The universal C*-algebra of the electromagnetic field

Detlev Buchholz, Fabio Ciolli, Guiseppe Ruzzi, Ezio Vasselli

"Quantum Field Theory: Infrared problems and constructive aspects"

TUM – 8th October 2015

Motivation

Critique of AQFT:

The connection between the key concepts of AQFT and LQFT, i.e. observables and quantum fields, is not at all clear.

M. Kuhlmann [2000]

In AQFT the algebra of observables contains the physical content. This has not been extended to include local gauge theory.

E. MacKinnon [2005]

To be lured away from the Standard Model by AQFT is sheer madness.

D. Wallace [2010]

To some questions (e.g., is there a photon field that interacts with an electron field?), LQFT provides the obvious right answer and AQFT cannot.

D.J. Baker [2015]

AQFT has given us a frame and a language, not a theory.

R. Haag [1996]

Motivation

Is AQFT capable of describing concrete physical systems?

Example: electromagnetic field in d = 4. It may interact with . . .

- nothing (asymptotic radiation)
- classical currents (external electromagnetic forces)
- quantum currents (atoms, ions)
- electrons, protons (elementary particles)
- quarks (constituents) . . .

LQFT approach: write down in each instance a classical Lagrangian describing the interaction and "quantize" it

AQFT approach: construct a universal algebra of the electromagnetic field and "represent" it (as the case may be)

Message of talk: There is such a universal C*-algebra!

Electromagnetic field

Notation:

- $\mathcal{D}_r(\mathbb{R}^4)$ space of real, tensor-valued test functions with compact support, rank $r=0,\ldots,4$, totally anti-symmetric (forms)
- $d: \mathcal{D}_r(\mathbb{R}^4) \to \mathcal{D}_{r+1}(\mathbb{R}^4)$ exterior derivative (generalized curl)
- $\delta: \mathcal{D}_r(\mathbb{R}^4) \to \mathcal{D}_{r-1}(\mathbb{R}^4)$ co-derivativ (generalized divergence)

Distinctive properties of the electromagnetic field *F*:

- $F: \mathcal{D}_2(\mathbb{R}^4) \to \mathfrak{P}$ (linear map to generators of some *-algebra \mathfrak{P})
- $F(\delta h) = 0$, $h \in \mathcal{D}_3(\mathbb{R}^4)$ (homogeneous Maxwell equation)
- $j(g) \doteq F(dg), \ g \in \mathcal{D}_1(\mathbb{R}^4)$ (inhomogeneous Maxwell equation)
- $F(f) \mapsto F(f_P), P \in \mathcal{P}_+^{\uparrow}$ (covariance)
- $[F(f_1), F(f_2)] = 0$ if supp $f_1 \perp \text{supp } f_2$ (locality)

Electromagnetic field

Convenient to proceed from *F* to "intrinsic vector potential" *A*:

$$A(\delta f) \doteq F(f), \quad f \in \mathcal{D}_2(\mathbb{R}^4)$$

Note: $\delta(\delta f) = 0$, $f \in \mathcal{D}_2(\mathbb{R}^4)$, *i.e.* $\delta f \in \mathcal{D}_1(\mathbb{R}^4)$ is "co-closed".

Question: Are all co-closed elements of $\mathcal{D}_1(\mathbb{R}^4)$ of this form?

Local Poincaré Lemma

Let $g \in \mathcal{D}_1(\mathbb{R}^4)$ be co-closed, $\delta g = 0$, and supp $g \subset \mathcal{O}$ (double cone). There is $f \in \mathcal{D}_2(\mathbb{R}^4)$ with supp $f \subset \mathcal{O}$ such that $g = \delta f$.

Causal Poincaré Lemma

Let $g \in \mathcal{D}_1(\mathbb{R}^4)$ be co-closed, $\delta g = 0$, and supp $g \perp \mathcal{O}$ (double cone). There is $f \in \mathcal{D}_2(\mathbb{R}^4)$ with supp $f \perp \mathcal{O}$ such that $g = \delta f$.

