

Step 2: Motivation of the requirements

The second "suitable assumption" is an estimate of the form

$$\|\left(H_{\sigma}(\xi) - E_{\sigma}(\xi)\right)^{-1/2} \left(\xi - P_{\mathrm{B},\sigma} - \nabla E_{\sigma}(\xi)\right) \Psi_{\sigma}(\xi)\|_{2} \leqslant \sqrt{2}\sigma^{-\alpha/2}.$$

 $\text{Motivation: set } P_1 \equiv P_\sigma^{\mathrm{W}}(\xi,v) \,, P_2 \equiv P_\tau^{\mathrm{W}}(\xi,v) \text{ and estimate } \|P_1 - P_2\|.$

■ For any orthogonal projections $\mathcal{P}_i = \psi_i(\psi_i, \cdot)$ (i = 1, 2)

$$\|\mathcal{P}_1 - \mathcal{P}_2\|^2 \leqslant 2 \operatorname{tr} (\mathcal{P}_1 (\mathcal{P}_1 - \mathcal{P}_2)^2 \mathcal{P}_1) = 2 \| (\mathcal{P}_1 - \mathcal{P}_2) \psi_1 \|_2^2.$$

■ H_i have gaps $O(\sigma)$ and $|E_1 - E_2| = O(g^2 \sigma)$ $\Rightarrow \exists \gamma \subset \mathbb{C} \setminus \bigcup \{ \operatorname{spec} H_i \}$ encircling only $E_{\sigma}(\xi)$ and $E_{\tau}(\xi)$.

$$\begin{split} \mathbf{P}_i &= -\frac{1}{2\pi i} \int_{\gamma} \mathrm{d}z \left(H_i - z\right)^{-1}, \\ \left(\mathbf{P}_1 - \mathbf{P}_2\right) \Psi_1 &= \frac{1}{2\pi i} \int_{\gamma} \mathrm{d}z \left(H_2 - z\right)^{-1} \left(H_1 - H_2\right) \Psi_1 \frac{\mathrm{d}z}{E_1 - z}. \end{split}$$

Step 2: Motivation of the requirements

- $\|P_1 P_2\| \leqslant C \sup_{z \in \gamma} \|(H_2 z)^{-1} (H_1 H_2) \Psi_1\|_2$
- lacktriangle The two most serious terms in H_1-H_2 have the form

$$\left(f_0+a^*(f)\right)\cdot\left(\xi-W(g_{\sigma,v})P_{\mathrm{B},\tau}W(g_{\sigma,v})^*-v\right)$$
 with $\|f_0\|=O(g^2\sigma)$ and $\|f\|_2^2=O(g^2\sigma^2)$.

lacktriangle For the first, we have the bound $C^\prime g^2$ times

$$\sigma \| (\widetilde{H}_{2} - z)^{-1} (\xi - P_{B,\sigma} - v) \Psi_{\sigma}(\xi) \|_{2}$$

$$\leq |v - \nabla E_{\sigma}(\xi)| + \sigma^{1/2} \| (\widetilde{H}_{2} - z)^{-1/2} (\xi - P_{B,\sigma} - \nabla E_{\sigma}(\xi)) \Psi_{\sigma}(\xi) \|_{2},$$

■ Hence the requirements $|v - \nabla E_{\sigma}(\xi)| \leq c\sigma^{(1-\alpha)/2}$ and

$$\|\left(H_{\sigma}(\xi) - E_{\sigma}(\xi)\right)^{-1/2} \left(\xi - P_{\mathsf{B},\sigma} - \nabla E_{\sigma}(\xi)\right) \Psi_{\sigma}(\xi)\|_{2} \leqslant \sqrt{2}\sigma^{-\alpha/2}.$$

Taking the square and setting $\Pi = \xi - P_{\mathrm{B},\sigma} - \nabla E_{\sigma}(\xi)$, we get

$$H_{\sigma}(\xi) - \frac{1}{2}\sigma^{\alpha}\Pi P_{\sigma}(\xi)\Pi \geqslant E_{\sigma}(\xi).$$

