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IR catastrophe illustration: van Hove model

van Hove Hamiltonians (van Hove '52, Dereziriski '03) are a class of
quadratic Hamiltonians on F with linear perturbation in a and a*:

Hyp = dI'(w) + a*(wf) + a(wf)
= [ ki) (a” () + ) (alh) + £0)) = o' 2113
Assumptions:
m w(k) = |k| (massless field),
m wf € L*(R3,dk) for a = 3, 1.
If f € L?(R3,dk), apply the Weyl transformation
W (f)HuW (f)* = Hy — [0/ f5

Hyy, has ground state W (f)*Q (coherent state).
Mean number of photons in ground state is || f||2 (IR catastrophe).



Nelson's massless model (N '64, Frohlich '73, Pizzo '03)

One spinless non-relativistic particle (electron) coupled to a massless
bosonic radiation field (photons): H = L?(R?,dz) ® F. Hamiltonian:
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with p = —iV,, Hy = dI'(w), w(k) = |k| and x an UV cutoff (form
factor of the electron).

(7™ @ a*(k) + ™" @ a(k)) (k)

m Interaction is infinitesimal wrt free Hamiltonian H
= H is self-adjoint on D(Hy) and bounded below.

m H is translation invariant: [H,P]=0for P=p®1+1® Px.

m Fibration of the Hilbert space: 3 a unitary I such that

1%

’H:I*(/@dgH(g))I, H(E) = F.

Idea: L?(R3, F) ~ L?(RE, F).



Nelson's massless model: Fibre decomposition

Hamiltonian on H(§):
1 dk
H(§) = 5~ P) + Hy+9 | —==(a"(k) +a(k))x(k)
2 R[ V2|k|

B %(5 — P3)? + Hy + a*(wg) + a(wg),

r(k)

V2P

with Py = [ dk ka*(k)a(k), w(k) = |k| and g(k) =g
Assumptions and properties:

m Restrict to |£] < 1 — 2a for (small) a > 0 (non-relativistic electron).
m w% € L*(R3,dk) for a = %, 1, but g & L3(R3,dk).

m For £ #0, H(&) has purely ac spectrum (= no ground state)
(Frohlich '73, Hasler-Herbst '08)



Nelson's massless model: improper ground state

Hamiltonian on H(&):
H(E) = 5(€~ Po)? + Hy + a*(wg) + alw),

L)
V2IRE

m Assume anyway: 3 ground state ®(£): H(E)P(&) = E(§)P(€)
and it is coherent for |k| — 0, i.e. a(k)®(§) ~ —f(k)P(£), then

with w(k) = |k| and g(k) =

k(k)

Ik\fiogw/2|k|(|k| — k)’

m For |k| — 0, ground state has formal expression ®(&) = W (f)*Q.
m [ & L3(R3 dk) = ®(&) is not normalizable (improper).

7 (k) v=VE().

Goal: H(&) has ground state after (formal) Weyl transformation W (f).
(Frohlich '73, Pizzo '03)



Existence of ground state: Step 1

Set IR cutoffs o > 0 on interaction and ¢ > 7 > 0 on Fock space:
1 *
H;—r(f) = 5(5 - PB,T)2 +Hprta (Wga) + (l(wgg) ,

and H,(¢) = HZ (€).

Let % < ¢ < 1 be arbitrary, but fixed along with (small) a > 0.

Theorem

For sufficiently small g (depending on a and q, but not on ¢ ), H,(§) has
a non-degenerate ground state (E,(€),P,(€)) with gap

AU (f) > qao ,
for all o > 0 and |¢| < 1 —2a. (Es(£),P,(&)) are real-analytic in such &.

The proof is inductive in o = o* /2™ for o* large enough and n € Njy.



Existence of ground state: Step 1

Base case: g, =0 for large 0 >0 = ground state is vacuum £,.

Induction step: H, (&) has GS ¥, (&) with energy E, (&) and gap > gao.
o~ 0o/2=T.

m Lower cutoff of Fock space: H,(§) = HZ(§) ~ HI(£).
GS Q;, ® U, (£) with energy E,(§) and gap > ar.

3
Sah, (ol <h).

m Lower cutoff of interaction: HZ(§) ~ H.(§).
E, (&) + gart is in a gap for HZ(§) and E.(§) < E(£).

Only need: E,(§—p)+h—E;(&) >

Show that F, (&) 4 gar is still in a gap for H,(§).
A+B—z2=(A-2)Y2(1+(A—2)"2B(A - 2)7Y?)(A - 2)'/?

is still invertible if ||[(A — 2)"Y2B(A — 2)~/?| < 1.



Existence of ground state: Step 2

Define the transformed Hamiltonian

HF (& v) = W(go,w)Ho(E)W (o)™

with
Ko (k)

o,v k)=
9o ) =9 (k] — o)

m For v = VE;(£) and 0 = 0 we have g, , = f.

€ L2(R3,dk).

m H)Y (&, v) has ground state energy E, (&) with gap > qao and
associated projection PY (&, v).

Theorem

Let o(n) = o/2™. For sufficiently small g, the limit

PY(€) := lim PY.,\ (¢ VE(E))

n— o0

exists for all |{| < 1 — 2a and is independent of o. It satisfies
(HY(&) — E(&))PY(§) =0, where HY = H)_, and E = E,—q.