Notation: $C_1(\mathbb{R}^4) \subset D_1(\mathbb{R}^4)$ subspace of co-closed elements.

Electromagnetic field

Definition: For $g \in C_1(\mathbb{R}^4)$, put $A(g) \doteq F(f)$, where $\delta f = g$.

Consistency: $\delta f = g = \delta f'$ implies $f' - f = \delta h$ and consequently F(f') = F(f).

Reformulation of properties of *F* in terms of *A*:

- $A: \mathcal{C}_1(\mathbb{R}^4) \to \mathfrak{P}$
- $A(\delta(\delta h)) = 0$, $h \in \mathcal{D}_3(\mathbb{R}^4)$ (homogeneous Maxwell equ.) \checkmark
- $j(g) \doteq A(\delta dg), \ g \in \mathcal{D}_1(\mathbb{R}^4)$ (inhomogeneous Maxwell equ.)
- $A(g)\mapsto A(g_P),\ P\in \mathcal{P}_+^\uparrow \ \text{for} \ g\in \mathcal{C}_1(\mathbb{R}^4)$ (covariance)
- $[A(g_1), A(g_2)] = ?$ if supp $g_1 \perp \text{supp } g_2$ (locality?)

Theorem

Let $g_1, g_2 \in \mathcal{C}_1(\mathbb{R}^4)$ such that supp $g_1 \perp \text{supp } g_2$. Then

- (i) $[A(g_1), A(g_2)] \in \mathfrak{P} \cap \mathfrak{P}'$ (center)
- (ii) $[A(g_1), A(g_2)] = 0$ if $supp g_1 \times supp g_2$

The universal algebra

Heuristic idea: Proceed to abstract unitary operators $V(a,g) = e^{iaA(g)}$

Definition:

$$\mathfrak{G}_0$$
: unitary group generated by $\{V(a,g): a \in \mathbb{R}, g \in \mathcal{C}_1(\mathbb{R}^4)\}$, relations $V(a_1,g)V(a_2,g) = V(a_1+a_2,g)\,, \ \ V(a,g)^* = V(-a,g)\,, \ \ V(0,g) = 1$ $V(a_1,g_1)V(a_2,g_2) = V(1,a_1g_1+a_2g_2) \ \ \text{if} \ \ \text{supp} \ g_1 \times \text{supp} \ g_2$

 $|V(a,g), V(a_1,g_1), V(a_2,g_2)|| = 0$, for any g if supp $g_1 \perp \text{supp } g_2$

 \mathfrak{V}_0 : complex linear span of the elements of \mathfrak{G}_0 (*-algebra)

Note: Let ω be any state on \mathfrak{V}_0 with GNS-representation $(\pi, \mathcal{H}, \Omega)$. Then $A \mapsto \|\pi(A)\|_{\mathcal{H}}$ defines a C*-semi-norm on \mathfrak{V}_0 . If ω is faithful, it is a C*-norm.

The universal algebra

Lemma

Let ω be the functional on \mathfrak{G}_0 given by $\omega(V)=0$ for $V\in\mathfrak{G}_0\setminus\{1\}$ and $\omega(1)=1$. The canonical extension of this functional to the complex linear span of \mathfrak{G}_0 is a faithful state on \mathfrak{D}_0 .

Sketch of proof:
$$\omega(c_0 1 + \sum_n c_n V_n) = c_0$$
 for $V_n \in \mathfrak{G}_0 \setminus \{1\}$ (basis of \mathfrak{V}_0 in \mathfrak{G}_0); $\omega((c_0 1 + \sum_n c_n V_n)^* (c_0 1 + \sum_{n'} c_{n'} V_{n'})) = |c_0|^2 + \sum_n |c_n|^2 \ge 0$. QED

Corollary

Let $(\pi, \mathcal{H}, \Omega)$ be the GNS-representation induced by ω . The map $A \mapsto \|\pi(A)\|_{\mathcal{H}}$, $A \in \mathfrak{V}_0$, defines a C^* -norm on \mathfrak{V}_0 .