Step 2: Auxiliary Hamiltonians

Need to introduce auxiliary Hamiltonians

$$h_{\sigma}(\xi, v) := H_{\sigma}(\xi) - \frac{1}{2}\sigma^{\alpha} \left(\xi - P_{\mathbf{B}, \sigma} - v\right) \mathbf{P}_{\sigma}(\xi) \left(\xi - P_{\mathbf{B}, \sigma} - v\right).$$

Theorem

There exist c>0 such that, for all sufficiently small $g,\ h_{\sigma}(\xi,v)$ has a non-degenerate ground state $\left(E_{\sigma}(\xi,v),\mathrm{P}_{\sigma}(\xi,v)\right)$ with gap

$$\Delta_{\sigma}(\xi, v) \geqslant qa\sigma$$

for all $\sigma > 0$, $|\xi| \leqslant 1 - 2a$ and $|v - \nabla E_{\sigma}(\xi)| \leqslant c\sigma^{(1-\alpha)/2}$. For $v = \nabla E_{\sigma}(\xi)$, the ground state is that of $H_{\sigma}(\xi)$.

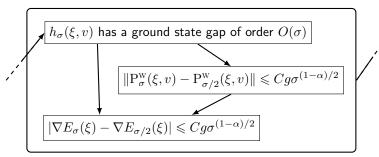
The proof is again by induction in $\sigma = \sigma^*/2^n$ for large σ^* and $n \in \mathbb{N}_0$.

Step 2: The induction step scheme

Base case: $g_{\sigma} \equiv 0$ for large $\sigma > 0 \quad \Rightarrow \quad$ ground state is vacuum Ω_{σ} .

Induction step: $\sigma \leadsto \sigma/2$. The estimates on $P_{\sigma}^{W}(\xi, v)$ and $\nabla E_{\sigma}(\xi)$ are proven inductively according to the following diagram

Induction step $\sigma \to \sigma/2$



Discussion

The existence of a ground state for $H_\sigma^{\mathrm{W}}(\xi,\nabla E_\sigma(\xi))$ in the limit $\sigma\to 0$ has already been proven by

- J. Fröhlich in '73 (functionals on some algebra of operators),
- A. Pizzo in '03 (ground eigenvector).

Both used IR cutoffs σ and the existence of isolated eigenvalue for $\sigma > 0$.

The present proof uses ground state projections. Differences:

- Improved estimate: $E_{\sigma}(\xi p) + h E_{\sigma}(\xi) \geqslant \frac{3}{2}ah$, $(|p| \leqslant h)$.
- Working with projections avoids the possible trouble $\Psi_{\sigma} \to 0$.
- Estimates proven for neighbourhoods $|v \nabla E_{\sigma}(\xi)| = O(\sigma^{(1-\alpha)/2})$.
- No upper bound on the UV cutoff.
- ullet $|\xi| \leqslant 1 2a$ with a arbitrarily small for small enough g.

Hope: analyticity of $P^{W}(\xi)$ in some neighbourhood of 0?

Summary

- Translation invariant Nelson's massless model. Total momentum fibration: H on $L^2(\mathbb{R}^3) \otimes \mathcal{F} \leadsto H(\xi)$ on \mathcal{F} .
- $H(\xi)$ has pure ac spectrum \Rightarrow no ground state.
- IR regular $H_{\sigma}(\xi)$ has ground state for $\sigma > 0$.
- Weyl-transformed $H_{\sigma}^{\mathrm{W}}(\xi,v)$ has ground state for $\sigma\geqslant 0$ if $v=\lim_{\sigma\to 0}\nabla E_{\sigma}(\xi).$
- Proof essentially relies on two estimates

(i)
$$\|P_{\sigma}^{W}(\xi, v) - P_{\tau}^{W}(\xi, v)\| \leq Cg\sigma^{(1-\alpha)/2}$$
,

(ii)
$$|\nabla E_{\sigma}(\xi) - \nabla E_{\tau}(\xi)| \leqslant Cg\sigma^{(1-\alpha)/2}$$
,

and that

$$h_{\sigma}(\xi, v) = H_{\sigma}(\xi) - \frac{1}{2}\sigma^{\alpha}(\xi - P_{B,\sigma} - v)P_{\sigma}(\xi)(\xi - P_{B,\sigma} - v)$$

has the same ground state and gap as $H_{\sigma}(\xi)$ for $v = \nabla E_{\sigma}(\xi)$.



Thank you for your attention!