Step 2: Estimates on PY (&, v) and VE,(§)

The proof relies on the following two estimates for any ¢ > 0

Theorem

Let 7 = 0/2. There exists C > 0 (independent of o and g) such that for
small enough g and under suitable assumptions

(i) IPY(E v) = PY(Ev)]| < Cgoltm)/2,
(i) |VEs(€) = VE-(§)] < Cga=2)/2,
for all |§] < 1 —2a and some 0 < o < 1.
If (i) holds for all ¢ > 0 and v = VE(£), then convergence follows.
What are the “suitable assumptions”? The first is
vel, & |v—VE,(§)|<col™/2
for some 0 < a < 1 and (small) ¢ > 0.

Hence, VE(&) € Z, for all o > 0 and small enough g.



Step 2: Motivation of the requirements

The second “suitable assumption” is an estimate of the form
—1/2 —o
1(Ho (&) = Eo()) (6 = Poo = VEo(&) Ua(9)ll2 < V2072,
Motivation: set P; = PY(£,v), Py = P¥(£,v) and estimate ||P; — Pa.
m For any orthogonal projections P; = (15, -) (i =1,2)

[P1 = Pa||? < 2tr(P1(P1 — P2)*P1) = 2||(P1 — Pa2)nll3 -

m H; have gaps O(0) and |E; — Es| = O(g%0)
= 3y € C\ U{spec H;} encircling only E, (&) and E.(§).

1 —1
1 1 dz
(P17P2)\I/1: Tm ’YdZ (HQ*Z) (HlfHQ)\IflEl_Z.



Step 2: Motivation of the requirements

m ||P; — Py < Cilég||(H2 - Z>71(H1 — Ha) W2
m The two most serious terms in H; — Ho have the form
(fo+a™(f)) (€ = W(gow) Pas W (gow)" = v)
with | fo| = O(g°0) and || f[|3 = O(g%c?).
m For the first, we have the bound C"g? times
oll(Hx = 2) " (€ = Pao = 0) Wo(©)]]2
< o= VE(©)l+0"2[(Hz = 2) 7 (§ = P = VE() Uo(E) |2
m Hence the requirements |[v — VE, (¢)]| < co'=*)/2 and
|(Ho (€)= Eo(©) /(€ = Pro = VES(©) ¥ (©)ll < V22,
Taking the square and setting Il = & — Py , — VE,(§), we get

H,(§) = 50 TP, ()1 > B, (€)



Step 2: Auxiliary Hamiltonians

Need to introduce auxiliary Hamiltonians

o (6,0) = Ho(€) = 50 (€~ Pag — 0)Po(E)(€ ~ Pag —v).

Theorem

There exist ¢ > 0 such that, for all sufficiently small g, h,(&,v) has a
non-degenerate ground state (E,(£,v),P,(&,v)) with gap

As(&v) = qao

for all o > 0, |¢] <1 —2a and |[v — VE4(£)| < co"=*)/2. For
v = VE,(§), the ground state is that of H,(&).

The proof is again by induction in o = o*/2" for large ¢* and n € Ny.



Step 2: The induction step scheme

Base case: g, =0 for large 0 >0 = ground state is vacuum £,.

Induction step: o ~» 0 /2. The estimates on P} (¢, v) and VE, () are
proven inductively according to the following diagram

Induction step o — o/2

/ he(&,v) has a ground state gap of order O(o) ‘

7
4
7

: IPY(E,v) — P, (&, v)]| < Cgoli-o)/2

—

|VE,(£) — VE, /2(€)| < Cgol=)/2




Discussion

The existence of a ground state for HY (¢, VE,(&)) in the limit 0 — 0
has already been proven by

m J. Fréhlich in '73 (functionals on some algebra of operators),
m A. Pizzo in '03 (ground eigenvector).
Both used IR cutoffs o and the existence of isolated eigenvalue for o > 0.

The present proof uses ground state projections. Differences:

3
m Improved estimate:  E,({—p)+h— E; (&) > iah7 (Ip] < ).

Working with projections avoids the possible trouble ¥, — 0.
m Estimates proven for neighbourhoods |v — VE,(£)| = O(c(1=%)/2),
m No upper bound on the UV cutoff.

|€] < 1 — 2a with a arbitrarily small for small enough g.

Hope: analyticity of PY¥(£) in some neighbourhood of 07



m Translation invariant Nelson's massless model.
Total momentum fibration: H on L?(R3) @ F ~~ H(§) on F.

m H({) has pure ac spectrum = no ground state.
m IR regular H, () has ground state for o > 0.
m Weyl-transformed HY (&, v) has ground state for o > 0 if
v = hn%) VE,(§).
o—

m Proof essentially relies on two estimates

(I) ||Pg(€7v) —PE(fﬂ])H < C'go-(l—w)/Z7
(i) |[VE,(§) = VE(§)| < Cga=9/2,

and that

hU(€7v) = Hd(g) - %Ua(g - PB,U - U)Pa(f)(f - PB,U - U)

has the same ground state and gap as H, (&) for v = VE, ().



Thank you for your attention!