Definition: The completion of \mathfrak{V}_0 with regard to the norm

$$\|A\| \doteq \sup_{\pi \ \mathcal{H}} \|\pi(A)\|_{\mathcal{H}}, \quad A \in \mathfrak{V}_0$$

is the universal C^* -algebra $\,\mathfrak V\,$ of the electromagnetic field.

The universal algebra

Does $\mathfrak V$ satisfy all Haag-Kastler axioms?

Isotony:
$$\mathcal{O}\mapsto \mathfrak{V}(\mathcal{O})\doteq C^*\{V(a,g):a\in\mathbb{R},\ g\in\mathcal{C}_1(\mathcal{O})\};$$
 the algebra \mathfrak{V} is, by construction, the C*-inductive limit of these local algebras \checkmark

Covariance: The invertible maps α . defined by

$$\alpha_P(V(a,g)) \doteq V(a,g_P), \quad P \in \mathcal{P}_+^{\uparrow},$$

extend to automorphisms of \mathfrak{G}_0 , theron to its span \mathfrak{V}_0 , and then by continuity to \mathfrak{V} . Moreover, $\alpha_P(\mathfrak{V}(\mathcal{O})) = \mathfrak{V}(P\mathcal{O})$ by construction.

Locality: By definition
$$[V(a_1, g_1), V(a_2, g_2)] = 0$$
 if supp $g_1 \times \text{supp } g_2$.
Hence $[\mathfrak{V}(\mathcal{O}_1), \mathfrak{V}(\mathcal{O}_2)] = 0$ if $\mathcal{O}_1 \perp \mathcal{O}_2$.

Primitivity: Not satisfied since $\mathfrak V$ has a non-trivial center.

Vital (difficult) step: Pick a suitable pure state $\omega \in \mathfrak{V}^*$ (e.g. vacuum) such that the kernel ker π of its GNS-representation is Poincaré invariant. The quotient algebra $\mathfrak{V}/\text{ker }\pi$ then satisfies all Haag-Kastler axioms, *i.e.* defines a theory.

Representations

Characterization of states of interest:

Definition: Let ω be a state on \mathfrak{V} .

ullet ω is regular (strongly regular) if all functions

$$a_1,\ldots,a_n\mapsto\omega(V(a_1,g_1)\cdots V(a_n,g_n))$$

are continuous (smooth, with tempered derivatives at 0)

ullet ω satisfies condition L if it is strongly regular and

$$\frac{d}{da}\omega(V_1V(a,g_1)V(a,g_2)V(a,-g_1-g_2)V_2)\big|_{a=0}=0$$

Theorem

Let ω be a state on \mathfrak{V} , satisfying L, with GNS representation $(\pi, \mathcal{H}, \Omega)$

- There exist selfadjoint operators $A_{\pi}(g)$ with common stable core $\mathcal{D} \subset \mathcal{H}$ such that $\pi(V(a,g)) = e^{iaA_{\pi}(g)}$, $a \in \mathbb{R}$, $g \in \mathcal{C}_1(\mathbb{R}^4)$.
- $\bullet \ a_1A_{\pi}(g_1) + a_2A_{\pi}(g_2) = A_{\pi}(a_1g_1 + a_2g_2) \ \ \text{on} \ \ \mathcal{D}.$

Representations

Definition: A state ω on $\mathfrak V$ describes the vacuum if it is pure and

- $\omega \circ \alpha_P = \omega$, $P \in \mathcal{P}_+^{\uparrow}$
- $P \mapsto \omega(V_1 \alpha_P(V_2))$ continuous, $V_1, V_2 \in \mathfrak{V}$
- supp $\{k\mapsto \int dx\ e^{-ikx}\omega(V_1\ \alpha_x(V_2))\}\subset \overline{V}_+,\ V_1,V_2\in \mathfrak{V}$

Theorem

Let ω be a vacuum state on $\mathfrak V$ with GNS representation $(\pi, \mathcal H, \Omega)$. There exists a continuous unitary representation U_{π} of $\mathcal P_{+}^{\uparrow}$ such that

$$U_{\pi}(P)\pi(V)U_{\pi}(P)^{-1} = \pi \circ \alpha_{P}(V), \quad P \in \mathcal{P}_{+}^{\uparrow}, \ V \in \mathfrak{V}.$$

Note: π is irreducible and $\ker \pi$ is Poincaré invariant; hence $\mathfrak{V}/\ker \pi$ defines a Haag-Kastler theory with dynamics induced by U_{π} .

Remarks:

ullet Any vacuum state ω is fixed by its generating functional

$$g \mapsto \omega(V(1,g)), \quad g \in \mathcal{C}_1(\mathbb{R}^4).$$

Sketch of proof: Given g_1, \ldots, g_n there are $x_1, \ldots, x_n \in \mathbb{R}^4$ such that $\omega(\alpha_{x_1}(V(a_1, g_1)) \cdots \alpha_{x_n}(V(a_n, g_n))) = \omega(V(1, \sum_m a_m g_{mx_m})).$

Right hand side fixed by generating functional, left hand side can be continued to $x_1 = \cdots = x_n = 0$ by the EOW-Theorem.

• Any vacuum state ω satisfying condition L fixes correlation functions of F satisfying all Wightman axioms.

Examples

Task: Determination of states of interest in \mathfrak{V}^* with property L

(1) Zero current: (recall $A_{\pi}(\delta dg) = j_{\pi}(g), \ g \in \mathcal{D}(\mathbb{R}^4)$)

Lemma

Let ω_0 be a vacuum state on $\mathfrak V$ with zero current. Then

$$g \mapsto \omega_0(V(1,g)) = e^{-c\langle g,g\rangle}, \quad g \in \mathcal{C}_1(\mathbb{R}^4),$$

(free electromagnetic field in Fock space representation, $c \ge 0$).

(2) Classical (central) currents:

Lemma

Let ω be a pure state on $\mathfrak V$ in presence of a classical current. Then

$$g\mapsto \omega(V(1,g))=e^{ij_{\pi}(G_0g)}\,\omega_0(V(1,g))\,,\quad g\in\mathcal{C}_1(\mathbb{R}^4),$$

 $(j_{\pi} \text{ distribution, } G_0 \text{ Green's function of } \square, \ \omega_0 \text{ state with zero current})$

- (3) Quantum currents: No rigorous examples yet of vacuum states on \mathfrak{V} .
 - Feynman (path integral) approach relies on heuristic formula $g \mapsto \omega(V_T(1,g)) \doteq Z^{-1} \! \int \! dA d\psi d\bar{\psi} \, e^{iS(A,\psi,\bar{\psi})} \, e^{iA(g)}$

for time ordered exponentials

• Steinmann approach for expectations of unordered exponentials $q \mapsto \omega(V(1, q))$

relies on field equations

Both approaches consistent only in renormalized perturbation theory.

(4) Topological charges:

There exist pure states on $\mathfrak V$ such that $\pi(\lfloor V(1,g_1),V(1,g_2)\rfloor) \neq 1_{\mathcal H}$ for certain $g_1,g_2\in\mathcal C_1(\mathbb R^4)$ with supp $g_1\perp$ supp g_2 .

Summary

- Universal C*-algebra
 \$\mathfrak{T}\$ of the electromagnetic field has been constructed
- Haag-Kastler axioms satisfied (primitivity)
- Any relativistic QFT involving electromagnetic field induces a particular vacuum state on \mathfrak{V} ($\mathfrak{V}/\ker \pi$ satisfies all axioms)
- Algebra
 ¹
 ¹
 meaningful starting point for study of existence problems and structural analysis (IR problems etc)
- Topological features of intrinsic vector potential A encoded in center of \$\mathfrak{v}\$
- AQFT is capable of describing concrete physical systems; approach complementary to LQFT (π versus \mathcal{L})